Knuth-Bendix Order and Its Decidability

Ting Zhang

Asia

based on joint work with Henny B. Sipma, Zohar Manna

> Logic Colloquium 2008 July 6th, 2008

- 2 Knuth-Bendix Order
- **3** Decidability of KBO
- 4 Conclusions and Open Problems

Importance of Orderings

Termination Proof. To rank system states:

$$\langle x = 3, y = 2 \rangle > \langle x = 3, y = 1 \rangle$$

Importance of Orderings

• Termination Proof. To rank system states:

$$\langle x = 3, y = 2 \rangle > \langle x = 3, y = 1 \rangle$$

Ordered Resolution. To restrict the search space:

$$\frac{A \lor C \quad \neg A' \lor C'}{(C \lor C')\sigma} \qquad \begin{array}{c} \sigma = \mathsf{mgu}(A, A') \\ (\forall B \in C \cup C') \left[A\sigma \not< B\sigma \right] \end{array}$$

Importance of Orderings

• Termination Proof. To rank system states:

$$\langle x = 3, y = 2 \rangle > \langle x = 3, y = 1 \rangle$$

• Ordered Resolution. To restrict the search space:

$$\frac{A \lor C \quad \neg A' \lor C'}{(C \lor C')\sigma} \qquad \begin{array}{c} \sigma = \mathsf{mgu}(A, A') \\ (\forall B \in C \cup C') \left[A\sigma \not< B\sigma \right] \end{array}$$

Ordered Rewriting. To orient commutative equations:

$$\begin{array}{ll} x+y \rightarrow y+x & \mbox{if} & (x+y)\sigma > (y+x)\sigma \\ y+x \rightarrow x+y & \mbox{if} & (x+y)\sigma < (y+x)\sigma \end{array}$$

Importance of Orderings

• Termination Proof. To rank system states:

$$\langle x = 3, y = 2 \rangle > \langle x = 3, y = 1 \rangle$$

• Ordered Resolution. To restrict the search space:

$$\frac{A \lor C \quad \neg A' \lor C'}{(C \lor C')\sigma} \qquad \begin{array}{c} \sigma = \mathsf{mgu}(A, A') \\ (\forall B \in C \cup C') \left[A\sigma \not\leq B\sigma \right] \end{array}$$

• Ordered Rewriting. To orient commutative equations:

$$\begin{array}{ll} x+y \rightarrow y+x & \mbox{if} & (x+y)\sigma > (y+x)\sigma \\ y+x \rightarrow x+y & \mbox{if} & (x+y)\sigma < (y+x)\sigma \end{array}$$

Fundamental: Satisfiability Problem of Ordering Constraints

Beyond Existential Fragments

TOTAL SIMPLIFICATION RULE: [KKR90, CT97]

$$\frac{s \to t \mid c}{s[v]_{\rho} \to t \mid (c \land c' \land s|_{\rho} = u)} \quad (u \to v \mid c')$$

Beyond Existential Fragments

TOTAL SIMPLIFICATION RULE: [KKR90, CT97]

$$\frac{s \to t \mid c}{s[v]_{\rho} \to t \mid (c \land c' \land s|_{\rho} = u)} \quad (u \to v \mid c')$$

IT STATES THAT

 $s \to t \mid c$ is simplified (at position *p*) to $s[v]_p \to t \mid (c \land c' \land s|_p = u)$ by $u \to v \mid c'$ provided

$$\mathcal{TA} \models \forall \mathcal{V}(s) \ (\ c \ \rightarrow \exists \mathcal{V}(u) \ (\ c' \ \land \ s|_{\rho} = u \) \)$$

which necessarily involves quantifier alternation.

	Syntatic Nature		Hybrid Nature
	RPO		KPO
	MPO	LPO	
syntactic			
precedence			
multiset			
ordering			
lexicographical			
ordering			
numerical			
ordering			

	Syntatic Nature		Hybrid Nature
	RPO		KPO
	MPO	LPO	- NDO
syntactic			
precedence			
multiset			
ordering	-		
lexicographical			
ordering			
numerical			
ordering			

	Syntatic Nature		Hybrid Nature
	RPO		KPO
	MPO	LPO	- KBO
syntactic			
precedence	-		
multiset			
ordering	-		
lexicographical			
ordering			
numerical			
ordering			

	Syntatic Nature		Hybrid Nature
	RP	RPO	
	MPO	LPO	
syntactic			
precedence	•	-	•
multiset			
ordering	•		
lexicographical			
ordering			
numerical			
ordering			

	MPO	LPO	KBO
QFT			
UQT			
GQT			

QFT: Quantifier-free Theory.

UQT: Unary Quantified Theory.

GQT: General Quantified Theory.

	MPO	LPO	KBO
QFT	✓ [JO91] [NRV99]		
UQT	[NR00]		
GQT	?		

QFT: Quantifier-free Theory.

UQT: Unary Quantified Theory.

GQT: General Quantified Theory.

	MPO	LPO	KBO
OFT	 ✓ 	 ✓ 	
QFI	[JO91] [NRV99]	[Com90] [Nie93]	
ПОТ	 ✓ 	 ✓ 	
UQI	[NR00]	[NR00]	
COT	2	*	
GQT	1	[Tre92, CT97]	

QFT: Quantifier-free Theory.

UQT: Unary Quantified Theory.

GQT: General Quantified Theory.

	MPO	LPO	KBO
OFT	 ✓ 	 ✓ 	 ✓
	[JO91] [NRV99]	[Com90] [Nie93]	[KV00] [KV01]
ПОТ	 ✓ 	 ✓ 	 ✓
	[NR00]	[NR00]	[KV02]
GOT	2	*	2
GGI	:	[Tre92, CT97]	:

QFT: Quantifier-free Theory.

UQT: Unary Quantified Theory.

GQT: General Quantified Theory.

	MPO	LPO	KBO
OFT	 ✓ 	 ✓ 	 ✓
	[JO91] [NRV99]	[Com90] [Nie93]	[KV00] [KV01]
ПОТ	 ✓ 	 ✓ 	 ✓
	[NR00]	[NR00]	[KV02]
СОТ	2	*	 ✓
GQT	<u></u>	[Tre92, CT97]	[ZSM05]

QFT: Quantifier-free Theory.

UQT: Unary Quantified Theory.

GQT: General Quantified Theory.

Reduce term constraints to integer constraints.

T. Zhang, H.B. Sipma, and Z. Manna, *Decision Procedures for Recursive Data Structures with Integer Constraints.* IJCAR'04.

Our Approach

• Reduce term constraints to integer constraints.

T. Zhang, H.B. Sipma, and Z. Manna, *Decision Procedures for Recursive Data Structures with Integer Constraints.* IJCAR'04.

