Ordinal Arithmetics: An Introduction

Ting Zhang

May 11, 2001

1 Preliminaries

Definition 1.1 (Partial Order). A relation R is said to be a partial order on set S if it is reflexive, transitive and antisymmetric. That is

$$\forall x (xRx).$$

$$\forall x \forall y \forall z (xRy \land yRz \implies xRz).$$

$$\forall x \forall y [(xRy) \land (yRx) \implies (x=y)].$$

Instead of xRy, we usually write $x \leq y$.

Definition 1.2 (Linear Order). A relation R is said to be a linear order if it is a partial order and complete. The last condition means that

$$\forall x \forall y (xRy \lor yRx).$$

We say that x strictly precedes y (y strictly succeeds x) if

$$xRy$$
 and $x \neq y$.

We also say that x is a predecessor of y (y is a successor of x). We write $x \prec_R y$ (or simply $x \prec y$ if R is clear from the context). We also write $y \succ_R x$ or $y \succ x$. If x has no predecessor (successor), we say that x is the first element (the last element) in A. If $x \in A$ and the set $\{y \mid x \prec y \text{ and } y \in A\}$ has a first element, then this element is called a immediate successor of x. The last element of $\{y \mid y \prec x \text{ and } y \in A\}$ (if one exists) is called a immediate predecessor of x. A proper subset of X of the set A is said to be an initial segment (a final segment) if $x \in X$ implies that every element preceding x belongs to X (every element after x belons to X).

Definition 1.3 (Well-Order). We say a relation R well orders a set X if R linearly orders X and every non-empty subset of X contains a minimum element (with respect to the relation R.)

Example 1.1.

- (1) $\langle \mathbb{N}, \leq \rangle$ is a well-ordered set.
- (2) $\langle \mathbb{Z}, \leq \rangle$ is a linearly ordered set, but not a well-ordered set.
- (3) $\langle \mathbb{Z}, R \rangle$ is a well-ordered set where R is defined as.

$$R = \{ \langle x, y \rangle \mid |x| < |y| \lor (|x| = |y| \land x \le y) \}.$$

In this ordering numbers with smaller absolute value precedes numbers with larger absolute value. In case of tie, negative numbers precedes positive numbers.

Let $x \in A$. Define

$$O_R(x) = \{ y \mid y \prec x \}$$

It is clearly that $O_R(x)$ is an initial segment. However, not every initial segment is of the form $O_R(x)$. If we require A be a well-ordered set, we have

Lemma 1.1. Each initial segment X of a well-ordered set A is of the form O(x) for some $x \in A$.

Proof. Take the first element of the difference A - X, then O(x) = X.

Theorem 1.1 (Principle of Transfinite Induction). If a set A is well-ordered, $B \subset A$ and if for every $x \in A$ the set B satisfies the condition

$$(O(x) \subset B) \implies (x \in B)$$

then B = A.

Proof. Suppose that $A - B \neq \emptyset$. Let x be the first element in A - B. That means that if $y \prec x$ then $y \notin A - B$, that is, $y \in B$. Hence, $O(x) \subset B$. It follows from the assumption that $x \in B$, contradicting the hypothesis that $x \notin B$.

Definition 1.4 (Equivalence). The set A is equivalent to the set B if there exists a 1-1 onto function $f: A \mapsto B$.

Definition 1.5 (Isomorphism). Two partially ordered sets $\langle A, \preceq_A \rangle$ and $\langle B, \preceq_B \rangle$ are said to be isomorphic if there exists a 1-1 onto function $f: A \mapsto B$ such that for any $x, y \in A$

$$x \preceq_A y \iff f(x) \preceq_B f(y).$$

We say that f is an isomorphism of A and B, denoted by $A \simeq_f B$ (or simply $A \simeq B$).

Example 1.2.

- (1) J(x,y) (Enderton 3.3) establishes an equivalence of \mathbb{N}^2 and \mathbb{N} .
- (2) $\{\{-1\} \cup \mathbb{N}, \leq\} \simeq (\mathbb{N}, \leq\}$. The isomorphism is established by the function

$$f: \{-1\} \cup \mathbb{N} \mapsto \mathbb{N}, f(x) = x - 1.$$

Clearly isomorphic sets are equivalent. The converse holds for finite sets only.

