WSI1S is non-elementary: A Summary of Meyer’s Proof

Ting Zhang

June 6, 2001

1 Preliminaries

In this section we briefly review some standard definitions and notations in formal language and
recursion theories.

1.1 Formal Language Theory

Let X be a finite alphabet. A word is a finite sequence of symbols over ¥. Empty word is denoted
by e. X* is the set of all words over ¥. We say that A is a (formal) language if A C ¥*. Let
A,B C X. A- B is the concatenation operation. AU B (also written A + B), AN B and —A are
set-theoretic operations. Given A C X*, the following are standard definitions in the literature.

A% = {e}, AT = A" . A A* = U JA™, AT = U A
We introduce f-operation defined by the rule:
A" ={o|oeX* and o' € A s.t. |o| = |o'|}.

If A4 is an automaton recognizing A C ¥*, we can construct an automaton A 41 where A 41 is the
same as A4 except that every transition edge is universal for all input symbols. Apparently A 41
recognizes Af. Hence all preceding operations preserve language regularity. We define y-expressions
which are constructed inductively from these operations.

Definition 1.1 (y-expression). A vy-ezpression over ¥ is defined inductively as follows:
(1) a is a y-expression for a € ¥ and L(a) = {a}.

(2) If a, B are y-expressions, then - 3, aN B, aU B, ~a and o are all y-expressions, and

L{a-p) = L(a)- L(B)
L{au ) L(a) U L(B)
Lanp) = L{a)NL(B)
L(-a) = X —L(a)
L% = L(a)

By SAT(X) we denote the set of y-expressions whose language is non-empty.



1.2 Recursion Theory

Definition 1.2 (Elementary Recursive [0di99]). A class £ of elementary recursive functions
is the smallest class of functions:

(1) containing x + 1, x —y and = + vy,
(2) closed under composition,
(8) closed under bounded sum and product, defined by

Y

> (@ i) and ] (@),

i=0 =0

A language is elementary if its characteristic function is. Let Th(WS1S) be the set of all
true WS1S sentences. We shall show that Th(WS1S) is not elementary. Our computation model
is the standard one-tape!deterministic Turing machine. Let ¢(n) : N — N be a computable
function. We say that a Turing machine M is ¢(n)-time bounded (resptively, ¢(n)-space bounded)
if M halts after at most ¢(n) moves (resptively, after visiting at most ¢(n) tape squares) for any
input of length n > 0. We denote by SPACE(p(n)) (respectively, TIME(p(n))) the class of all
recursive functions computable by ¢(n)-time bounded Turing machines (respectively, o(n)-space
bounded Turing machines.) Let us define a series of functions as follows:

Ey(n) = n
Bgya(n) = 250

A well-known characteristic of £ was due to R. W. Ritchie.

Theorem 1.1 (Elementary Function Characterization [Rit63]). A language is in € iff it is
in SPACE(E(n)) for some fized k > 0 and all inputs of length n > 0.

In [Rit63], Ritchie considered an infinite hierarchy of strictly inclusive classes of functions
{F;}i>o. For each i > 0, F; is defined to be a class of functions whose space complexity functions
are contained in F;_1. Theorem 1.1 follows from the fact that for each ¢ > 1, the space complexity
of functions in Fj; is bounded by F;_; and the union of the hierarchy F = URF; = £.

Definition 1.3 (Polynomial-Time Reduction). Let 4; C ¥}, As C £5 be two languages. We
say that A; is polynomial-time reducible to Ay (written Ay <, As) iff there is a polynomial-
time bounded Turing machine M which outputs word y € X3 with any input x € X7 such that
x € Ay iff y € As.

Clearly, for any k > 0, A; <, A» and Ay € SPACE(Ey(n)) imply A; € SPACE(E(n)).

Definition 1.4 (Space Constructible [SHI65]). A function f : N — N is space constructible
iff there is a Turing machine M which halts after using exact p(n) tape squares for any input of
length n > 0.

Space constructibility rules out the pathological functions (see Gap Theorem) to obtain
straightly inclusive complexity hierarchies.

1Here we don’t need to consider space complexity smaller than input size.



Theorem 1.2 (Space Hierarchy Theorem). If ¢(n) is a space constructible function, then
there exists a language A which is p(n)-space computable and is not Y (n)-space computable for
all functions ¥(n) such that

(n)

lim ——= =0
n—oo (n)

The result was proved by the diagonalization argument. It can be shown that there exists a
p(n)-space bounded Turing machine M which simulates all 1)(n)-space bounded Turing machines
and differs from each of them. It follows that L(M) € SPACE(¢(n)) — SPACE(y)(n)).