Reduce term quantifiers to integer quantifiers.

T. Zhang, H.B. Sipma and Z. Manna, *Term Algebras with Length Function and Bounded Quantifier Alternation*. TPHOLs'04.

Our Approach

Reduction from term domain to integer domain!

• Reduce term constraints to integer constraints.

T. Zhang, H.B. Sipma, and Z. Manna, *Decision Procedures for Recursive Data Structures with Integer Constraints.* IJCAR'04.

• Reduce term quantifiers to integer quantifiers.

T. Zhang, H.B. Sipma and Z. Manna, *Term Algebras with Length Function and Bounded Quantifier Alternation*. TPHOLs'04.

4 Conclusions and Open Problems

Term Algebras

A term algebra \mathcal{TA} : $\langle TA; C, \mathcal{A}, \mathcal{S}, \mathcal{T} \rangle$ consists of

TA: The term domain.

Term Algebras

A term algebra \mathcal{TA} : $\langle TA; C, \mathcal{A}, \mathcal{S}, \mathcal{T} \rangle$ consists of

- TA: The term domain.
- \square C: set of constructors: $\alpha, \beta, \gamma, \ldots$

Term Algebras

A term algebra \mathcal{TA} : $\langle TA; C, \mathcal{A}, \mathcal{S}, \mathcal{T} \rangle$ consists of

- TA: The term domain.
- *C*: set of constructors: α , β , γ ,
- \mathcal{A} : set of constants: *a*, *b*, *c*, . . . $\mathcal{A} \subseteq C$.

Term Algebras

A term algebra \mathcal{TA} : $\langle TA; C, \mathcal{A}, \mathcal{S}, \mathcal{T} \rangle$ consists of

- TA: The term domain.
- *C*: set of constructors: α , β , γ ,
- \mathcal{A} : set of constants: $a, b, c, \ldots, \mathcal{A} \subseteq C$.

S: set of selectors:
$$\alpha = (s_1^{\alpha}, \dots, s_k^{\alpha})$$
.

Term Algebras

A term algebra \mathcal{TA} : $\langle TA; C, \mathcal{A}, \mathcal{S}, \mathcal{T} \rangle$ consists of

- TA: The term domain.
- *C*: set of constructors: α , β , γ ,
- \mathcal{A} : set of constants: $a, b, c, \ldots, \mathcal{A} \subseteq C$.
- S: set of selectors: $\alpha = (s_1^{\alpha}, \dots, s_k^{\alpha})$.
- \mathfrak{T} : set of testers. Is_{α} for $\alpha \in C$.

Term Algebras

A term algebra \mathcal{TA} : $\langle TA; C, \mathcal{A}, \mathcal{S}, \mathcal{T} \rangle$ consists of

- TA: The term domain.
- *C*: set of constructors: α , β , γ ,
- \mathcal{A} : set of constants: $a, b, c, \ldots, \mathcal{A} \subseteq C$.
- S: set of selectors: $\alpha = (s_1^{\alpha}, \dots, s_k^{\alpha})$.
- \mathcal{T} : set of testers. Is_{α} for $\alpha \in C$.

Term Algebras

A term algebra \mathcal{TA} : $\langle TA; C, \mathcal{A}, \mathcal{S}, \mathcal{T} \rangle$ consists of

- TA: The term domain.
- *C*: set of constructors: α , β , γ ,
- \mathcal{A} : set of constants: $a, b, c, \ldots, \mathcal{A} \subseteq C$.
- S: set of selectors: $\alpha = (s_1^{\alpha}, \dots, s_k^{\alpha})$.
- \mathcal{T} : set of testers. Is_{α} for $\alpha \in C$.

NOTE THAT

Each element in TA is uniquely generated by constructors.

SIGNATURE

 \langle list; {cons, nil}; {nil}; {car, cdr}; {ls_{nil}, ls_{cons}} \rangle

SIGNATURE

 \langle list; {cons, nil}; {nil}; {car, cdr}; {ls_{nil}, ls_{cons}} \rangle

AXIOMS

$$\begin{split} Is_{nil}(x) &\leftrightarrow \neg Is_{cons}(x) \\ x &= car(cons(x, y)) \\ y &= cdr(cons(x, y)) \\ Is_{nil}(x) &\leftrightarrow \{car, cdr\}^+(x) = x \\ Is_{cons}(x) &\leftrightarrow cons(car(x), cdr(x)) = x \end{split}$$

Knuth-Bendix Order

A Knuth-Bendix order (KBO) <^{kb} is parametrically defined with

 $w : TA \rightarrow \mathbb{N}$: a weight function such that

$$w(\alpha(t_1,\ldots,t_k)) = w(\alpha) + \sum_{i=1}^k w(t_i).$$

Knuth-Bendix Order

A Knuth-Bendix order (KBO) <^{kb} is parametrically defined with

• $w : TA \to \mathbb{N}$: a weight function such that

$$w(\alpha(t_1,\ldots,t_k))=w(\alpha)+\sum_{i=1}^k w(t_i).$$

 $\sim <^{\sigma}$: a linear precedence order on *C* such that

$$\alpha_1 \prec^{\sigma} \alpha_2 \prec^{\sigma} \ldots \prec^{\sigma} \alpha_{|C|}.$$

Knuth-Bendix Order

A KBO $<^{kb}$ is recursively defined (with respect to *w* and $<^{\sigma}$) such that $u <^{kb} v$ if one of the following conditions holds.

 $\bowtie w(u) < w(v)$

Knuth-Bendix Order

A KBO $<^{kb}$ is recursively defined (with respect to *w* and $<^{\sigma}$) such that $u <^{kb} v$ if one of the following conditions holds.

Knuth-Bendix Order

A KBO $<^{kb}$ is recursively defined (with respect to *w* and $<^{\sigma}$) such that $u <^{kb} v$ if one of the following conditions holds.

•
$$w(u) < w(v)$$

• $w(u) = w(v)$ and $type(u) <^{\sigma} type(v)$
• $w(u) = w(v), u \equiv \alpha(u_1, \dots, u_k), v \equiv \alpha(v_1, \dots, v_k), and$
 $\exists i (1 \le i \le k \land u_i <^{kb} v_i \land \forall j (1 \le j < i \rightarrow u_j = v_j)).$

Conclusions

Example: Knuth-Bendix Order

Consider the KBO on LISP list structure parameterized with

$$w(cons) = w(nil) = 1$$
 and $nil <^{\sigma} cons$.

Conclusions

Example: Knuth-Bendix Order

Consider the KBO on LISP list structure parameterized with

$$w(cons) = w(nil) = 1$$
 and $nil <^{\sigma} cons$.