Theorem 1.2. Two finite linearly ordered equivalent sets are isomorphic.

Proof Sketch. By induction on the size of the sets.

We list several properties of well-ordered sets which we will use to show ordinal properties in latter sections. We skip some proofs. See [1] Page 233-235 for details. Let $\langle A, \preceq_A \rangle$ be a linearly ordered set. A function f which establishes isomorphism of A and the set f(A) contained in A is an increasing function if the following condition holds:

$$x \prec y \implies f(x) \prec f(y)$$
.

Theorem 1.3. If a function f defined on a well-ordered set A is increasing, then for every x we have $x \leq f(x)$.

Proof. See [1], Page 230. \Box

Theorem 1.4. If the well-ordered sets A and B are isomorphic, then there exists only one function which establishes their isomorphism.

Proof. See [1], Page 231. \Box

Theorem 1.5. No well-ordered set is isomorphic to any of its initial segments.

Proof. Suppose that there exists a function f which establishes the isomorphism of A and O(x) for some $x \in A$. Then f is increasing and $f(x) \in O(x)$, that is $f(x) \prec x$, which contradict Theorem 1.3.

Theorem 1.6. No two distinct initial segments of a well-ordered set are isomorphic.

Proof. By Theorem 1 and the observation that given any two distinct initial segments one is always an initial segment of the other. \Box

Theorem 1.7. Let A and B be two well-ordered sets. Then either

- (1) A and B are isomorphic, or
- (2) A is isomorphic to an initial segment of B, or
- (3) B is isomorphic to an initial segment of A.

Proof. This theorem is due to Cantor; see [1] Page 231.

Definition 1.6 (Ordinals). Two isomorphic ordered systems are said to be of the same order type. By ordinal numbers (or ordinals) we mean the order types of well-ordered sets.

Ordinals are defined as the order types of equivalence classes of well-ordered sets with respect to \simeq relation. We denote by \overline{A} the type of set A. From now on, we use *ordinals* and *order types* interchangablly.

Definition 1.7 (Ordinal Ordering). An ordinal α is less than an ordinal β if any set of type α is isomorphic to an initial segment of a set of type β . We denote the relation by $\alpha \prec \beta$.

We write $\alpha \leq \beta$ if $\alpha \prec \beta$ or $\alpha = \beta$. We say ordinal α is the *immediate predecessor* of ordinal β (respectively, β is the *immediate successor* of α) if $\alpha \neq \beta$ and there is no ordinal γ such that $\alpha \prec \gamma \prec \beta$ or $\beta \prec \gamma \prec \alpha$. As any well-ordered sets with n elements are isomorphic, we can denote by n their order type.

Example 1.3.

- (1) **0** is an ordinal that represents the order type of \emptyset .
- (2) **n** is an ordinal that represents the order type of $\{0, 1, \ldots, n-1\}$.

(3) ω is an ordinal that represents the order type of (\mathbb{N}, \leq) .

There are several well-known results describing ordinal properties.

Theorem 1.8 (Transitivity). For any ordinals α , β and γ if $\alpha \leq \beta$ and $\beta \leq \gamma$, then $\alpha \leq \gamma$.

Proof Sketch. Let $\overline{A} = \alpha$, $\overline{B} = \beta$, $\overline{C} = \gamma$. The fact A is isomorphic to an initial segment of B and B is isomorphic to an initial segment of C implies that A is isomorphic to an initial segment of C.

Theorem 1.9 (Antisymmetry). For any ordinals α , β if $\alpha \leq \beta$ and $\beta \leq \alpha$, then $\alpha = \beta$.

Proof. If $\alpha \neq \beta$, then $\alpha \prec \beta$ and $\beta \prec \alpha$. By Theorem 1.8 $\alpha \prec \alpha$ which contradict Theorem 1. \square

Theorem 1.10 (Trichotomy). For any ordinals α and β one and only one of the formulas $\alpha \prec \beta$, $\alpha = \beta$, $\alpha \succ \beta$ holds.

