WS1S is non-elementary: A Summary of Meyer's Proof

Ting Zhang

June 6, 2001

1 Preliminaries

In this section we briefly review some standard definitions and notations in formal language and recursion theories.

1.1 Formal Language Theory

Let Σ be a finite alphabet. A word is a finite sequence of symbols over Σ . Empty word is denoted by ϵ . Σ^* is the set of all words over Σ . We say that A is a (formal) language if $A \subseteq \Sigma^*$. Let $A, B \subseteq \Sigma$. $A \cdot B$ is the concatenation operation. $A \cup B$ (also written A + B), $A \cap B$ and $\neg A$ are set-theoretic operations. Given $A \subset \Sigma^*$, the following are standard definitions in the literature.

$$A^0 = \{\epsilon\}, \, A^{n+1} = A^n \cdot A, \, A^* = \cup_{n=0}^{\infty} A^n, \, A^+ = \cup_{n=1}^{\infty} A^n.$$

We introduce \$\pmoperation\$ operation defined by the rule:

$$A^{\natural} = \{ \sigma \mid \sigma \in \Sigma^* \text{ and } \exists \sigma' \in A \text{ s.t. } |\sigma| = |\sigma'| \}.$$

If \mathcal{A}_A is an automaton recognizing $A \subseteq \Sigma^*$, we can construct an automaton $\mathcal{A}_{A^{\natural}}$ where $\mathcal{A}_{A^{\natural}}$ is the same as \mathcal{A}_A except that every transition edge is universal for all input symbols. Apparently $\mathcal{A}_{A^{\natural}}$ recognizes A^{\natural} . Hence all preceding operations preserve language regularity. We define γ -expressions which are constructed inductively from these operations.

Definition 1.1 (γ -expression). A γ -expression over Σ is defined inductively as follows:

- (1) **a** is a γ -expression for $\mathbf{a} \in \Sigma$ and $L(\mathbf{a}) = \{\mathbf{a}\}.$
- (2) If α , β are γ -expressions, then $\alpha \cdot \beta$, $\alpha \cap \beta$, $\alpha \cup \beta$, $\neg \alpha$ and α^{\natural} are all γ -expressions, and

$$L(\alpha \cdot \beta) = L(\alpha) \cdot L(\beta)$$

$$L(\alpha \cup \beta) = L(\alpha) \cup L(\beta)$$

$$L(\alpha \cap \beta) = L(\alpha) \cap L(\beta)$$

$$L(\neg \alpha) = \Sigma^* - L(\alpha)$$

$$L(\alpha^{\natural}) = L(\alpha)^{\natural}$$

By $SAT(\Sigma)$ we denote the set of γ -expressions whose language is non-empty.

1.2 Recursion Theory

Definition 1.2 (Elementary Recursive [Odi99]). A class \mathcal{E} of elementary recursive functions is the smallest class of functions:

- (1) containing x + 1, x y and x + y,
- (2) closed under composition,
- (3) closed under bounded sum and product, defined by

$$\sum_{i=0}^{y} \varphi(\vec{x}, i) \text{ and } \prod_{i=0}^{y} \varphi(\vec{x}, i).$$

A language is elementary if its characteristic function is. Let $\mathbf{Th}(\mathbf{WS1S})$ be the set of all true $\mathbf{WS1S}$ sentences. We shall show that $\mathbf{Th}(\mathbf{WS1S})$ is not elementary. Our computation model is the standard **one-tape**¹**deterministic Turing machine**. Let $\varphi(n) : \mathbb{N} \to \mathbb{N}$ be a computable function. We say that a Turing machine \mathbb{M} is $\varphi(n)$ -time bounded (resptively, $\varphi(n)$ -space bounded) if \mathbb{M} halts after at most $\varphi(n)$ moves (resptively, after visiting at most $\varphi(n)$ tape squares) for any input of length $n \geq 0$. We denote by $\mathbf{SPACE}(\varphi(n))$ (respectively, $\mathbf{TIME}(\varphi(n))$) the class of all recursive functions computable by $\varphi(n)$ -time bounded Turing machines (respectively, $\varphi(n)$ -space bounded Turing machines.) Let us define a series of functions as follows:

$$E_0(n) = n$$

$$E_{k+1}(n) = 2^{E_k(n)}$$

A well-known characteristic of \mathcal{E} was due to R. W. Ritchie.