Conclusions

- 2 Knuth-Bendix Order
- 3 Decidability of KBO
 - 4 Conclusions and Open Problems

Quantifier Elimination

Suffices to eliminate 3-quantifiers from primitive formulas

 $\exists \bar{\boldsymbol{x}} (A_1(\bar{\boldsymbol{x}}) \wedge \ldots \wedge A_n(\bar{\boldsymbol{x}})),$

where $A_i(\bar{\mathbf{x}})$ ($1 \le i \le n$) are literals.

Quantifier Elimination

• Suffices to eliminate \exists -quantifiers from primitive formulas

$$\exists \bar{\boldsymbol{x}} (A_1(\bar{\boldsymbol{x}}) \wedge \ldots \wedge A_n(\bar{\boldsymbol{x}})),$$

where $A_i(\bar{\mathbf{x}})$ (1 $\leq i \leq n$) are literals.

Suffices to assume $A_i \neq x = t$ if $x \notin t$, because

$$\exists x (x = t \land \varphi(x, \bar{y})) \leftrightarrow \varphi(t, \bar{y}).$$

Selector Language

For simplicity, we only use selectors and testers in our language.

Selector Language

For simplicity, we only use selectors and testers in our language.

NOTATION

The depth of x in a selector term t is the number of selectors in t. For example, the depth of x in $s_1(...(s_n(x)...))$ is n.

Selector Language

For simplicity, we only use selectors and testers in our language.

NOTATION

- The depth of x in a selector term t is the number of selectors in t.
 For example, the depth of x in s₁(...(s_n(x)...)) is n.
- By $depth_{\varphi}(x)$, we mean the maximum depth of x in φ .

Selector Language

For simplicity, we only use selectors and testers in our language.

NOTATION

- The depth of x in a selector term t is the number of selectors in t.
 For example, the depth of x in s₁(...(s_n(x)...)) is n.
- By $depth_{\varphi}(x)$, we mean the maximum depth of x in φ .
- Formulas are assumed to be type complete, i.e., the type of every term is asserted by a tester literal.

Selector Language

For simplicity, we only use selectors and testers in our language.

NOTATION

- The depth of x in a selector term t is the number of selectors in t.
 For example, the depth of x in s₁(...(s_n(x)...)) is n.
- By $depth_{\varphi}(x)$, we mean the maximum depth of x in φ .
- Formulas are assumed to be type complete, i.e., the type of every term is asserted by a tester literal.
- Selector terms are assumed to be proper. For example, $car(x) \neq cdr(x)$ abbreviates $car(x) \neq cdr(x) \land Is_{cons}(x)$.

Conclusions

Solved Form. Eliminating $\exists x \text{ from } (\exists x)\varphi(x, \bar{y}) \text{ is easy once}$

 $\varphi(x, \overline{y})$ is solved in x.

Main Idea

• Solved Form. Eliminating $\exists x \text{ from } (\exists x)\varphi(x, \bar{y}) \text{ is easy once }$

 $\varphi(x, \overline{y})$ is solved in x.

Solution Provide the provided and the p

 $\varphi(x, \bar{y})$ solved in x if and only if depth_{φ}(x) = 0.

Solved Form

 $\varphi(x, \bar{y})$ is solved in x if it is in the form

$$\bigwedge_{i\leq m} u_i \prec^{kb} x \land \bigwedge_{j\leq n} x \prec^{kb} v_j \land \varphi'(\bar{\boldsymbol{y}}),$$

where x does not appear in u_i , v_i and φ' .

Solved Form

• $\varphi(x, \bar{y})$ is solved in x if it is in the form

$$\bigwedge_{i\leq m} u_i <^{kb} x \land \bigwedge_{j\leq n} x <^{kb} v_j \land \varphi'(\bar{\boldsymbol{y}}),$$

where *x* does not appear in u_i , v_i and φ' .

If $\varphi(x, \bar{y})$ is solved in *x*, then $(\exists x) \varphi(x, \bar{y})$ simplifies to

$$\varphi'(m{y}) \land \bigwedge_{i\leq m,j\leq n} u_i <^{kb}_2 v_j$$

where $x <_n^{kb} y$, called gap order, states there is an increasing chain from *x* to *y* of length at least *n*.

Knuth-Bendix Order

Decidability of KBO

Conclusions

Depth Reduction: Case 1

All occurrences of *x* have depth greater than 0.

In this case, $\exists x \varphi(x, \mathbf{\bar{y}})$ must be in the form

 $\exists x \varphi'(s_1^{\alpha}(x),\ldots,s_k^{\alpha}(x),\bar{y}),$

which can be rewritten to

$$\exists x_1,\ldots,\exists x_k\varphi'(x_1,\ldots,x_k,\bar{\mathbf{y}}).$$

Knuth-Bendix Order

Decidability of KBO

Conclusions

Depth Reduction: Case 2

Some occurrences of *x* have depth 0 and some do not.

Decompose 0-depth occurrences of x in terms of

 $s_1^{\alpha}(x),\ldots,s_k^{\alpha}(x),$

which amounts to expressing $x <_n^{kb} t$ and $t <_n^{kb} x$ using

 $s_1^{\alpha}(x),\ldots,s_k^{\alpha}(x).$

Knuth-Bendix Order

Decidability of KBO

Conclusions

Depth Reduction: Case 2

Some occurrences of *x* have depth 0 and some do not.

Decompose 0-depth occurrences of x in terms of

 $s_1^{\alpha}(x),\ldots,s_k^{\alpha}(x),$

which amounts to expressing $x <_n^{kb} t$ and $t <_n^{kb} x$ using

 $s_1^{\alpha}(x),\ldots,s_k^{\alpha}(x).$

Then apply the reduction as in Case 1!

Conclusions

Language Extensions

Solution Decompose $<^{kb}$ into three disjoint suborders $<^{w}$, $<^{p}$ and $<^{l}$.

- Decompose $<^{kb}$ into three disjoint suborders $<^{w}$, $<^{p}$ and $<^{l}$.
- Extend \prec^w , \prec^p and \prec^l to \prec^w_n , \prec^p_n and \prec^l_n , respectively.

- Decompose $<^{kb}$ into three disjoint suborders $<^{w}$, $<^{p}$ and $<^{l}$.
- Extend \prec^w , \prec^p and \prec^l to \prec^w_n , \prec^p_n and \prec^l_n , respectively.
- Add boundary functions to delineate gap orders.

- Decompose $<^{kb}$ into three disjoint suborders $<^{w}$, $<^{p}$ and $<^{l}$.
- Extend \prec^w , \prec^p and \prec^l to \prec^w_n , \prec^p_n and \prec^l_n , respectively.
- Add boundary functions to delineate gap orders.
- Add Presburger arithmetic explicitly to represent the weight function.