Proof. It follows directly from ordinal definition and Theorem 1.7. \Box

Obviously, $\alpha \leq \alpha$. If we denote by \mathcal{ORD} the class of all ordinals, $\langle \mathcal{ORD}, \preceq \rangle$ is linearly ordered (if we generalizes ordering relations to classes.)

Theorem 1.11. If the well-ordered sets A and B are of type α and β and if the set A is isomorphic to a subset B' of B, then $\alpha \leq \beta$.

Proof. By Theorem 1.10, if this were not so, we would have $\beta \prec \alpha$, that is B is isomorphic to an initial segment of B'. However the existence of any increasing function which establishes the isomorphism contradicts Theorem 1.3.

Theorem 1.12. The set $W(\alpha)$ consisting of all ordinals less than α is well ordered by relation \leq . Moreover, the type of $W(\alpha)$ is α .

Theorem 1.13. Every set of ordinals is well ordered by the relation \succeq . In other words, in any non-empty set Z of ordinals there exists a smallest ordinals.

Theorem 1.14. For every set Z of ordinals there exists an ordinal greater than all ordinals belonging to Z.

Corollary 1.1. There exist no set of all ordinals.

Corollary 1.2. There exists a smallest ordinal not belonging to a given set Z.

Theorem 1.15 (Cantor Normal Form). If an ordinal $\alpha \succ 0$ then there exist a natural number n and sequences $\alpha_1 \dots \alpha_n$ such that

$$\alpha = \sum_{i=1}^{n} \omega^{\alpha_i} = \omega^{\alpha_1} + \ldots + \omega^{\alpha_n}.$$

where

$$\alpha_1 \succeq \ldots \succeq \alpha_n$$
.

We can also write

$$\alpha = \sum_{i=1}^{n} \omega^{\alpha_i} \cdot a_i = \omega^{\alpha_1} \cdot a_1 + \ldots + \omega^{\alpha_n} \cdot a_n$$

where

$$\alpha_1 \succ \ldots \succ \alpha_n \text{ and } a_1, \ldots, a_n \prec \omega.$$

2 Set-theoretic interpretation of ordinal arithmetics

Now we define two operations on well-ordered sets.

Definition 2.1 (Sum of Well-ordered Sets). A well-ordered set C is said to be the sum of two disjoint well-ordered sets $\langle A, \preceq_A \rangle$ and $\langle B, \preceq_B \rangle$ if

- (1) $C = A \cup B$, and
- $(2) \preceq_C = \preceq_A \cup \preceq_B \cup \{\langle x, y \rangle \mid x \in A \text{ and } y \in B\}$

Basically C is $A \cup B$ ordered as follows: all elements of A precede all elements of B and the order in each of the sets A and B is preserved. The disjointness doesn't put significant restrictions as we can replace them by the sets $A \times \{1\}$ and $B \times \{2\}$ which are disjoint and isomorphic to A and B respectively. We denote by $A \oplus B$ the sum of A and B (which are implicitly assumed disjoint.) Similarly,

Definition 2.2 (Product of Well-ordered Sets). A well-ordered set $\langle C, \preceq_C \rangle$ is said to be the product of two disjoint well-ordered sets $\langle A, \preceq_A \rangle$ and $\langle B, \preceq_B \rangle$ if

- (1) $C = A \times B$, and
- (2) $\langle x_1, y_1 \rangle \preceq_C \langle x_2, y_2 \rangle$ iff $y_1 \preceq_B y_2$ or $y_1 = y_2$ and $x_1 \preceq_A x_2$

Basically C is $A \times B$ ordered antilexicographically. We denote by $A \otimes B$ the product of A and B. The following formulas hold for set sum and product operations:

Lemma 2.1.

$$(A \oplus B) \oplus C \simeq A \oplus (B \oplus C) \tag{2.1}$$

$$A \oplus \emptyset \simeq A \simeq \emptyset \oplus A \tag{2.2}$$

$$(A \otimes B) \otimes C \simeq A \otimes (B \otimes C) \tag{2.3}$$

$$A \otimes 1 \simeq A \simeq 1 \otimes A \tag{2.4}$$

$$A \otimes \emptyset \simeq \emptyset \simeq \emptyset \otimes A \tag{2.5}$$

$$A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A \otimes C) \tag{2.6}$$

Proof. We only prove Equation 2.6. Others are obvious. Note that

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
.