Theorem 1.1 (Elementary Function Characterization [Rit63]). A language is in \mathcal{E} iff it is in SPACE $(E_k(n))$ for some fixed k > 0 and all inputs of length $n \geq 0$.

In [Rit63], Ritchie considered an infinite hierarchy of strictly inclusive classes of functions $\{F_i\}_{i\geq 0}$. For each i>0, F_i is defined to be a class of functions whose space complexity functions are contained in F_{i-1} . Theorem 1.1 follows from the fact that for each i>1, the space complexity of functions in F_i is bounded by E_{i-1} and the union of the hierarchy $\mathcal{F}=\bigcup_{i=0}^{\infty}F_i=\mathcal{E}$.

Definition 1.3 (Polynomial-Time Reduction). Let $A_1 \subseteq \Sigma_1^*$, $A_2 \subseteq \Sigma_2^*$ be two languages. We say that A_1 is polynomial-time reducible to A_2 (written $A_1 \prec_p A_2$) iff there is a polynomial-time bounded Turing machine $\mathfrak M$ which outputs word $y \in \Sigma_2^*$ with any input $x \in \Sigma_1^*$ such that $x \in A_1$ iff $y \in A_2$.

Clearly, for any k > 0, $A_1 \prec_p A_2$ and $A_2 \in \mathbf{SPACE}(E_k(n))$ imply $A_1 \in \mathbf{SPACE}(E_k(n))$.

Definition 1.4 (Space Constructible [SHI65]). A function $f : \mathbb{N} \to \mathbb{N}$ is space constructible iff there is a Turing machine \mathbb{M} which halts after using exact $\varphi(n)$ tape squares for any input of length $n \geq 0$.

Space constructibility rules out the pathological functions (see **Gap Theorem**) to obtain straightly inclusive complexity hierarchies.

¹Here we don't need to consider space complexity smaller than input size.

Theorem 1.2 (Space Hierarchy Theorem). If $\varphi(n)$ is a space constructible function, then there exists a language A which is $\varphi(n)$ -space computable and is not $\psi(n)$ -space computable for all functions $\psi(n)$ such that

$$\lim_{n \to \infty} \frac{\psi(n)}{\varphi(n)} = 0$$

The result was proved by the diagonalization argument. It can be shown that there exists a $\varphi(n)$ -space bounded Turing machine \mathcal{M} which simulates all $\psi(n)$ -space bounded Turing machines and differs from each of them. It follows that $L(\mathcal{M}) \in \mathbf{SPACE}(\varphi(n)) - \mathbf{SPACE}(\psi(n))$.

2 Proof

2.1 Proof Outline

The main idea of the proof is to show that **WS1S** has very strong encoding ability, that is, **WS1S** can efficiently encode all computations of elementary space-bounded Turing machines. Therefore, **Th(WS1S)** itself must be very difficult to decide.

Lemma 2.1. If for every k > 0 and for any language $A \subseteq \{0,1\}^*$ such that $A \in \mathbf{SPACE}(E_k(n))$, we have $A \prec_p \mathbf{Th}(\mathbf{WS1S})$, then $\mathbf{Th}(\mathbf{WS1S})$ is non-elementary.

Proof Sketch. It is well-known that constant functions, x + y, $x \cdot y$, x^y are all space-constructible and composition preserve space-constructibility. Hence $E_{k+1}(n)$ is space-constructible for any fixed k, and

$$\lim_{n \to \infty} \frac{E_k(n)}{E_{k+1}(n)} = 0.$$

By Theorem 1.2, there exists a language $A \subseteq \{0,1\}^*$ such that $A \in \mathbf{SPACE}(E_{k+1}(n))$, but $A \notin \mathbf{SPACE}(E_k(n))$. As $A \prec_p \mathbf{Th}(\mathbf{WS1S})$, it must be true that $\mathbf{Th}(\mathbf{WS1S}) \notin \mathbf{SPACE}(E_k(n))$ for any fixed k > 0. By Theorem 1.1, we conclude that $\mathbf{Th}(\mathbf{WS1S})$ is not elementary recursive. \square

In the following subsection, we establish in two steps the desired reduction in the lemma premise.

2.2 Reductions

Let A be the language aforementioned in Lemma 2.1. We shall show that $A \prec_p \mathbf{SAT}(\Sigma)$ and $\mathbf{SAT}(\Sigma) \prec_p \mathbf{Th}(\mathbf{WS1S})$. By the transitivity of \prec_p , we will have $A \prec_p \mathbf{Th}(\mathbf{WS1S})$.