- Decompose $<^{kb}$ into three disjoint suborders $<^{w}$, $<^{p}$ and $<^{l}$.
- Extend \prec^w , \prec^p and \prec^l to \prec^w_n , \prec^p_n and \prec^l_n , respectively.
- Add boundary functions to delineate gap orders.
- Add Presburger arithmetic explicitly to represent the weight function.
- Extend all aforementioned notions to tuples of terms.

Suborders

WEIGHT ORDER

$$u \prec^w v \stackrel{def}{=} w(u) < w(v)$$

Suborders

WEIGHT ORDER

$$u \prec^w v \stackrel{\text{def}}{=} w(u) < w(v)$$

PRECEDENCE ORDER $u <^{p} v \stackrel{def}{=} w(u) = w(s) \& type(u) <^{\sigma} type(v)$

Suborders

WEIGHT ORDER

$$u \prec^w v \stackrel{\text{def}}{=} w(u) < w(v)$$

PRECEDENCE ORDER $u \prec^{p} v \stackrel{def}{=} w(u) = w(s) \& type(u) \prec^{\sigma} type(v)$

LEXICOGRAPHICAL ORDER

$$u <^{\prime} v \stackrel{def}{=} w(u) = w(v) \& type(u) = type(v) \& u <^{kb} v$$

Gap Orders

KB GAP ORDER

$$u <_n^{kb} v \stackrel{\text{def}}{=} (\exists u_1 \cdots \exists u_n) \left(u <^{kb} u_1 <^{kb} \cdots <^{kb} u_n \le^{kb} v \right)$$

Gap Orders

Introduction

Knuth-Bendix Order

Decidability of KBO

Gap Orders

Introduction

Knuth-Bendix Order

Decidability of KBO

Gap Orders

Research 102

Boundary Functions

$$0^{w}, 1^{w} : \mathbb{N} \to TA; 0^{p}, 1^{p} : \mathbb{N}^{2} \to TA$$
 such that

- $0^{w}(n)$: the smallest term of weight n
- $0^{p}(n,p)$: the smallest term of weight n and type α_{p}
 - $1^{w}(n)$: the largest term of weight n
- $1^p(n,p)$: the largest term of weight n and type α_p

Boundary Functions

$$0^{w}, 1^{w} : \mathbb{N} \to TA; 0^{p}, 1^{p} : \mathbb{N}^{2} \to TA$$
 such that

 $0^{w}(n)$: the smallest term of weight n

- $0^{p}(n,p)$: the smallest term of weight n and type α_{p}
 - $1^{w}(n)$: the largest term of weight n

 $1^{p}(n,p)$: the largest term of weight n and type α_{p}

EXAMPLE $U \prec_5^w V \leftrightarrow \bigvee_{n_1+n_2+n_3=5} U \prec_{n_1}^{pl} \mathbf{1}_{(u^w)}^w \prec_{n_2}^w \mathbf{0}_{(v^w)}^w \prec_{n_3}^{pl} V$

Counting Constraints

 $CNT_n(x)$ states that

there are at least n + 1 distinct TA-terms of weight x.

In particular, $CNT_0(x)$ (or Tree(x)) states that

x is a legitimate weight of a term.

Counting Constraints

 $CNT_n(x)$ states that

there are at least n + 1 distinct TA-terms of weight x.

In particular, $CNT_0(x)$ (or Tree(x)) states that

x is a legitimate weight of a term.

EXAMPLE

$$0_{(x)}^w \prec_n^{pl} 1_{(x)}^w \leftrightarrow CNT_n(x)$$

Counting Constraints

 $CNT_n(x)$ states that

there are at least n + 1 distinct TA-terms of weight x.

In particular, $CNT_0(x)$ (or Tree(x)) states that

x is a legitimate weight of a term.

Conclusions

Knuth-Bendix Order with Presburger Arithmetic

$$\mathcal{KBO}^{+} = \langle \mathcal{TA}, \mathcal{PA}, (.)^{\mathsf{w}}, \prec_{n}^{\sharp}, 0^{*}(\ldots), 1^{*}(\ldots) \rangle$$

where $n \in \mathbb{N}$, $\sharp \in \{w, p, l\}$, $* \in \{w, p\}$,

 $(.)^{w}$: weight function, $<_{n}^{\sharp}$: gap orders, $0^{*}(...), 1^{*}(...)$: boundary functions

Conclusions

Knuth-Bendix Order with Presburger Arithmetic

$$\mathcal{KBO}^{+} = \langle \mathcal{TA}, \mathcal{PA}, (.)^{\mathsf{w}}, \prec_{n}^{\sharp}, 0^{*}(\ldots), 1^{*}(\ldots) \rangle$$

where $n \in \mathbb{N}$, $\sharp \in \{w, p, l\}$, $* \in \{w, p\}$,

 $(.)^{w}$: weight function, $<_{n}^{\sharp}$: gap orders, $0^{*}(...), 1^{*}(...)$: boundary functions

EXAMPLE

$$\exists x: \mathsf{TA}\left(\begin{array}{c} \mathcal{O}_{(x^w)}^w <_2^l x <_3^l 1_{(x^w)}^w \end{array} \right)$$

Quantifier Elimination for Knuth-Bendix Order

INPUT:
$$(\exists \bar{x}) \varphi(\bar{x}, \bar{y})$$

while $\bar{x} \neq \emptyset$ do
if $(\forall x \in \bar{x}) depth_{\varphi}(x) > 0$ then

Depth Reduction:

VARIABLE SELECTION DECOMPOSITION SIMPLIFICATION

```
else {(\exists x \in \bar{x}) depth_{\varphi}(x) = 0}
Elimination
end if
end while
```


Decidability of KBO)

Conclusions

Variable Selection

Select a variable $x \in \bar{\mathbf{x}}$ such that $s_i^{\alpha}(x)$ appears in $\varphi(\bar{\mathbf{x}}, \bar{\mathbf{y}})$.

Conclusions

Variable Selection

Select a variable $x \in \bar{\mathbf{x}}$ such that $s_i^{\alpha}(x)$ appears in $\varphi(\bar{\mathbf{x}}, \bar{\mathbf{y}})$.

NOTE THAT

The selection is done in depth-first manner; we always choose variables generated in the previous round.