We only need to show that the induced well-ordering on $A \times (B \cup C)$ is exactly the induced well-ordering on $(A \times B) \cup (A \times C)$. Let

$$\langle D, \prec_D \rangle = A \otimes (B \oplus C),$$

$$\langle E, \preceq_E \rangle = (A \otimes B) \oplus (A \otimes C).$$

We know that D = E. Let $\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \in D$ and $\langle x_1, y_1 \rangle \preceq_D \langle x_2, y_2 \rangle$. There are several cases:

- (1) $y_1 \prec y_2$ and $y_1, y_2 \in B$ or C
- (2) $y_1 \prec y_2$ and $y_1 \in B$ and $y_2 \in C$
- (3) $y_1 = y_2$

It is easy to check that $\langle x_1, y_1 \rangle \leq_E \langle x_2, y_2 \rangle$. Similar arguments apply in the other direction. \square

Lemma 2.2. Let $\langle A, \preceq_A \rangle$, $\langle B, \preceq_B \rangle$ $\langle C, \preceq_C \rangle$ and $\langle D, \preceq_D \rangle$ be well-ordered sets. If $A \simeq B$ and $C \simeq D$, then $A \oplus C \simeq B \oplus D$ and $A \otimes C \simeq B \otimes D$.

Now we are able to define ordinal arithmetics formally:

Definition 2.3 (Ordinal Addition and Multiplication). Let α and β be two ordinals and let A and B be two well-order sets such that $\overline{A} = \alpha$ and $\overline{B} = \beta$. The sum $\alpha + \beta$ is defined by

$$\alpha + \beta = \overline{A \oplus B}$$

and the product $\alpha \cdot \beta$ is defined by

$$\alpha \cdot \beta = \overline{A \otimes B}$$

Note that the above definition is well-defined by Lemma 2.2. It follows directly from the definition that:

$$\overline{A \otimes B} = \overline{A} \cdot \overline{B}$$

$$\overline{A \oplus B} = \overline{A} + \overline{B}$$

Lemma 2.3. If $\alpha \succeq \beta$ then there exists exactly one ordinal γ such that $\alpha = \beta + \gamma$.

Proof. Let $\overline{A} = \alpha$, let B be a initial segment of A of type β and let $\gamma = \overline{A - B}$. Clearly, $\alpha = \beta + \gamma$. The uniqueness follows from trichotomy and Lemma 3.1.

Definition 2.4 (Ordinal Subtraction). The difference of the ordinals α and β ($\alpha \succeq \beta$) is defined to be the unique ordinal γ such that $\alpha = \beta + \gamma$. The ordinal is denoted by $\alpha - \beta$.

Theorem 2.1 (Ordinal Division). If β is an ordinal and $\beta > 0$, then for each ordinal α there exist ordinals γ and ϱ such that

$$\alpha = \beta \cdot \gamma + \varrho \text{ and } \varrho \prec \beta.$$

The ordinals γ and ϱ are uniquely determined are called quotient and reminder respectively.

Proof. See [1] Page 249.

Definition 2.5 (Limit Ordinal). An ordinal is said to be a limit ordinal if it has no immediate predecessor.

Example 2.1.

- (1) **0** is a limit ordinal.
- (2) ω is a limit ordinal.
- (3) **n** are not limit ordinals whence n > 0.

Definition 2.6 (Transfinite Sequence). A transfinite sequence (α -sequence) is a function ϕ whose domain is $W(\alpha)$ and whose reange is also a set of ordinals.

If $\beta \prec \gamma \prec \alpha$ implies $\phi(\beta) \prec \phi(\gamma)$, then we say that the α -sequence is increasing.

Definition 2.7 (Limit of Ordinal Sequence). Given an α -sequence ϕ , if α is a limit ordinal, there exist ordinals greater than all the ordinals $\phi(\beta)$ where $\beta \prec \alpha$. We call the smallest such ordinal the limit of the α -sequence and denote it by $\lim_{\beta < \alpha} \phi(\beta)$.

Example 2.2.

