
Component Selection and Matching for IP-Based Design

Ting Zhang
Stanford University

Luca Benini
Universitá di Bologna

Giovanni De Micheli
Stanford University

Abstract

Intellectual Property (IP) reuse is one of the most promising
techniques addressing the design complexity problem. IP reuse as-
sumes that pre-designed components can be integrated into the de-
sign under development, thereby reducing design complexity and
time. On the other hand, as the number of IP providers increases,
the selection of the best IP block for a given design becomes more
challenging and time-consuming. In this paper, we present an
IP component matching system targeting automatic component
searching and matching across the Internet. The system is based
on Extensible Markup Language (XML) specification both for IP
libraries (a repository of pre-designed IP components indexed by
their corresponding specifications) and an IP user queries (spec-
ifications with incomplete/uncertain attributes). An IP query is
parsed into a document object model (DOM) and the DOM is
transformed to an internal tree-structured model. Fuzzy logic
scoring and aggregation algorithms are applied to the internal
tree structure to provide a set of candidate approximate matches
ranked by proximity between the query and IP specification.

1. Introduction

Current silicon manufacturing technology allows entire
systems to be built on a single chip (SoC) as a more cost-
effective solution than multi-chip systems. However, the in-
crease of design engineers’ productivity hardly keeps pace
with the increase of complexity. Intellectual Property (IP)
reuse is seen as a viable approach to close the “design pro-
ductivity gap”. IP reuse assumes that pre-designed, pre-
synthesized and pre-verified components can easily inte-
grated into a design, hence reducing design complexity and
time [1]. A prerequisite for successful integration is IP com-
ponent selection: IP-based design flow needs tools to fa-
cilitate the process of selecting the component with both
functionality and cost that optimally match the designer’s
needs. Some IP reuse tools have been proposed [4, 5, 8];
however, they do not address the component selection prob-
lem. On the other hand, IP publication and search services
are currently available. These services offer a web-based in-
terface for browsing IP catalogues [2, 3], but classification

and searching are not standardized. Furthermore, searching
and selection are fully in charge of the user, resulting in a
time-consuming IP selection process.

The limitations of current IP selection mechanisms have
been recognized by several IP providers and user, and sev-
eral initiatives have been promoted to facilitated IP selection
and sharing. An interesting survey of current IP exchange
standardization initiatives is given in [6]. Standardization is
certainly a key enabler for effective IP exchange, however,
the issue of automating the selection process has not been
explored yet. In this paper, we present a component match-
ing system, targeting automatic component search via the
Internet. The system is part of the JavaCAD framework, an
Internet-based EDA tool aimed at providing IP protection in
simulation and cost estimation involving IP components [7].

The contribution of this paper is twofold. First, in accor-
dance with current standardization efforts [6], we investi-
gate the use of the Extensible Markup Language (XML) as
a representation both for IP providers building a database (a
repository of pre-designed IP components indexed by their
specifications) and IP users expressing a query (a particular
specification with incomplete/uncertain attributes). Second,
we propose an automated IP component selection technique
based on fuzzy logic [10, 11, 12]. IP query and specification
are parsed to the Document Object Model (DOM), which
in turn is transformed into an internal tree structure. Fuzzy
queries are represented as fuzzy trees (i.e., trees with fuzzy
objects as nodes) and specifications are represented as crisp
tree (i.e., trees with crisp objects as nodes).

The reasons for the adoption of a fuzzy search engine
can be summarized as follows. First, fuzzy logic allows de-
signers to specify selection criterias (queries) that are par-
tially defined and subject to later refinement. For instance,
the designer may not entirely sure on what tradeoff be-
tween speed and power will suit her/his needs. Addition-
ally, initially vague specifications may be iteratively refined
(i.e., made crisper) as the design space becomes increas-
ingly constrained. Finally, fuzzy matching is applicable
to queries that are inherently ambiguous (such as informal
functional requirements). To give the reader concrete ex-
amples of use of our system, we carry out a case study on
two DSP components, Discrete Cosine Transform and its

inverse (DCT/IDCT). Our choice is based on the fact that
DCT/IDCT have broad applications in audio/video/image
compression and have many alternative implementations.