Decidability of KBO)

Conclusions

Decomposition

 \blacksquare Rewrite $(\exists \bar{x}) \varphi(\bar{x}, \bar{y})$ to

$$\exists x_1 \ldots \exists x_k \exists \bar{\boldsymbol{x}} \left(\bigwedge_{1 \leq i \leq k} \boldsymbol{s}_i^{\alpha}(x) = x_i \land \varphi(\bar{\boldsymbol{x}}, \bar{\boldsymbol{y}}) \right).$$

Decidability of KBO

Conclusions

Decomposition

real Rewrite $(\exists \bar{x}) \varphi(\bar{x}, \bar{y})$ to

$$\exists x_1 \ldots \exists x_k \exists \bar{\mathbf{x}} \left(\bigwedge_{1 \le i \le k} \mathbf{s}_i^{\alpha}(x) = x_i \land \varphi(\bar{\mathbf{x}}, \bar{\mathbf{y}}) \right).$$

Rewrite $x <_n^{\sharp} t$ and $t <_n^{\sharp} x$ to quantifier-free formulas where x only occurs in $s_1^{\alpha}(x), \ldots, s_k^{\alpha}(x)$.

Decidability of KBO

Conclusions

Decomposition

real Rewrite $(\exists \bar{x}) \varphi(\bar{x}, \bar{y})$ to

$$\exists x_1 \ldots \exists x_k \exists \bar{\boldsymbol{x}} \left(\bigwedge_{1 \leq i \leq k} s_i^{\alpha}(x) = x_i \land \varphi(\bar{\boldsymbol{x}}, \bar{\boldsymbol{y}}) \right).$$

Rewrite $x <_n^{\sharp} t$ and $t <_n^{\sharp} x$ to quantifier-free formulas where x only occurs in $s_1^{\alpha}(x), \ldots, s_k^{\alpha}(x)$.

RESULTING IN

$$\exists x_1 \ldots \exists x_k \exists \bar{\mathbf{x}} \left(\bigwedge_{1 \le i \le k} s_i^{\alpha}(x) = x_i \land \varphi'(s_1^{\alpha}(x), \ldots, s_k^{\alpha}(x), (\bar{\mathbf{x}} \setminus x), \bar{\mathbf{y}}) \right).$$

Decidability of KBO

Simplification

Now
$$\exists x_1 \ldots \exists x_k \exists \bar{\mathbf{x}} \left(\bigwedge_{1 \le i \le k} s_i^{\alpha}(x) = x_i \land \varphi'(s_1^{\alpha}(x), \ldots, s_k^{\alpha}(x), (\bar{\mathbf{x}} \setminus x), \bar{\mathbf{y}}) \right).$$

Decidability of KBO)

Simplification

Now
$$\exists x_1 \ldots \exists x_k \exists \bar{\mathbf{x}} \left(\bigwedge_{1 \le i \le k} s_i^{\alpha}(x) = x_i \land \varphi'(s_1^{\alpha}(x), \ldots, s_k^{\alpha}(x), (\bar{\mathbf{x}} \setminus x), \bar{\mathbf{y}}) \right).$$

Replace $s_i^{\alpha}(x)$ by x_i in φ' .

Decidability of KBO)

Simplification

NOW
$$\exists x_1 \ldots \exists x_k \exists \bar{\mathbf{x}} \left(\bigwedge_{1 \le i \le k} s_i^{\alpha}(x) = x_i \land \varphi'(s_1^{\alpha}(x), \ldots, s_k^{\alpha}(x), (\bar{\mathbf{x}} \setminus x), \bar{\mathbf{y}}) \right).$$

• Replace $s_i^{\alpha}(x)$ by x_i in φ' .

Remove
$$\bigwedge_{1 \le i \le k} s_i^{\alpha}(x) = x_i$$
 from the matrix.

Decidability of KBO

Simplification

NOW
$$\exists x_1 \ldots \exists x_k \exists \bar{\mathbf{x}} \left(\bigwedge_{1 \le i \le k} s_i^{\alpha}(x) = x_i \land \varphi'(s_1^{\alpha}(x), \ldots, s_k^{\alpha}(x), (\bar{\mathbf{x}} \setminus x), \bar{\mathbf{y}}) \right).$$

• Replace $s_i^{\alpha}(x)$ by x_i in φ' .

- Remove $\bigwedge_{1 \le i \le k} s_i^{\alpha}(x) = x_i$ from the matrix.
- Remove $\exists x$ from the prenex.

Decidability of KBO

Simplification

NOW
$$\exists x_1 \ldots \exists x_k \exists \bar{\mathbf{x}} \left(\bigwedge_{1 \le i \le k} s_i^{\alpha}(x) = x_i \land \varphi'(s_1^{\alpha}(x), \ldots, s_k^{\alpha}(x), (\bar{\mathbf{x}} \setminus x), \bar{\mathbf{y}}) \right).$$

• Replace $s_i^{\alpha}(x)$ by x_i in φ' .

- Remove $\bigwedge_{1 \le i \le k} s_i^{\alpha}(x) = x_i$ from the matrix.
- Remove $\exists x$ from the prenex.

RESULTING IN

$$\exists x_1 \ldots \exists x_k \exists (\bar{\boldsymbol{x}} \setminus x) (\varphi'((\bar{\boldsymbol{x}} \setminus x), x_1, \ldots, x_k, \bar{\boldsymbol{y}})).$$

Elimination

Elimination

Now
$$\exists x \left(\bigwedge_{i \leq m} u_i <^{kb} x \land \bigwedge_{j \leq n} x <^{kb} v_j \land \varphi'(\bar{y}) \right),$$

which simplifies to

$$\begin{aligned} u_{i'} <^{kb}_{2} v_{j'} & \wedge \varphi'(\bar{y}) \\ \wedge & ``u_{i'} \text{ is the greatest of } \{u_i \mid i \leq m\}" \\ \wedge & ``v_{j'} \text{ is the smallest of } \{v_j \mid j \leq n\}". \end{aligned}$$

Conclusions

Technical Tricks

Elimination of Equalities.

$$\exists x \big(x = \mathbf{0}^w_{((car(x))^w + 5)} \land car(x) \prec^p_4 cdr(x) \big).$$

Technical Tricks

• Elimination of Equalities.

$$\exists x \left(x = 0^w_{((car(x))^w + 5)} \land car(x) \prec^p_4 cdr(x) \right).$$

Simplification of Selector Terms.

$$car(0^w_{((car(x))^w)}).$$

Technical Tricks

• Elimination of Equalities.

$$\exists x \big(x = \mathbf{0}^w_{((car(x))^w + 5)} \land car(x) \prec^p_4 cdr(x) \big).$$

• Simplification of Selector Terms.

$$car(0^w_{((car(x))^w)}).$$

Elimination of Negations.

$$\neg (car(x) \prec^w_3 cdr(x)).$$

Technical Tricks

• Elimination of Equalities.

$$\exists x \big(x = 0^w_{((car(x))^w + 5)} \land car(x) \prec^p_4 cdr(x) \big).$$

• Simplification of Selector Terms.

$$car(0^w_{((car(x))^w)}).$$

• Elimination of Negations.

$$\neg (car(x) <^w_3 cdr(x)).$$

Termination.