2 Proof

2.1 Proof Outline

The main idea of the proof is to show that WS1S has very strong encoding ability, that is, WS1S
can efficiently encode all computations of elementary space-bounded Turing machines. Therefore,
Th(WS1S) itself must be very difficult to decide.

Lemma 2.1. If for every k > 0 and for any language A C {0,1}* such that A € SPACE(E(n)),
we have A <, Th(WS18S), then Th(WS1S) is non-elementary.

Proof Sketch. It is well-known that constant functions, x + y, x - y, ¥ are all space-constructible
and composition preserve space-constructibility. Hence Ej 1 (n) is space-constructible for any fixed
k, and
E
lim — (n)
n—o0 Ep11(n)
By Theorem 1.2, there exists a language A C {0,1}* such that A € SPACE(Ey;1(n)), but

A ¢ SPACE(E(n)). As A <, Th(WS18), it must be true that Th(WS1S) ¢ SPACE(Ej(n))
for any fixed k£ > 0. By Theorem 1.1, we conclude that Th(WS18S) is not elementary recursive. [

=0.

In the following subsection, we establish in two steps the desired reduction in the lemma, premise.

2.2 Reductions

Let A be the language aforementioned in Lemma 2.1. We shall show that 4 <, SAT(X) and
SAT(X) <, Th(WS1S). By the transitivity of <,, we will have A <, Th(WS18).

Lemma 2.2. SAT(X) <, Th(WS1S)

Proof Sketch. For simplicity, we exclude € from our discussions. Also, we assume that ¥ = {0,1}.
Using suitable encoding, there is no conceptual difficulty to generalize the result to an arbitrary
Y. We construct a reduction function which translates each ~y-expression a to a WS1S formula
F,(i,j, K) where i, j are first-order variable and K is a second-order variable. In standard inter-
pretation, ¢, j are natural numbers and K is a finite subset of natural numbers. K can be viewed
as an infinite word o over ¥* with only finite occurrences of 1’s such that the i** symbol o; is 1 iff
i € K. Intuitively F,(i,j, K) says that ¢ < j and the subword 0;04541---0;-1 € L(a). Fa(i, j, K)
is constructed inductively on structure of y-expressions.



(1) fa=0or 1, then

F(i,5,K) = (=i+1)A(i€K),

(2) Ifa = -6, then

Fulirj, K) % 3k < k < j A Fs(i k, K) A Fs(k, j, K)),

(3) If a = B4, then
Fo(i, j, K) & 3K (Fy(i, j, K")),
(4) fa=pUJd, BNJ or —f, then respectively,

Fa(iajaK) dzef F,B(ZJJJK)VFJ(ZJJJK)J
.. def .. ..
Fa(Z,J,K) = F,B(1/7JJK)/\F6(1/7JJK)J

.. def ..
Fa(7’5.77K) = ﬁ‘F,G(zv]a-[()'

By induction it is easily shown that
L(a) # 0 < 3i3j3K[F,(i, 4, K)].
O

Next we show that y-expression has very strong encoding ability such that it can encode any
computations of elementary space-bounded Turing machines and the encoding can be done in
polynomial time w.r.t. the input length. Let M be any Turing machine with an input alphabet
¥ ={0,1}, atape alphabet ¥ = {0,1,b,4} and a state set Q. An instantaneous description (ID) of
Mis a word ¢ in (XUQ)* which contains exactly one symbol in (). Here we require that IDs have the
uniform length. Nexty (o) is defined to be the immediate successor ID of 0. (We assumed that M is
deterministic.) Nextn(o) is undefined if o contains a halting state or its head is going to across the
ID boundary (I.e., trying to move right (left) at leftmost (rightmost) of o.) Let Nezty(o,0) = o if
o is an ID and undefined otherwise. Let Nextyc(o,n+1) = Nexty(Nexty(o,n)). A computation
Compy (o) is a partial function on ID o defined as follows:

Compyi(o) = {ff - Nextni(o,0) - § - Nextyc(o,1) -f-- -4 - Nexty(o,n) - }.

where Nexty((o,n) contains a halting state ¢;. As M is deterministic, Compn (o) is either singleton
or ). We may use Compy (o) to denote the word in it whenever Compyi(o) # 0. The meaning
should be clear from the context. Assume that o' = Nexty(o) is defined. it is well-known
that any four consecutive symbols o3, 0iy1, 0iy2, 0i43 uniquely determine the symbol o, ;. Let
Iy : B* = ¥ be such a partial function determined by M. &x¢(no - 71 - 72 - 13) is undefined if
To - 71 - 7)2 - M3 contains a halting state or a state without any transitions. Assume that Compy (o)
is defined. It is easily seen that if ng,m1,m2,m3 are the it*, (i + 1)t* (i + 2)t*, (i + 3)** symbols
of Compy(c), then dnc(no - M1 - m2 - n3)%are the (Jo| + i + 2)t* symbol of Compyc(o) providing
i < |Compy(o)| — |o] —2.