2. Methodology

IP component matching is an iterative process that can be
split in two phases: selection based on design metrics and
functionality checking. In the first phase, a designer is not
concerned with rigid matching. In fact, a precise specifica-
tion has not been finalized. Similarly to library searching
in software development, the designer wants to find some
component that fulfills the target functionality. The goal is
to narrow down the search scope first. The designer is will-
ing to accept some tune-up of the design to accommodate
IP components. The IP characteristics are fuzzy in nature.
All matching criteria have uncertain properties which are
ideally suited to the application of fuzzy logic in the search
process. Section 4 will address the problem in detail.

After a set of potential candidates are selected, it is time
for the designer to carry out precise functionality matching.
This step usually relies on simulation. The designer feeds
the component some input bit patterns and observes outputs
to see whether there is a discrepancy with the desired func-
tionality. We concentrate only on the first phase of compo-
nent matching. Our approach helps speeding up the initial
selection process. The matching systems is divided in two
parts: (1) XML representation of design specification (de-
scribed in Section 3) and (2) fuzzy matching between tree
structures (see Section 4).

2.1. Software Architecture

Our matching system is contained in the JavaCAD
framework, an Internet-based EDA tool with a secure
client/server architecture, providing IP verification and es-
timation via the Internet without revealing IP details before
purchase [7]. The communication between IP provider and
user is through the Remote Method Interface (RMI) and a
web server using HTTP. The overall system architecture is
shown in Figure 1.

Figure 1 focuses the part of the JavaCAD infrastructure
which is most closely related with component matching.
This part is seamlessly integrated with the simulation pro-
cess by allowing Virtual Components (VC) in the simula-
tion setup. When the simulation enters a VC, the component
matching is triggered to search databases of the IP provider
via the Internet. After searching, the candidates with the
nominal functionality are ranked according to design met-
rics. The behavioral specification (in Java) of these compo-
nents will be shipped back to the IP user. Then the JavaCAD
simulator will automatically instantiate the VC with the be-
havioral codes and resume the simulation process. More

IP PROVIDER IP USER

RMI Registry

M
a

tc
h

Pr
ox

y

M
a

tc
h

En
g

in
e

Web Server Web Server

 IP
Repository

(1)

(2)
(2)

(3)

(5)

(4)(5)

 (3)

(3)

(5)

(3)

JavaCAD
 Simulator

JavaCAD Framework

INTERNET

Figure 1. The IP Component Matching Architecture

precisely, matching is a five-stage process.

� Match Engine is the set of matching logics in a server
side (an IP provider) that interacts with its IP database.
It registers itself with the RMI Registry server which
provides the naming service for remote proxy objects
(1).

� After the RMI naming service is set up, the client (the
IP user) has obtained the virtual proxy of Match En-
gine shipped to its location using HTTP through the
web server (2). Once the proxy, (the Match Engine), is
setup at the client side, it accepts client queries which
are specifications with uncertain attributes.

� The specifications are either pre-compiled Java ob-
jects loaded from files, or URL links to XML docu-
ments which are parsed to the Document Object Model
(DOM) (see Section 3). During this phase, specific
fuzzy scoring methods and aggregation algorithms are
plugged into the DOM tree, forming the final query (3)
(see Section 4).

� Transparently to the end user, fuzzy matching in Match
Engine is run at the server side. Matching retrieves
the desired IP components from the repository (IP
database) and ranks them according to the design met-
rics of the fuzzy query (4).

� Once the matching engine selects a set of candidates,
the designer instantiates the component in the design.
The matched component are shipped to the client side
and instantiated (5).