Decidability of KBO

Conclusions

Elimination of Equalities

Decidability of KBO

Conclusions

Elimination of Equalities

Decidability of KBO)

Conclusions

Elimination of Equalities

CONTINUE WITH

$$\exists x \left(x = 0^{w}_{((car(x))^{w}+5)} \land car(0^{w}_{((car(x))^{w}+5)}) \prec^{p}_{4} cdr(0^{w}_{((car(x))^{w}+5)}) \right)$$

Elimination of Equalities

CONTINUE WITH

$$\exists x (x = 0^{w}_{((car(x))^{w}+5)} \land car(0^{w}_{((car(x))^{w}+5)}) <^{p}_{4} cdr(0^{w}_{((car(x))^{w}+5)}))$$

\square Reduction to Integer Quantifiers \Rightarrow

$$\exists (car(x))^w \left\{ \begin{array}{l} \text{Tree}((car(x))^w + 5) \land \text{Tree}((cdr(x))^w + 5) \\ \land (\alpha)^w + (car(x))^w + (cdr(x))^w = (car(x))^w + 5 \\ \land car(0^w_{((car(x))^w + 5)}) <^p_4 cdr(0^w_{((car(x))^w + 5)}) \end{array} \right)$$

Decidability of KBO)

Conclusions

Elimination of Equalities

CONTINUE WITH

$$\exists (car(x))^w$$

 $\exists (cdr(x))^w$

$$Tree((car(x))^{w} + 5) \land Tree((cdr(x))^{w} + 5) \land (\alpha)^{w} + (car(x))^{w} + (cdr(x))^{w} = (car(x))^{w} + 5 \land car(0^{w}_{((car(x))^{w} + 5)}) <_{4}^{p} cdr(0^{w}_{((car(x))^{w} + 5)})$$

Decidability of KBO)

Conclusions

Elimination of Equalities

CONTINUE WITH

$$\exists (car(x))^{w} \left\{ \begin{array}{l} \operatorname{Tree}((car(x))^{w}+5) \land \operatorname{Tree}((cdr(x))^{w}+5) \\ \land (\alpha)^{w} + (car(x))^{w} + (cdr(x))^{w} = (car(x))^{w}+5 \\ \land car(0^{w}_{((car(x))^{w}+5)}) \prec^{p}_{4} cdr(0^{w}_{((car(x))^{w}+5)}) \end{array} \right\}$$

\bowtie Renaming \Rightarrow

$$\exists z \exists y \begin{pmatrix} \text{Tree}(z) \land \text{Tree}(y) \\ \land (\alpha)^w + z + y = z + 5 \\ \land car(0^w_{(z)}) \prec^p_4 cdr(0^w_{(z)}) \end{pmatrix}$$

Decidability of KBO)

Conclusions

Simplification of Selector Terms

Conclusions

Simplification of Selector Terms

EXAMPLE
$$car(O^{w}_{((car(x))^{w})})$$
 which simplifies to

 $0^{w}_{f_{car}((car(x))^{w})}$

where $f_{car}(\cdot)$ is an integer function expressible in Presburger arithmetic.

Decidability of KBO)

Conclusions

Elimination of Negations

EXAMPLE

 $\neg (car(x) <^w_3 cdr(x))$

simplifies to

Decidability of KBO

Conclusions

Elimination of Negations

EXAMPLE

 $\neg(car(x) <^w_3 cdr(x))$

simplifies to

 $cdr(x) <_{1}^{w} car(x)$ $\lor (cdr(x))^{w} = (car(x))^{w}$ $\lor car(x) \leq_{1}^{w} cdr(x)$ $\lor car(x) \leq_{2}^{w} cdr(x).$

Termination

Termination is subtle as many complexity measures increase.

Termination

Termination is subtle as many complexity measures increase.

Pepth reduction increases the depth of other variables.

Conclusions

Termination

Termination is subtle as many complexity measures increase.

Depth reduction increases the depth of other variables.

For example, $x \neq t$ becomes

$$\bigvee_{1\leq i\leq k} s_i^{\alpha}(t) \neq x_i \lor \neg ls_{\alpha}(t).$$

Conclusions

Pepth reduction introduces more existential quantifiers.

Termination

Pepth reduction introduces more existential quantifiers.

For example, $(\exists \bar{x}) \varphi(\bar{x}, \bar{y})$ becomes

$$\exists x_1 \ldots \exists x_k \exists \overline{\mathbf{x}} \left(ls_{\alpha}(x) \land \bigwedge_{1 \leq i \leq k} s_i^{\alpha}(x) = x_i \land \varphi(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \right).$$

Conclusions

Depth reduction introduces more order literals.

Conclusions

Termination

Depth reduction introduces more order literals.

For example, $u <_5^w v$ becomes

$$\bigvee_{n_1+n_2+n_3=5} u <_{n_1}^{pl} \mathbf{1}_{(u^w)}^w <_{n_2}^w \mathbf{0}_{(v^w)}^w <_{n_3}^{pl} v.$$

Conclusions

Depth reduction introduces more equalities.

Conclusions

Depth reduction introduces more equalities.

For example, $x <^{l} t$ becomes

$$car(x) = car(t) \land cdr(x) <^{kb} cdr(t).$$

Conclusions

Depth reduction introduces more equalities.

For example, $x <^{l} t$ becomes

$$car(x) = car(t) \land cdr(x) <^{kb} cdr(t).$$

Why terminate?

Conclusions

Termination

REAL MEASURE

Open Gap Order Literals: gap orders between ordinary terms.

REAL MEASURE

Decidability of KBO

Termination

Open Gap Order Literals: gap orders between ordinary terms.

Termination

Open Gap Order Literals: gap orders between ordinary terms.

REASON

EXAMPLE

- No transformation generates new OGOLs.
- The final elimination step removes at least one OGOL.
- Without OGOLs, the depths of terms strictly decrease!

Consider the KBO on LISP list structure parameterized with

$$w(cons) = w(nil) = 1$$
 and $nil <^{\sigma} cons$.

Consider the formula

$$\exists x \left(car(x) \prec_2^{l} cdr(cdr(x)) \land cdr(cdr(car(x))) \prec_3^{l} y \right)$$

where depth(x) = 3.