- (1) $\lim_{n<\omega} n=\omega$
- (2) $\lim_{n<\omega} 2^n = \omega$
- (3) $\lim_{n<\omega} n^n = \omega$

Definition 2.8 (Exponentiation of Ordinals). The operation of ordinal exponentiation is defined by (transfinite) induction as follows:

- $\gamma^0 = 1$
- $\gamma^{\xi+1} = \gamma^{\xi} \cdot \gamma$
- $\gamma^{\lambda} = \lim_{\xi < \lambda} \gamma^{\xi}$ where λ is a limit ordinal.

We say that γ^{α} is the power of γ , γ is the base and α the exponent.

3 Arithmetic Rules

The following arithmetic rules are derived from the set-theoretic interpretation of ordinals. However, here we state them as definitions.

Definition 3.1 (Comparison Rules). If $\alpha = \sum_{i=1}^{n} \omega^{\alpha_i}$ and $\beta = \sum_{i=1}^{m} \omega^{\beta_i}$ are two ordinals, then $\alpha \succ \beta$ iff for some $k \leq n$, $\alpha_1 = \beta_1, \ldots, \alpha_{k-1} = \beta_{k-1}$ and either $\alpha_k \succ \beta_k$ or m = k-1 < n.

Example 3.1.

$$(1) \ \omega^{\omega^{10} + \omega^{10} + \omega^{10}} \prec \omega^{\omega^{\omega}}$$

$$(2) \ \omega^{\omega^5} + \omega^{\omega^4} + \omega^{\omega^3} \prec \omega^{\omega^6}$$

(3)
$$\omega^{100} \prec \omega^{100} + 1$$

Definition 3.2 (Addition Rules).

(1)
$$\alpha + \mathbf{0} \stackrel{\text{def}}{=} \mathbf{0} + \alpha \stackrel{\text{def}}{=} \alpha$$

(2)
$$(\omega^{\alpha_1} + \ldots + \omega^{\alpha_k} + \omega^{\alpha_{k+1}} + \ldots + \omega^{\alpha_n}) + (\omega^{\beta_1} + \ldots + \omega^{\beta_m})$$

 $\stackrel{\text{def}}{=} (\omega^{\alpha_1} + \ldots + \omega^{\alpha_k} + \omega^{\beta_1} + \ldots + \omega^{\beta_m})$
where k is the maximal number such that $k \leq n$ and $\alpha_k \succeq \beta_1$.

Example 3.2.

(1)
$$(\omega^5 + \omega^4 + \omega^2 + \omega^2 + \omega + 5) + (\omega^3 + \omega^2) = \omega^5 + \omega^4 + \omega^3 + \omega^2$$

(2)
$$(\omega^5 + \omega^4 + \omega^2 + \omega^2 + \omega + 5) + (\omega^2 + \omega^2) = \omega^5 + \omega^4 + \omega^2 + \omega^2 + \omega^2 + \omega^2$$

(3)
$$(\omega^2 + \omega^2) + (\omega^5 + \omega^4 + \omega^2 + \omega^2 + \omega + 5) = \omega^5 + \omega^4 + \omega^2 + \omega^2 + \omega + 5$$

Definition 3.3 (Multiplication Rules).

(1)
$$\alpha \cdot \mathbf{0} \stackrel{\text{def}}{=} \mathbf{0} \cdot \alpha \stackrel{\text{def}}{=} \mathbf{0}$$
.

(2)
$$\alpha \cdot \omega^x = \omega^{\alpha_1 + x}$$
 where $x \succeq 1$ and α is in canonical form $\sum_{i=1}^n \omega^{\alpha_i}$.

(3)
$$\alpha \cdot n \stackrel{\text{def}}{=} \underbrace{\alpha + \ldots + \alpha}_{n}$$
.

(4)
$$\alpha \cdot (\beta + \gamma) \stackrel{\text{def}}{=} \alpha \cdot \beta + \alpha \cdot \gamma$$
.