Our design principle aims at providing matching algo-
rithm independence and extensibility. To fulfill this require-
ment, we represented every key concept of IP reuse (e.g.,
specification, component, implementation etc.) in a Java in-
terface. In particular, the two basic algorithmic components
of the matching engine, atomic scoring and conjunction ag-
gregation, are defined by the interfaces Scorer and Aggre-
gator respectively (see Section 4). Users are allowed the

maximum freedom to choose a suitable domain-dependent
algorithm as long as these algorithms satisfy the two inter-
faces.

3. XML Representation of IP

IP Specification is a set of heterogeneous information
varying drastically from component to component. It is not
feasible to use fixed schema to describe these loosely struc-
tured (or semi-structured) data. In our system, we adopt
XML as an IP content representation interface between IP
providers and users. The same approach is taken in indus-
trial standardization initiatives for IP exchange [6]. XML
is a metalanguage for creating domain-dependent markup
languages. In contrast to other markup languages (e.g.,
HTML), XML does not target visual presentation of data.
Rather, it describes the logic structure of data using a BNF-
like grammar called Document Type Definition (DTD).

DTD defines the syntax tree of an instance of XML lan-
guage. In XML vocabulary, this syntax tree is called a DOM
tree. Figure 2 shows a DOM tree of a generic IP repository.

TIMING

IP SPECIFICATION

IP IMPLEMENTATION

PORT LIST

PORT MAP

TEXT/#PCDATA

VERILOG FILE

JAVA CLASS

Length

PORT B

Length

Direction

Direction

Clock

Input Ports

Output Ports

In/Out Ports

IP Component

IP Component

IP Component

IP Implementation

IP Specification
Behavior Codes

 RTL Codes

Area

Clock

Power

Throughput

Port Map

Timing Constraints

Setup

Hold

Setup

Hold

PORT A

PORT B

IP REPOSITORY

PORT A

IP COMPONENT

Figure 2. The DOM Tree of a Generic IP Repository

XML has several advantages as a representation lan-
guage. It keeps SGML expressiveness power on the struc-
tured data without the SGML complexity. The hierarchi-
cal topology of data organization reflects the logic struc-
ture of data and reduces access steps to sub-elements. For
example, consider a specification of DCT/IDCT. It con-
tains area, power, clock and throughput as numeric met-
rics. However, the port map is more complicated, because

each port may have different lengths, directions and tim-
ing constraints with respect to other ports. Moreover, even
a seemingly numeric metric is not necessarily atomic. For
example, the throughput can be measured in various ways,
namely by clock cycles per pixel block/frame, or by pro-
cessing time per frame. Hence, it is necessary for descrip-
tion language to express a hierarchical structure.

The tagged data embeds the structure information within
the data which makes the processing easier. In particu-
lar, inline DTD makes the universal syntax parser appli-
cable, giving flexibility to the document creator and inter-
preters (applications) on data organization and visual rep-
resentation. As the semantics model of XML, DOM is a
tree-structured object graph (with no links) which is eas-
ily extracted and updated by application, avoiding ad hoc
processing codes. XML provides the ability to stylisti-
cally customize the document, which makes it an excellent
candidate for the next generation of web languages. Both
the Extensible Stylesheet Language (XSL) and the Exten-
sible HTML (XHTML), as a recast style sheet and markup
language (respectively) in XML vocabulary, are becoming
standard recommendations. In addition, stylistic customiza-
tion provides a pleasing type-setting ability of IP specifica-
tion publications on the web as well as on paper. Actually,
the Apache Software Foundation is developing an XSL For-
matting Object Processor (FOP), which reads a formatting
object tree and then turns it into a PDF document. XML
is becoming a new data organization model (vs the tradi-
tional relational one) for semistructured data. For example,
the path length between two objects in a DOM tree are con-
structed to be a metric of some relationship such as similar-
ity.