2Actually, we need to extend dy to deal with the situation that ng - 11 - 72 - 73 traverses ID boundries. However,
the details are of no importance.



Lemma 2.3 (Simulation Lemma). Let M be a Turing machine in the preceding definition. Let
a be a vy-expression over ' = (XU Q) and L(a) = T™ for some n > 0. There exists a y-expression
B over I' such that

L(B) = Compe (b" - - ™),

and (3 is constructible in polynomial time w.r.t. the length of (z -§ - ).

Proof Sketch. We shall construct a y-expression § such that L(3) = Compyn(b™-z-b™). Note that
=Compy(b™ - z - b™) can be characterized as follows:

(1) words that do not begin with f-b™ -z - b™ - :

Rl = =(f-(T"Nb*)-z-(T"Nb*) - T*)
= - (@nb*)-z-(anb)-4-T).

(2) words that do not contain final state gy:
Ry = (" -q7 - T).
(3) words that do not end with f:
R = (I - §).

(4) words that do not satisfy the consecution property:

Ry, = U [F*-O'o-dl-02-0’3-F2n+|z|72-(r—5jv[(0'0-01-Ug-Ug))-F*]
00,01,02,03€0
= U [F*-00-01-02-03-a-F|z|_2-a-(F—6M(ao-01-02-03))-F*].

00,01,02,03€T

Obviously

Compy(b™ -z -b™) = =(R1 U R2 U R3 U Ry).
Here operation “x” and “—” are only used for the sake of brevity. They are efficiently expressible
via the basic y-operations. Moreover all constructions only take polynomial time w.r.t. to the
length of (z - § - ). O

Next we show that f-operation can help encode sets of words with very long uniform length.

Lemma 2.4. For any k > 0, there exists a y-expression o such that L(a) = (") where fi,(n) >
Ey(n) and a can be constructed in polynomial time w.r.t. n.

Proof Sketch. We prove it by induction. The base case is trivial. Now assume the hypothesis holds
for k. Since Eg(n) is space constructible, we can construct a new Turing machine M which first
mark down (by “1”) exactly Ex(n) tape squares and then circles within such space Ej11(n) steps.
(M can do this easily by using Ey(n) tape squares as a counter.) By Lemma 2.3, we can have a
~y-expression § such that L(8) = Compy(z) where 2 = b/ . g5 - b/ Compy () is defined as
M halts within Ej(n) < fr(n) tape squares. Moreover, |Compy(z)| > Ejt1(n) as M runs at least
Ejy1(n) steps. Hence a = 3. Again, all constructions are polynomial-time bounded w.r.t. n. [



Lemma 2.5. For any A C {0,1}*, if A € SPACE(Ey(n)) for some k > 0, then there exists a
finite T' such that A <, SAT(T).

Proof Sketch. Let M be a Turing machine which recognizes A within space bound Ej(|z|) for all
x € A. Let T' as previously defined. By Lemma 2.4, we have a ~y-expression such that L(a) =
/(2D where fr(|z|) > FEi(|z|). Applying Lemma 2.3, we obtain a y-expression 8 such that
L(B) = Comp,, (072D . gq -z -b/+ (12D} where go is the initial state of M. Since M is space-bounded
by Eg(n), Comp,, (672D . gy - & - b7(21)) is non-empty iff = is accepted by M. Hence, = € A iff
Comp, (072D . qo - 2 - b/ (2D) £ ¢ iff L(B) # 0 iff 8 € SAT(T'). Once again, it is clear that the
reduction can be constructed in polynomial time w.r.t. the input length. O

Theorem 2.1 ([Mey75]). Th(WS1S) is non-elementary.

Proof. By Lemma 2.1, 2.2 and 2.5. O

References

[Mey75] A.R. Meyer. Weak monadic second order theory of successor is not elementary recursive.
In Proceeding of Logic Colloguium, vol. 453 of Lecture Notes in Mathematics, pages 132—
154. Springer-Verlag, 1975.

[0di99] P. Odifreddi. Classical Recursion Theory II, pages 264-286. Elsevier, 1999.

[Rit63] R.W. Ritchie. Classes of predictably computable functions. Transactions of American
Mathematical Society, 106(1):139-173, January 1963.

[SHI65] R.E. Stearns, J. Hartmanis, and P.M.L. II. Hierarchies of memory limited computations.
In Proceeding of the Sizth Annual Symposium on Switching Circuit Theory and Logical
Design, pages 179-190. IEEE, 1965.