We prove the last rule as follows:

Proof. Let $\alpha = \overline{A}$, $\beta = \overline{B}$, $\gamma = \overline{C}$, $B \cap C = \emptyset$. Then we have

$$\begin{array}{rcl} \alpha \cdot (\beta + \gamma) & = & \overline{A} \cdot (\overline{B} + \overline{C}) \\ & = & \overline{A} \cdot \overline{B \oplus C} \\ & = & \overline{A \otimes (B \oplus C)} \\ & = & \overline{(A \otimes B) \oplus (A \otimes C)} \\ & = & \overline{A \otimes B} + \overline{A \otimes C} \\ & = & \overline{A} \cdot \overline{B} + \overline{A} \cdot \overline{C} \\ & = & \alpha \cdot \beta + \alpha \cdot \gamma \end{array}$$

Example 3.3.

(1)

$$(\omega^2 + \omega + 1) \cdot (\omega^3 + \omega)$$

$$= (\omega^2 + \omega + 1) \cdot \omega^3 + (\omega^2 + \omega + 1) \cdot \omega^1$$

$$= \omega^5 + \omega^3$$

$$\begin{aligned} & (\omega^{\omega+1} + \omega^{\omega} + 1) \cdot (\omega^{\omega+1} + \omega^{\omega} + \omega) \\ &= & (\omega^{\omega+1} + \omega^{\omega} + 1) \cdot \omega^{\omega+1} + (\omega^{\omega+1} + \omega^{\omega} + 1) \cdot \omega^{\omega} \\ & & + (\omega^{\omega+1} + \omega^{\omega} + 1) \cdot \omega \\ &= & \omega^{(\omega+1)+(\omega+1)} + \omega^{(\omega+1)+(\omega)} + \omega^{(\omega+1)+1} \\ &= & \omega^{\omega+\omega+1} + \omega^{\omega+\omega} + \omega^{\omega+2} \\ &= & \omega^{\omega\cdot 2+1} + \omega^{\omega\cdot 2} + \omega^{\omega+2} \end{aligned}$$

Definition 3.4 (Exponentiation Rules).

(1)
$$\alpha^{\mathbf{0}} \stackrel{\text{def}}{=} \mathbf{1} \stackrel{\text{def}}{=} \omega^{\mathbf{0}}$$

(2)
$$\alpha^1 \stackrel{\text{def}}{=} \alpha$$

(3)
$$\mathbf{0}^{\alpha} \stackrel{\text{def}}{=} \mathbf{0}$$
 for $\alpha \neq \mathbf{0}$

(4)
$$\alpha^{\beta} \stackrel{\text{def}}{=} \omega^{\alpha_1 \cdot \beta}$$
 where β is a limit ordinal, $\alpha \succeq \omega$ and α is in canonical form $\sum_{i=1}^{n} \omega^{\alpha_i}$.

(5)
$$\alpha^{\beta+\gamma} \stackrel{\text{def}}{=} \alpha^{\beta} \cdot \alpha^{\gamma}$$

(6)
$$n^{\omega \cdot x} \stackrel{\text{def}}{=} \omega^x$$

Example 3.4.

(1)
$$2^{\omega} = 2^{\omega \cdot 1} = \omega^1 = \omega$$

(2)
$$2^{\omega^2} = 2^{\omega \cdot \omega} = \omega^{\omega}$$

(3)
$$2^{\omega^{\omega}} = 2^{\omega^{1+\omega}} = 2^{\omega^1 \cdot \omega^{\omega}} = 2^{\omega \cdot \omega^{\omega}} = \omega^{\omega^{\omega}}$$

(4)
$$(\omega + 1)^{\omega} = (\omega^{1} + 1)^{\omega} = \omega^{1 \cdot \omega} = \omega^{\omega}$$

(5)
$$(\omega^{\omega})^{\omega} = \omega^{\omega \cdot \omega} = \omega^{\omega^2}$$

(6)
$$(\omega + 1)^n = (\omega + 1) \cdot (\omega + 1)^{n-1} = (\omega^2 + \omega + 1) \cdot (\omega + 1)^{n-2} = \dots = \omega^n + \omega^{n-1} + \dots + \omega + 1$$

Now we prove some laws concerning the properties of limits. First we summarize some monotonic laws of ordinal arithmetics. Proofs can be founded at [1] Page 247-250.

Lemma 3.1 (Monotonic Laws of Addition).