In our system, XML is used in building an IP database
for a provider as well as in constructing an IP query for a
user. There are two steps in processing XML representa-
tion.

1. An XML document is parsed to generate a DOM tree,
viewed as the corresponding syntax tree.

2. The DOM tree is further transformed to an internal tree
structure in JavaCAD with roughly the same topology,
viewed as the corresponding semantics tree.

After the semantic tree construction, the next step is to ap-
ply fuzzy logic to compute the proximity between semantic
trees (see Section 4).

4. Fuzzy Matching of IP

IP matching is intrinsically different from the traditional
database searches in the query semantics. In the traditional
relational database system, the expected query result is a
crisp set. Although the result may be sorted according to

some fields, it is essentially unordered. However, in the
settings of IP component matching, the IP specification is
hardly finalized at this design phase. Variation and tradeoff
should be allowed in a reasonable scope. Due to the fuzzy
nature of query specifications, it is desirable to have the
search result ranked according to the query. Moreover, users
should be able to express special interests on some particu-
lar attributes. For example, if a user is designing a portable
still camera, he/she would be stringent on power consump-
tion while relaxing performance requirements since it is un-
likely to have a sustained input stream.

Several approaches were evaluated before we adopted
fuzzy logic. One is the neural net which is widely applied
to pattern matching and classification. However, neural nets
needs a moderately large and typical dataset for training
while IP specifications are loosely structured with broad
variation spectrum. Moreover, dataset training is compu-
tation intensive even for the obvious pattern classifications.
Therefore, the neural net is not well-suited in the domain
of IP component matching. On the contrary, fuzzy logic is
widely used in the domain of “approximate matching” [13].

Recall from Section 3 that an XML specification is
parsed to generate a semantic tree. In the tree, nodes cor-
respond to attributes in an IP specification. In our fuzzy
logic solution, every attribute (the node in a query semantic
tree) is viewed as a fuzzy mathematical object. In contrast,
attributes of the component specifications in IP providers’
database are crisp. We call fuzzy tree any semantic tree con-
taining fuzzy objects as nodes and refer similarly to a crisp
tree. Figure 3 shows a simple DCT specification tree and a
fuzzy query tree.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Power Throughput Area

1 ~

Power Throughput Area

113.0 46.0 5.0 103.0~123.0 41.0~51.0 4.0~6.0

DCT Specification DCT Fuzzy Query

Figure 3. A Specification Tree vs a Fuzzy Query Tree

The fuzzy tree is essentially a fuzzy set, and matching
computes the membership degree of a crisp tree in this set.
Our computation divides into two stages: (1) an atomic
scoring leaf nodes (in Figure 4), (2) a bottom-up conjunc-
tion aggregation (in Figure 5). More in detail, conjunction
aggregation is a combination of two distinct steps, an un-
weighted conjunction aggregation and a weighted conjunc-
tion aggregation.

4.1. Atomic Scoring

Each of the atomic attributes in a query specification
(i.e., leaf node in a semantic tree) is viewed as a fuzzy
object. For example, numeric values of area, power, and

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ’

 ’ ’

’ ’’ ’’ ’

A

B C

F G H

.....

...

A

B C

D E F G H

.....

...

...

D

...

Atomic Scoring
E

Fuzzy Query Specification Crisp Component Specificatio

Figure 4. The Atomic Scoring Between a Query Tree and a
Specification Tree

A

B C

F G H
...

...

ED

...

Figure 5. The Conjunction Aggregation on a Fuzzily Scored
Specification Tree

throughput are modeled as fuzzy numbers. Figure 6 il-
lustrates the geometric representation of a triangular fuzzy
number.

A(t)

1

a-u a t a+v

T

Figure 6. A Triangular Fuzzy Number

This triangular fuzzy number is a fuzzy set over universe
R with only one crisp point as its core. Equation 1 gives its
corresponding membership function.