Lemma 2.2. $SAT(\Sigma) \prec_p Th(WS1S)$

Proof Sketch. For simplicity, we exclude ϵ from our discussions. Also, we assume that $\Sigma = \{0, 1\}$. Using suitable encoding, there is no conceptual difficulty to generalize the result to an arbitrary Σ . We construct a reduction function which translates each γ -expression α to a **WS1S** formula $F_{\alpha}(i,j,K)$ where i,j are first-order variable and K is a second-order variable. In standard interpretation, i,j are natural numbers and K is a finite subset of natural numbers. K can be viewed as an infinite word σ over Σ^* with only finite occurrences of 1's such that the i^{th} symbol σ_i is 1 iff $i \in K$. Intuitively $F_{\alpha}(i,j,K)$ says that i < j and the subword $\sigma_i \sigma_{i+1} \cdots \sigma_{j-1} \in L(\alpha)$. $F_{\alpha}(i,j,K)$ is constructed inductively on structure of γ -expressions.

(1) If $\alpha = \mathbf{0}$ or $\mathbf{1}$, then

$$F_0(i,j,K) \stackrel{\text{def}}{=} (j=i+1) \land (i \notin K),$$

 $F_1(i,j,K) \stackrel{\text{def}}{=} (j=i+1) \land (i \in K),$

(2) If $\alpha = \beta \cdot \delta$, then

$$F_{\alpha}(i,j,K) \stackrel{\text{def}}{=} \exists k(i \leq k \leq j \land F_{\beta}(i,k,K) \land F_{\delta}(k,j,K)),$$

(3) If $\alpha = \beta^{\natural}$, then

$$F_{\alpha}(i,j,K) \stackrel{\text{def}}{=} \exists K'(F_{\beta}(i,j,K')),$$

(4) If $\alpha = \beta \cup \delta$, $\beta \cap \delta$ or $\neg \beta$, then respectively,

$$F_{\alpha}(i,j,K) \stackrel{\text{def}}{=} F_{\beta}(i,j,K) \lor F_{\delta}(i,j,K),$$
 $F_{\alpha}(i,j,K) \stackrel{\text{def}}{=} F_{\beta}(i,j,K) \land F_{\delta}(i,j,K),$
 $F_{\alpha}(i,j,K) \stackrel{\text{def}}{=} \neg F_{\beta}(i,j,K).$

By induction it is easily shown that

$$L(\alpha) \neq \emptyset \iff \exists i \exists j \exists K [F_{\alpha}(i, j, K)].$$

Next we show that γ -expression has very strong encoding ability such that it can encode any computations of elementary space-bounded Turing machines and the encoding can be done in polynomial time w.r.t. the input length. Let \mathcal{M} be any Turing machine with an input alphabet $\Sigma_I = \{\mathbf{0}, \mathbf{1}\}$, a tape alphabet $\Sigma = \{\mathbf{0}, \mathbf{1}, \flat, \sharp\}$ and a state set Q. An instantaneous description (ID) of \mathcal{M} is a word σ in $(\Sigma \cup Q)^*$ which contains exactly one symbol in Q. Here we require that IDs have the uniform length. $Next_{\mathcal{M}}(\sigma)$ is defined to be the immediate successor ID of σ . (We assumed that \mathcal{M} is deterministic.) $Next_{\mathcal{M}}(\sigma)$ is undefined if σ contains a halting state or its head is going to across the ID boundary (I.e., trying to move right (left) at leftmost (rightmost) of σ .) Let $Next_{\mathcal{M}}(\sigma, 0) = \sigma$ if σ is an ID and undefined otherwise. Let $Next_{\mathcal{M}}(\sigma, n+1) = Next_{\mathcal{M}}(Next_{\mathcal{M}}(\sigma, n))$. A computation $Comp_{\mathcal{M}}(\sigma)$ is a partial function on ID σ defined as follows:

$$Comp_{\mathcal{M}}(\sigma) = \{ \sharp \cdot Next_{\mathcal{M}}(\sigma, 0) \cdot \sharp \cdot Next_{\mathcal{M}}(\sigma, 1) \cdot \sharp \cdots \sharp \cdot Next_{\mathcal{M}}(\sigma, n) \cdot \sharp \}.$$