Conclusions

Example

$\exists x \left(car(x) \prec_2^l cdr(cdr(x)) \land cdr(cdr(car(x))) \prec_3^l y \right)$

Conclusions

Example

 $\exists x \left(car(x) \prec_2^l cdr(cdr(x)) \land cdr(cdr(car(x))) \prec_3^l y \right)$

Conclusions

Example

 $\exists x \left(car(x) \prec_{2}^{l} cdr(cdr(x)) \land cdr(cdr(car(x))) \prec_{3}^{l} y \right)$

x1 : car(x)
x2 : cdr(x)
x11 : car(car(x))
x12 : cdr(car(x))
x22 : cdr(cdr(x))
x12 : cdr(cdr(x))

 $\exists x \left(car(x) \prec_{2}^{l} cdr(cdr(x)) \land cdr(cdr(car(x))) \prec_{3}^{l} y \right)$

x₁ : car(x) x₂ : cdr(x) x₁₁ : car(car(x)) x₁₂ : cdr(car(x)) x₂₂ : cdr(cdr(x)) x₁₂₂ : cdr(cdr(car(x)))

Conclusions

Select *x*.

Select *x*. Decompose *x* in terms of car(x) and cdr(x). We have

$$\exists x \exists x_1 \exists x_2 (car(x) = x_1 \land cdr(x) = x_2 \\ \land car(x) \prec'_2 cdr(cdr(x)) \land cdr(cdr(car(x))) \prec'_3 y).$$

Example

Select x. Decompose x in terms of car(x) and cdr(x). We have

$$\exists x \exists x_1 \exists x_2 (car(x) = x_1 \land cdr(x) = x_2 \land car(x) \prec_2' cdr(cdr(x)) \land cdr(cdr(car(x))) \prec_3' y).$$

Simplification.

$$\exists x_1 \exists x_2 \Big(\begin{array}{c} x_1 \\ \prec'_2 \end{array} \Big) \land cdr(cdr(x_1)) \prec'_3 y \Big),$$

where $depth(x_1) = 2$ and $depth(x_2) = 1$.

$$\exists x_1 \exists x_2 \Big(x_1 \prec_2^l cdr(x_2) \land cdr(cdr(x_1)) \prec_3^l y \Big).$$

$$\exists x_1 \exists x_2 \Big(x_1 \prec_2^l cdr(x_2) \land cdr(cdr(x_1)) \prec_3^l y \Big).$$

Select x_1 .

Continue with

$$\exists x_1 \exists x_2 \Big(x_1 \prec_2^l cdr(x_2) \land cdr(cdr(x_1)) \prec_3^l y \Big).$$

Select x_1 . Decompose x_1 .

$$\exists x_1 \exists x_2 (car(x_1) = car(cdr(x_2)) \land cdr(x_1) <_2^l cdr(cdr(x_2)) \land cdr(x_1) <_2^l y).$$

Continue with

$$\exists x_1 \exists x_2 \Big(x_1 \prec_2^l cdr(x_2) \land cdr(cdr(x_1)) \prec_3^l y \Big).$$

Select x_1 . Decompose x_1 .

$$\exists x_1 \exists x_2 (car(x_1) = car(cdr(x_2)) \land cdr(x_1) <_2^l cdr(cdr(x_2)) \land cdr(x_1) <_2^l cdr(cdr(x_2)) \land cdr(cdr(x_1)) <_3^l y).$$
Simplification.

$$\exists x_2 \exists x_{11} \exists x_{12} (x_{11} = car(cdr(x_2)) \land x_{12} <_2^l cdr(cdr(x_2)) \land cdr(x_{12}) <_3^l y)$$

Continue with

$$\exists x_2 \exists x_{11} \exists x_{12} \left(x_{11} = car(cdr(x_2)) \land x_{12} \prec_2^l cdr(cdr(x_2)) \right) \\ \land cdr(x_{12}) \prec_3^l y$$

Example

Continue with

$$\exists x_{2} \exists x_{11} \exists x_{12} \left(x_{11} = car(cdr(x_{2})) \land x_{12} \prec_{2}^{l} cdr(cdr(x_{2})) \land cdr(x_{12}) \prec_{3}^{l} y \right)$$

Elimination. Since $depth(x_{11}) = 0$, we have
$$\exists x_{2} \exists x_{12} \left(x_{12} \prec_{2}^{l} cdr(cdr(x_{2})) \land cdr(x_{12}) \prec_{3}^{l} y \right)$$

$$\exists x_2 \exists x_{12} \left(x_{12} <_2' cdr(cdr(x_2)) \land cdr(x_{12}) <_3' y \right).$$

$$\exists x_2 \exists x_{12} \Big(x_{12} <_2^l cdr(cdr(x_2)) \land cdr(x_{12}) <_3^l y \Big).$$

Select x_{12} .

Continue with

$$\exists x_2 \exists x_{12} \Big(x_{12} <_2^{l} cdr(cdr(x_2)) \land cdr(x_{12}) <_3^{l} y \Big).$$

Select x_{12} . Decompose x_{12} .

$$\exists x_2 \exists x_{12} (car(x_{12}) = car(cdr(cdr(x_2))) \land car(x_{12}) \prec_2' cdr(cdr(x_2)) \land cdr(x_{12}) \prec_3' y).$$

Continue with

$$\exists x_2 \exists x_{12} \Big(x_{12} <_2^{l} cdr(cdr(x_2)) \land cdr(x_{12}) <_3^{l} y \Big).$$

Select x_{12} . Decompose x_{12} .

$$\exists x_{2} \exists x_{12} (car(x_{12}) = car(cdr(cdr(x_{2}))) \land car(x_{12}) <_{2}^{l} cdr(cdr(x_{2})) \land cdr(x_{12}) <_{2}^{l} y).$$
Simplification.

$$\exists x_{2} \exists x_{121} \exists x_{122} (x_{121} = car(cdr(cdr(x_{2}))) \land x_{121} <_{2}^{l} cdr(cdr(x_{2})) \land x_{122} <_{3}^{l} y)$$

49 / 57

Continue with

$$\exists x_{2} \exists x_{121} \exists x_{122} \left(x_{121} = car(cdr(cdr(x_{2}))) \land x_{122} \prec_{2}^{l} cdr(cdr(x_{2})) \right) \land x_{122} \prec_{3}^{l} y \right)$$

Example

Continue with

$$\exists x_{2} \exists x_{121} \exists x_{122} \left(x_{121} = car(cdr(cdr(x_{2}))) \land x_{122} \prec_{2}^{l} cdr(cdr(x_{2})) \right) \land x_{122} \prec_{2}^{l} y \right)$$

Elimination. Since $depth(x_{121}) = 0$, we have
$$\exists x_{2} \exists x_{122} \left(x_{122} \prec_{2}^{l} cdr(cdr(x_{2})) \land x_{122} \prec_{3}^{l} y \right).$$