A(t) =

8
<
:
1� (a� t)=u if a� u � t � a

1� (t� a)=v if a � t � a+ v

0 otherwise

(1)

Given a corresponding crisp number t0, the membership
function value A(t0) is a confidence degree (or member-
ship degree) with respect to the fuzzy number.

For example, assume we have a DCT query specifica-
tion in which the throughput is characterized by the fuzzy
number (above) with the parameters

a = 46; u = 5; v = 10

The following list gives three crisp values and their respec-
tive membership degree to the above fuzzy number.

Value 47:0 Score = 0:9
Value 44:0 Score = 0:6
Value 52:0 Score = 0:4

There are many other possible choices of membership
functions. In general, any real continuous function whose
value domain is [0; 1] could be a membership function, al-
though continuity is usually required. Otherwise, member-
ship degenerates to a characteristic function in traditional
(crisp) set theory, which is viewed as a special fuzzy mem-
bership function that maps the core to 1 and others to 0.
There is not a rigorous mathematical reason for the choice
in a fuzzy membership function, the choice depends on the
application domain.

The fuzzy object concept is not restricted to a number.
It can be generalized to traditional mathematical objects
such as vectors, geometric regions, functions, and predi-
cates [14]. In fact, we also view functionality as a fuzzy
object with the membership function based on keyword oc-
currence probabilities. In particular, keywords are assumed
to appear independently in the description text. The indi-
vidual keyword membership degree d is a function of the
occurrence probability p and occurrence time n,

d = f(p; n) = 1� pn (2)

For example, consider the following functionality descrip-
tion provided by an IP provider.

<description>
S_DCT_IDCT performs the two dimen-

sional Discrete
Cosine Transform (DCT) and its in-
verse (IDCT) on an 8x8
block of image samples : : : DCT : : : IDCT : : :

</description>

Suppose an IP user uses the keyword “DCT” in a query and
assumes the occurrence probability of “DCT” pdct is 0:5. From
the above description, we have ndct = 2, and hence

ddct = 1� 0:5
2
= 0:75

In the implementation, a scoring function (membership func-
tion) is associated with each leaf node, either by default or the
user assignment. The function scores each crisp atomic counter-
part in the component specification, as is shown in dashed lines in
Figure 4.

Tree matching does not necessarily require two trees with the
same topology. Usually the query specification is more abstract
than the component specification which may have collected many
more details during the synthesis phase. Hence, usually the fuzzy
tree is topologically embedded in the crisp one. However, the
fuzzy tree could have some branches missing within the crisp one,
as IP users may be concerned with some features not conceived by
IP providers. In this case, atomic scoring returns 0.

4.2. Conjunction Aggregation

After having the atomic attributes (in leaf nodes) scored, the
next step is to compute the scores of the intermediate nodes. This
step is called conjunction aggregation. The term “conjunction” re-
flects the aggregation semantics, roughly a complex attribute with
a “high” score if all the sub-attributes score well. The semantics is
expressed through the following properties:

A(x; y) = A(y; x) (3)
A(A(x; y); z) = A(x;A(y; z)) (4)

A(x; y) � A(u; v) given x � u and y � v (5)
A(x; 1) = xandA(x;0) = 0 (6)

The first three properties are the commutativity, associativity and
mononicity properties respectively. The last property guarantees
the existence of identity and zero elements (1 and 0 respectively),
which is essential to accommodate strict semantics in the weighted
aggregation (see Section 4.3). The and operator isMIN(x; y) =

minfx; yg. Any aggregation function that satisfies the four prop-
erties is called a t-norm [14]. Similarly, there are several t-normal
aggregation functions whose fitness is domain-dependent.
Example. Suppose the DCT query specification is comprised
of three attributes, namely power (P), throughput (T) and area
(A). All three attributes are numeric, represented by the triangu-
lar fuzzy number in Figure 6. The parameters of the membership
functions are listed below the corresponding nodes in the top tree
shown in Figure 7. Note thatC denotes the crisp core value. Also
in Figure 7, the two bottom trees stand for two crisp specifications,
S1 and S2 respectively. Their attribute values and scores are listed
below the corresponding nodes. MIN is the unweighted aggre-
gation function. The final aggregation score is marked just beside
the root nodes of S1 and S2. The result shows that S1 scores lower
than S2, since one of its sub-attributes (the throughput) receives
the lowest score.