(1)
$$(\alpha \prec \beta) \implies (\gamma + \alpha \prec \gamma + \beta)$$
.

(2)
$$(0 \prec \beta) \implies (\gamma \prec \gamma + \beta)$$
.

(3)
$$(\alpha \prec \beta) \implies (\alpha + \gamma \prec \beta + \gamma)$$
.

(4)
$$\gamma \prec \beta + \gamma$$
.

Lemma 3.2 (Monotonic Laws of Subtraction).

(1)
$$\alpha = \beta + (\alpha - \beta)$$
 if $\alpha > \beta$.

- (2) $(\alpha + \beta) \alpha = \beta$.
- (3) $(\alpha \prec \beta) \implies (\alpha \gamma \prec \beta \gamma)$.
- (4) $(\gamma \prec \beta) \implies (\alpha \beta \prec \alpha \gamma)$.

Lemma 3.3 (Monotonic Laws of Multiplication).

- (1) $(\mathbf{0} \prec \alpha \prec \beta) \implies (\gamma \cdot \alpha \prec \gamma \cdot \beta)$.
- (2) $(\alpha \leq \beta) \implies (\alpha \cdot \gamma \leq \beta \cdot \gamma).$
- (3) $(\alpha + \beta) \cdot \gamma \leq \alpha \cdot \gamma + \beta \cdot \gamma$.

Lemma 3.4 (Monotonic Laws of Exponetiation).

(1)
$$(0 \prec \alpha \prec \beta) \implies \gamma^{\alpha} \prec \gamma^{\beta} \text{ if } \gamma \succ 1.$$

Proof Sketch. It follows directly from definition of exponentiation by transfinite induction. \Box

Now we prove the properties of limit operation.

Theorem 3.1 (Continuity of Addition). Assume that λ is a limit ordinal and the ϕ is an increasing λ -sequence. Then we have

$$\lim_{\xi \prec \lambda} (\alpha + \phi(\xi)) = \alpha + \lim_{\xi \prec \lambda} \phi(\xi).$$

Proof. Note that $\alpha + \phi(\xi)$ is an increasing λ -sequence by Lemma 3.1. Thus the lefthand side is well-defined. Let $\beta = \lim_{\xi \prec \lambda} \phi(\xi)$. If $\xi \prec \lambda$, then $\phi(\xi) \prec \beta$ and therefore $\alpha + \phi(\xi) \prec \alpha + \beta$ by Lemma 3.1 again. Let $\zeta \prec \alpha + \beta$; we need to show that there exists $\xi \prec \lambda$ such that $\zeta \prec \alpha + \phi(\xi)$. If $\zeta \prec \alpha$, then $\zeta \prec \alpha + \phi(0)$. On the other hand, if $\zeta \succeq \alpha$, then $\zeta = \alpha + (\zeta - \alpha)$ and $\zeta - \alpha \prec (\alpha + \beta) - \alpha = \beta$ by Lemma 3.2. It follows that for some $\xi \prec \lambda$ we have $\zeta - \alpha \prec \phi(\xi)$ (since β is the limit of $\phi(\xi)$ where $\xi \prec \lambda$), thus $\zeta \prec \alpha + \phi(\xi)$ by Lemma 3.1 and 3.2. Hence the ordinal $\alpha + \beta$ is the smallest ordinal greater than all ordinals $\alpha + \phi(\xi)$ for $\xi \prec \lambda$.

Theorem 3.2 (Continuity of Muliplication). Assume that λ is a limit ordinal and the ϕ is an increasing λ -sequence. We have

$$\lim_{\xi \prec \lambda} (\alpha \cdot \phi(\xi)) = \alpha \cdot \lim_{\xi \prec \lambda} \phi(\xi).$$