where $Next_{\mathcal{M}}(\sigma,n)$ contains a halting state q_f . As \mathcal{M} is deterministic, $Comp_{\mathcal{M}}(\sigma)$ is either singleton or \emptyset . We may use $Comp_{\mathcal{M}}(\sigma)$ to denote the word in it whenever $Comp_{\mathcal{M}}(\sigma) \neq \emptyset$. The meaning should be clear from the context. Assume that $\sigma' = Next_{\mathcal{M}}(\sigma)$ is defined. it is well-known that any four consecutive symbols σ_i , σ_{i+1} , σ_{i+2} , σ_{i+3} uniquely determine the symbol σ'_{i+1} . Let $\delta_{\mathcal{M}}: \Sigma^4 \mapsto \Sigma$ be such a partial function determined by \mathcal{M} . $\delta_{\mathcal{M}}(\eta_0 \cdot \eta_1 \cdot \eta_2 \cdot \eta_3)$ is undefined if $\eta_0 \cdot \eta_1 \cdot \eta_2 \cdot \eta_3$ contains a halting state or a state without any transitions. Assume that $Comp_{\mathcal{M}}(\sigma)$ is defined. It is easily seen that if $\eta_0, \eta_1, \eta_2, \eta_3$ are the i^{th} , $(i+1)^{th}$, $(i+2)^{th}$, $(i+3)^{th}$ symbols of $Comp_{\mathcal{M}}(\sigma)$, then $\delta_{\mathcal{M}}(\eta_0 \cdot \eta_1 \cdot \eta_2 \cdot \eta_3)^2$ are the $(|\sigma| + i + 2)^{th}$ symbol of $Comp_{\mathcal{M}}(\sigma)$ providing $i \leq |Comp_{\mathcal{M}}(\sigma)| - |\sigma| - 2$.

² Actually, we need to extend $\delta_{\mathcal{M}}$ to deal with the situation that $\eta_0 \cdot \eta_1 \cdot \eta_2 \cdot \eta_3$ traverses ID boundries. However, the details are of no importance.

Lemma 2.3 (Simulation Lemma). Let \mathcal{M} be a Turing machine in the preceding definition. Let α be a γ -expression over $\Gamma = (\Sigma \cup Q)$ and $L(\alpha) = \Gamma^n$ for some n > 0. There exists a γ -expression β over Γ such that

$$L(\beta) = Comp_{\mathcal{M}}(\flat^n \cdot x \cdot \flat^n),$$

and β is constructible in polynomial time w.r.t. the length of $(x \cdot \sharp \cdot \alpha)$.

Proof Sketch. We shall construct a γ -expression β such that $L(\beta) = Comp_{\mathbb{M}}(\flat^n \cdot x \cdot \flat^n)$. Note that $\neg Comp_{\mathbb{M}}(\flat^n \cdot x \cdot \flat^n)$ can be characterized as follows:

(1) words that do not begin with $\sharp \cdot \flat^n \cdot x \cdot \flat^n \cdot \sharp$:

$$R_1 = \neg(\sharp \cdot (\Gamma^n \cap \flat^*) \cdot x \cdot (\Gamma^n \cap \flat^*) \cdot \sharp \cdot \Gamma^*)$$

= $\neg(\sharp \cdot (\alpha \cap \flat^*) \cdot x \cdot (\alpha \cap \flat^*) \cdot \sharp \cdot \Gamma^*).$

(2) words that do not contain final state q_f :

$$R_2 = \neg (\Gamma^* \cdot q_f \cdot \Gamma^*).$$

(3) words that do not end with #:

$$R_3 = \neg(\Gamma^* \cdot \sharp).$$

(4) words that do not satisfy the consecution property:

$$\begin{array}{lll} R_4 & = & \bigcup_{\sigma_0, \sigma_1, \sigma_2, \sigma_3 \in \Gamma} [\Gamma^* \cdot \sigma_0 \cdot \sigma_1 \cdot \sigma_2 \cdot \sigma_3 \cdot \Gamma^{2n+|x|-2} \cdot (\Gamma - \delta_{\mathbb{M}}(\sigma_0 \cdot \sigma_1 \cdot \sigma_2 \cdot \sigma_3)) \cdot \Gamma^*] \\ \\ & = & \bigcup_{\sigma_0, \sigma_1, \sigma_2, \sigma_3 \in \Gamma} [\Gamma^* \cdot \sigma_0 \cdot \sigma_1 \cdot \sigma_2 \cdot \sigma_3 \cdot \alpha \cdot \Gamma^{|x|-2} \cdot \alpha \cdot (\Gamma - \delta_{\mathbb{M}}(\sigma_0 \cdot \sigma_1 \cdot \sigma_2 \cdot \sigma_3)) \cdot \Gamma^*]. \end{array}$$

Obviously

$$Comp_{\mathcal{M}}(\flat^n \cdot x \cdot \flat^n) = \neg (R_1 \cup R_2 \cup R_3 \cup R_4).$$

Here operation "*" and "-" are only used for the sake of brevity. They are efficiently expressible via the basic γ -operations. Moreover all constructions only take polynomial time w.r.t. to the length of $(x \cdot \sharp \cdot \alpha)$.