v:10.0
u:10.0 u:5.0

v:5.0
u:1.0
v:1.0

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

TP A

S

TP A

0.6

2S1

0.5 0.6

atomic value
atomic score0.50.9

5.2114.0 43.5 5.4
0.8

116.0
0.7

44.75
0.75

unweighted aggregation score

S

P AT

C:46.0 C:5.0C:113.0

Figure 7. An Example of the Unweighted Aggregation

4.3. Weighted Aggregation

Conjunction aggregation treats every sub-attribute equally
without taking into account the user’s preference. However, a

user often cares about some features more than others. As pre-
viously mentioned, a portable still camera designer may care, for
instance more about power consumption than throughput. To be
able to incorporate preference factor into a query, weights are as-
signed to each attribute according to their importance. Unweighted
aggregation functions are subject to adaptations in order to re-
flect the new semantics. We call this process weighted conjunc-
tion aggregation. We now formalize the semantics of weighted
aggregation. Let ~W = (w1; w2; � � � ; wn) be a weight vector,
~X = (x1; x2; � � � ; xn) be its corresponding score vector, and
A(~X) be an unweighted aggregation function. A weighted ag-
gregation function A ~W

(~X) should satisfy:

A ~W
(~X) = A(~X) given w1 = � � � = wn (7)

A ~W
(~X) = A ~Wn(xi=0)

(x1; � � � ; xi�1; xi+1; � � � ; xn) (8)

A ~W
(~X) is continuous with respect to ~W (9)

The properties (7) and (8) are necessary. Otherwise, inconsis-
tency would occur between the weighted and unweighted aggre-
gations. Property (9) guarantees that a small weight change won’t
cause a drastic score variation. Once again, there are many aggre-
gation algorithms satisfying the above three properties. However,
given an additional property called local linearity [15], there leaves
a unique candidate, namely the Fagin aggregation function.

A ~W
(~Xn) =

nX

i=1

(i� (wi � wi+1)�A(~Xi)) (10)

where 0 = wn+1 � wn � wn�1 � � � � � w1 and ~Xi =

(x1; x2; � � � ; xi).
Example. In Figure 8, we revisit the previous example (in Figure
7) with weight associated with each attribute and marked beside
each node. We adopt the Fagin aggregation algorithm with MIN

as the unweighted aggregation function. As before, the final ag-
gregation scores are indicated beside the roots. It is noted that in
Figure 7, S1 gets a lower ranking due to a large deviation in its
throughput from the query specification. However, if we assign a
big weight on power attribute, its final aggregation score exceeds
that of S2. It is worth noting that in the above three steps, the
last two treat their corresponding previous phases as black boxes.
A weighted aggregation algorithm does not need to know the un-
weighted aggregation as long as it can call upon it when necessary.
So does unweighted aggregation to atomic scoring. Therefore, the
scoring mechanisms are mutually independent and the user has the
freedom to replace any of them individually.

In our current implementation, all matching operations are
shipped to the server side and executed by the match engine which
performs a general-purpose computation. Of course, the client
also can relinquish its right and let the server decide which match-
ing policy to use. Fagin’s algorithm with MIN is the default
choice since this combination can accommodate strict semantic.
More precisely, we can express ”must have” semantics by group-
ing crisp attributes and assigning them the biggest weight. It is
easy to verify by formula (10) and (6) that if the crisp attributes
are not satisfied, the final score is 0; otherwise, the final score is
the same as that computed without considering the crisp attributes.