Proof. We assume $\alpha \neq 0$. (Case of $\alpha = 0$ is trivial.) Let $\beta = \lim_{\xi \prec \lambda} \phi(\xi)$. For $\xi \prec \lambda$ we have $\phi(\xi) \prec \beta$, thus $\alpha \cdot \phi(\xi) \prec \alpha \cdot \beta$. Let $\zeta \prec \alpha \cdot \beta$. By Thereom 2.1 there exist ordinals γ and ϱ such that $\zeta = \alpha \cdot \gamma + \varrho \prec \alpha \cdot \beta$ and $\varrho \prec \alpha$. By Lemma 3.3, we must have $\gamma \prec \beta$, which implies that for some $\xi \prec \lambda$ we have $\gamma \prec \phi(\xi)$ as β is the limit ordinal. Hence,

$$\zeta \prec \alpha \cdot \phi(\xi) + \rho \prec \alpha \cdot \phi(\xi) + \alpha = \alpha \cdot (\phi(\xi) + 1) \prec \alpha \cdot \phi(\xi + 1),$$

because ϕ is increasing. Since λ is a limit ordinal, we have $\xi + 1 \prec \lambda$ and the formula $\alpha \cdot \phi(\xi + 1)$ shows that $\alpha \cdot \beta$ is the smallest ordinal greater than all ordinals of the form $\alpha \cdot \phi(\eta)$ for $\eta \prec \lambda$. \square

The following lemma follows directly from the definition of limit.

Lemma 3.5.

$$\lim_{\gamma \prec \lambda} \phi(\gamma) \succ \phi(\gamma) \text{ for } \gamma \prec \lambda$$

Lemma 3.6.

$$\lim_{\gamma \prec \lambda} \phi(\gamma) \preceq \mu \ \textit{iff} \ \phi(\gamma) \prec \mu \ \textit{for all} \ \gamma \prec \lambda$$

Theorem 3.3 (Transitivity of Cofinality). If ϕ and ψ are two increasing transfinite sequences, λ is a limit ordinal and $\xi = \lim_{\gamma \prec \lambda} \psi(\gamma)$, then

$$\lim_{\delta \prec \xi} \phi(\delta) = \lim_{\gamma \prec \lambda} \phi(\psi(\gamma)).$$

Proof. If $\gamma \prec \lambda$ then by Lemma 3.5 $\phi(\gamma) \prec \xi$ and again by Lemma 3.5 $\phi(\psi(\gamma)) \prec \lim_{\delta \prec \xi} \phi(\delta)$. By Lemma 3.6 we have

$$\lim_{\gamma \prec \lambda} \phi(\psi(\gamma)) \preceq \lim_{\delta \prec \xi} \phi(\delta).$$

If $\delta \prec \xi$ then we have $\psi(\gamma) \succeq \delta$ for some ordinal $\gamma \prec \lambda$ by Lemma 3.6. Since the sequence ϕ is increasing, $\phi(\psi(\gamma)) \succeq \phi(\delta)$. By Lemma 3.6. Since the sequence ϕ is increasing, $\phi(\psi(\gamma)) \succeq \phi(\delta)$. Applying Lemma 3.5,

$$\lim_{\gamma \prec \lambda} \phi(\psi(\gamma)) \succ \phi(\psi(\gamma)) \succeq \phi(\delta).$$

Applying Lemma 3.6, we obtain

$$\lim_{\gamma \prec \lambda} \phi(\psi(\gamma)) \succeq \lim_{\delta \prec \xi} \phi(\delta).$$

This concludes our proof.

Theorem 3.4 (Continuity of Exponentiation). Assume that λ is a limit ordinal and the ϕ is an increasing λ -sequence. We have

$$\lim_{\xi \prec \lambda} \left(\alpha^{\phi(\xi)} \right) = \alpha^{\lim_{\xi \prec \lambda} \phi(\xi)}.$$

Proof. Let

$$\beta = \lim_{\xi \prec \lambda} \phi(\xi)$$

Define

$$\psi(\delta) = \alpha^{\delta}$$

By Lemma 3.4, $\phi(\delta)$ is increasing. Applying Theorem 3.3, we have

$$\begin{array}{ll} \lim\limits_{\xi \prec \lambda} \left(\alpha^{\phi(\xi)}\right) & = & \lim\limits_{\delta \prec \beta} \alpha^{\delta} \\ & = & \alpha^{\beta} \\ & = & \alpha^{\lim_{\xi \prec \lambda} \phi(\xi)} \end{array}$$

References

[1] K. Kuratowski and A. Mostowski, North-Holland Set Theory, 1968