Next we show that \$\pm\$-operation can help encode sets of words with very long uniform length.

Lemma 2.4. For any $k \geq 0$, there exists a γ -expression α such that $L(\alpha) = \Sigma^{f_k(n)}$ where $f_k(n) \geq E_k(n)$ and α can be constructed in polynomial time w.r.t. n.

Proof Sketch. We prove it by induction. The base case is trivial. Now assume the hypothesis holds for k. Since $E_k(n)$ is space constructible, we can construct a new Turing machine $\mathcal M$ which first mark down (by "1") exactly $E_k(n)$ tape squares and then circles within such space $E_{k+1}(n)$ steps. ($\mathcal M$ can do this easily by using $E_k(n)$ tape squares as a counter.) By Lemma 2.3, we can have a γ -expression β such that $L(\beta) = Comp_{\mathcal M}(x)$ where $x = \flat^{f_k(n)} \cdot q_0 \cdot \flat^{f_k(n)}$. $Comp_{\mathcal M}(x)$ is defined as $\mathcal M$ halts within $E_k(n) \leq f_k(n)$ tape squares. Moreover, $|Comp_{\mathcal M}(x)| \geq E_{k+1}(n)$ as $\mathcal M$ runs at least $E_{k+1}(n)$ steps. Hence $\alpha = \beta^{\natural}$. Again, all constructions are polynomial-time bounded w.r.t. n. \square

Lemma 2.5. For any $A \subseteq \{0,1\}^*$, if $A \in \mathbf{SPACE}(E_k(n))$ for some $k \geq 0$, then there exists a finite Γ such that $A \prec_p \mathbf{SAT}(\Gamma)$.

Proof Sketch. Let \mathcal{M} be a Turing machine which recognizes A within space bound $E_k(|x|)$ for all $x \in A$. Let Γ as previously defined. By Lemma 2.4, we have a γ -expression such that $L(\alpha) = \Gamma^{f_k(|x|)}$ where $f_k(|x|) \geq E_k(|x|)$. Applying Lemma 2.3, we obtain a γ -expression β such that $L(\beta) = Comp_m(\flat^{f_k(|x|)} \cdot q_0 \cdot x \cdot \flat^{f_k(|x|)})$ where q_0 is the initial state of \mathcal{M} . Since \mathcal{M} is space-bounded by $E_k(n)$, $Comp_m(\flat^{f_k(|x|)} \cdot q_0 \cdot x \cdot \flat^{f_k(|x|)})$ is non-empty iff x is accepted by \mathcal{M} . Hence, $x \in A$ iff $Comp_m(\flat^{f_k(|x|)} \cdot q_0 \cdot x \cdot \flat^{f_k(|x|)}) \neq \emptyset$ iff $L(\beta) \neq \emptyset$ iff $\beta \in \mathbf{SAT}(\Gamma)$. Once again, it is clear that the reduction can be constructed in polynomial time w.r.t. the input length.

Theorem 2.1 ([Mey75]). Th(WS1S) is non-elementary.

Proof. By Lemma 2.1, 2.2 and 2.5.

References

[Mey75] A.R. Meyer. Weak monadic second order theory of successor is not elementary recursive. In *Proceeding of Logic Colloquium*, vol. 453 of *Lecture Notes in Mathematics*, pages 132–154. Springer-Verlag, 1975.

- [Odi99] P. Odifreddi. Classical Recursion Theory II, pages 264–286. Elsevier, 1999.
- [Rit63] R.W. Ritchie. Classes of predictably computable functions. *Transactions of American Mathematical Society*, 106(1):139–173, January 1963.
- [SHI65] R.E. Stearns, J. Hartmanis, and P.M.L. II. Hierarchies of memory limited computations. In *Proceeding of the Sixth Annual Symposium on Switching Circuit Theory and Logical Design*, pages 179–190. IEEE, 1965.