C:113.0 C:46.0 C:5.0
v:10.0
u:10.0 u:5.0

v:5.0
u:1.0
v:1.0

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

TP A

S

TP A

0.6

2S1

atomic value
atomic score0.50.9

5.2114.0 43.5 5.4
0.8

116.0
0.7

44.75
0.75

0.72 0.61

0.5 0.50.1 0.4 0.1 0.4weight

weighted aggregation score

S

P AT
0.5 0.1 0.4

Figure 8. An Example of the Fagin (Weighted) Aggregation

5. Implementation and Results

The matching system is developed completely in Java 1:2 on a
Solaris 2:6 platform. All programs are organized in the root pack-
age javacad.matching and its four sub-packages (engine, client,
classserver, protocol). We use XML4J3.0.0 Early Release (devel-
oped at IBM) as the XML parser. The core programs are around
3500 lines in 65 class files.

A concern with fuzzy matching algorithms with respect to tra-
ditional, exact matching approaches, is the computational cost of
matching and ranking solutions. To demonstrate the efficiency of
our implementation (i.e., the default matching and aggregation al-
gorithms described in the previous section), we report results on
an experiment designed as a stress test for the fuzzy matching en-
gine. Our experiment is to select a DCT/IDCT component from a
large IP database. The experiment scheme is:

1. choose a DCT specification S,

2. form a fuzzy query Q by associating each crisp attribute in
S with an atomic scoring function,

3. generate a specification set S of 1000 elements by randomly
tuning the crisp attributes in S,

4. run the matching algorithms with the query Q on S .

As previously mentioned in Section 2, the first functionality se-
lection will eliminate a large portion of IP components not related
to the DCT, either by the external category index or by the fuzzy
method described in Section 4.1. Assume only DSP IP compo-
nents remain. Further selection on crisp criteria like the port map
filters out other IP components such as FIR/IIR filters. The selec-
tion on the crisp criteria is actually integrated with fuzzy matching
algorithms (see Section 4.3). Now the search scope is restricted
to the IP components with nominally correct functionality and the
same port map (or other crisp attributes). We claim the number of
these final candidates can hadly exceeds 1000, which justifies our
assumption that the generated 1000 IP specifications can simulate
a very large IP database of heterogeneous components.

Table 1 details the DCT fuzzy query. The query has four sub-
queries, namely power, throughput, area, and clock. Each of the
sub-queries is a triangular fuzzy number with a corresponding core
(crisp) value listed in the first row and with the parameters of the
membership function listed in the second and third row. Table
2 lists the top 10 rankings from the 1000 artificially generated

power throug. area clock
crisp value 113.0 49.0 5.0 133.0

triangular parameter u 10.0 5.0 1.0 10.0
triangular parameter v 10.0 5.0 1.0 10.0

weight 10 1 1 1

Table 1. A Fuzzy Query Specification

u/rank w/rank score power throug. area clock
1 1 0.9017 113.18 49.13 5.06 133.98
2 5 0.8799 114.20 49.41 4.95 132.66
3 2 0.8238 113.74 48.63 4.99 134.76
4 43 0.7517 115.42 50.24 4.93 130.74
5 14 0.7507 114.71 47.75 5.23 132.73
6 12 0.7335 111.44 47.67 5.23 134.40
7 35 0.7270 115.07 50.36 5.03 133.62
8 72 0.7266 115.73 50.37 5.21 134.27
9 81 0.7200 110.20 47.70 4.94 130.46

10 103 0.6867 110.19 47.43 4.91 131.44

Table 2. The Unweighted Query Result

specifications using MIN as the unweighted aggregation func-
tion (marked in the fourth row of Table 1). Table 3 shows the top
10 rankings with weights using the Fagin algorithm with MIN .
In the table, we place importance on the power consumption at-
tribute whose assigned weight is 10 times greater than the other
three attributes (shown in the fifth row of Table 1). For compar-
ison, both Table 2 and Table 3 list the unweighted and weighted
rankings with the corresponding principal one in the leftmost col-
umn. Though it is hard to formalize the intuition of “proximity”,
we can see from Table 2 that the selected specifications are very
close to S in whole. Also in Table 3, after assigning a large weight
to the power attribute, the difference of selected specifications on
this attribute is very small.

6. Conclusion

In this paper, we present an IP component matching system in
the JavaCAD framework. The system aims at automatic IP selec-
tion on design metrics. Our contribution is (1) to introduce XML
as a representation tool between IP users/providers for organizing
IP databases and forming IP queries, (2) to apply fuzzy logic to
compute proximity between an IP query and a specification which
are tree-structured models constructed from their respective XML
representation. Experiment results show that our approach can
capture well the intuition of “proximity matching”.

References

[1] T. Thomas, Technology for IP reuse and portability IEEE Design
& Test of Computers Vol. 16, No. 4, Oct.-Dec. 1999, pp. 7 -13

[2] Design and Reuse Organization http://www.design-reuse.com/

[3] Reusable Application-Specific Intellectual Property Developers
http://www.rapid.com/

[4] Virtual Socket Interface Alliance (VSIA) http://www.vis.org/

w/rank u/rank score power throug. area clock
1 1 0.9573 113.18 49.13 5.06 133.98
2 3 0.8942 113.74 48.63 4.99 134.76
3 19 0.8865 112.98 47.18 4.73 130.83
4 13 0.8826 113.19 50.69 5.23 132.51
5 2 0.8799 114.20 49.41 4.95 132.66
6 37 0.8305 112.43 51.12 4.86 135.19
7 18 0.8283 112.13 47.19 5.34 135.07
8 102 0.8278 112.97 51.77 5.15 129.62
9 92 0.8187 112.77 51.69 5.10 130.62

10 119 0.8180 113.02 46.21 4.41 133.42

Table 3. The Weighted Query Result

[5] H. Coors, N.M. Madrid, R. Seepold Hardware/software co-
design for IP objects based on CORBA Fall VIUF Workshop,
1999, pp. 63-68

[6] A. Haverinen, G. Price, K. Venkatramani, M. Yunk, A standard
Internet ready VC Exchange System Proceedings of DATE 2000
User Forum, Paris France pp. 85-91.

[7] M. Dalpasso, A. Bogliolo and L. Benini Specification and valida-
tion of distributed IP-based designs with JavaCAD. Proceedings
of DATE 1999, Munich Germany pp. 684-688

[8] P. Schindler, K. Weidenbacher, T. Zimmermann IP repository,
a web-based IP reuse infrastructure Custom Integrated Circuits,
1999 pp. 415-418

[9] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H.
Garcia-Molina. Proximity Search in Databases. Proceedings of
the 24th International Conference on Very Large Databases, New
York, August 1998, pp. 26-37.

[10] M.Stefik, Introduction to Knowledge Systems, Morgan Kauf-
mann, 1995.

[11] L.Zadeh, Probability Measures of Fuzzy Events, J. Math. Anal.
and Appl., Vol. 23, pp.421-427, 1968.

[12] N. Sinha and M.Gupta, Soft Computing and Intelligent Systems,
Academic Press, 2000.

[13] R. Fagin Fuzzy queries in multimedia database systems Proc Sev-
enteenth Symposium on Principles of Database Systems, Seattle,
1998, pp. 1-10.

[14] H. Bandemer, S. Gottwald Fuzzy Sets, Fuzzy Logics and Fuzzy
Methods with Applications John Wiley & Sons Ltd.

[15] R. Fagin, E. L. Wimmers Incorporating User Preferences in Mul-
timedia Queries, ICDT ’97, 6th International Conference, Delphi,
Greece, January 8-10, 1997, pp. 247-261.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