Conclusions

Continue with

$$\exists x_2 \exists x_{122} \left(x_{122} \prec_2^l cdr(cdr(x_2)) \land x_{122} \prec_3^l y \right).$$

$$\exists x_2 \exists x_{122} (x_{122} \prec_2^l cdr(cdr(x_2)) \land x_{122} \prec_3^l y).$$

Elimination. Guessing a gap order completion, we have

$$\exists x_2 \exists x_{122} \left(\begin{array}{c} x_{122} \\ x_{122} \end{array} \prec_2^l cdr(cdr(x_2)) \prec_1^l y \right),$$

51 / 57

$$\exists x_2 \exists x_{122} (x_{122} \prec_2^l cdr(cdr(x_2)) \land x_{122} \prec_3^l y).$$

Elimination. Guessing a gap order completion, we have

$$\exists x_2 \exists x_{122} \left(\begin{array}{c} x_{122} \\ x_{2} \end{array} \prec_2^l cdr(cdr(x_2)) \prec_1^l y \right),$$

which simplifies to

$$\exists x_2 \Big(\begin{array}{c} 0_{((cdr(cdr(x_2)))^w)}^w <_2^l cdr(cdr(x_2)) <_1^l y \Big) \\ \end{array} \Big)$$

$$\exists x_2 \exists x_{122} (x_{122} <_2^l cdr(cdr(x_2)) \land x_{122} <_3^l y).$$

Elimination. Guessing a gap order completion, we have

$$\exists x_2 \exists x_{122} \left(\begin{array}{c} x_{122} \\ x_{2} \end{array} < \left(\begin{array}{c} c dr(c dr(x_2)) \\ y \end{array} \right),$$

which simplifies to

$$\exists x_2 \left(\begin{array}{c} 0_{((cdr(cdr(x_2)))^w)}^w <_2^l cdr(cdr(x_2)) <_1^l y \right) \\ \end{cases}$$

The number of OGOLs reduced to 1!

Conclusions

Continue with

$$\exists x_2 \left(O_{\left(\left(cdr(cdr(x_2)) \right)^w \right)}^w \prec_2^l cdr(cdr(x_2)) \prec_1^l y \right).$$

D

Decidability of KBO)

Conclusions

Continue with

$$\exists x_2 \left(O_{\left(\left(cdr(cdr(x_2)) \right)^{W} \right)}^{W} \prec_2^{l} cdr(cdr(x_2)) \prec_1^{l} y \right).$$

Depth Reduction. Repeating twice the DEPTH-REDUCTION subprocedure, we have

$$\exists x_{222} \left(0^{w}_{(x_{222} w)} \prec_{2}^{l} x_{222} \prec_{1}^{l} y \right).$$

$$\exists x_{222} \left(\begin{array}{c} 0_{(x_{222})^{w}}^{w} \\ (x_{222})^{w} \end{array} \right) < x_{2}^{\prime} x_{222} < x_{1}^{\prime} y \right).$$

Continue with

$$\exists x_{222} \left(\begin{array}{c} 0_{(x_{222})^{w}}^{w} \\ (x_{222})^{w} \end{array} \right) <_{2}^{\prime} x_{222} <_{1}^{\prime} y \right).$$

Reduce term quantifiers to integer quantifiers.

$$\exists \mathbf{z} \left(\begin{array}{c} 0_{(\mathbf{z})}^{w} <_{3}^{l} y \land Tree(\mathbf{z}) \end{array} \right).$$

Continue with

$$\exists x_{222} \left(\begin{array}{c} 0_{(x_{222})^{w}}^{w} \\ (x_{222})^{w} \end{array} \right) <_{2}^{\prime} x_{222} <_{1}^{\prime} y \right).$$

Reduce term quantifiers to integer quantifiers.

$$\exists \mathbf{Z} \left(\begin{array}{c} 0_{(\mathbf{z})}^{w} <_{3}^{l} y \land Tree(\mathbf{z}) \end{array} \right)$$

.

Example

Continue with

$$\exists \frac{\mathbf{X}_{222}}{(\mathbf{X}_{222})^{w}} < \frac{\mathbf{X}_{222}}{(\mathbf{X}_{222})^{w}} < \frac{\mathbf{X}_{222}}{\mathbf{X}_{222}} < \frac{\mathbf{X}_{1}}{\mathbf{Y}}$$

Reduce term quantifiers to integer quantifiers.

$$\exists \frac{z}{z} \left(\begin{array}{c} 0_{\binom{z}{z}}^{w} <_{3}^{l} y \land Tree(\frac{z}{z}) \end{array} \right).$$

Eliminate integer quantifiers.

$$O^{w}_{(y^{w})} \prec^{l}_{3} y \land Tree(y^{w})$$

Continue with

$$\exists \frac{\mathbf{x}_{222}}{(x_{222})^{w}} < \frac{\mathbf{x}_{22}}{(x_{222})^{w}} < \frac{\mathbf{x}_{22}}{(x_{22})^{w}} < \frac{\mathbf{x}_{22}}{(x_{2$$

Reduce term quantifiers to integer quantifiers.

$$\exists \frac{z}{z} \left(\begin{array}{c} 0_{\binom{z}{z}}^{w} <_{3}^{l} y \land Tree(\frac{z}{z}) \end{array} \right).$$

Eliminate integer quantifiers.

$$O^w_{(y^w)} <^l_3 y \land Tree(y^w)$$

As $\mathcal{O}^w_{(y^w)} <^l_3 y \Rightarrow Tree(y^w)$, we have $\mathcal{O}^w_{(y^w)} <^l_3 y.$

In summary,

$$\begin{array}{l} \mathcal{O}_{(y^{w})}^{w} <_{3}^{l} y \implies \\ \exists x \Big(\operatorname{car}(x) <_{2}^{l} \operatorname{cdr}(\operatorname{cdr}(x)) \land \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) <_{3}^{l} y \Big) \end{array}$$

Example

In summary,

$$\begin{array}{l} 0^{w}_{(y^{w})} <^{l}_{3} y \implies \\ \exists x \big(\operatorname{car}(x) <^{l}_{2} \operatorname{cdr}(\operatorname{cdr}(x)) \land \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) <^{l}_{3} y \big) \end{array}$$

Example

In summary,

$$\begin{array}{l} 0^{w}_{(y^{w})} <^{l}_{3} y \implies \\ \exists x \big(\operatorname{car}(x) <^{l}_{2} \operatorname{cdr}(\operatorname{cdr}(x)) \land \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) <^{l}_{3} y \big) \end{array}$$

- x_1 : car(x)
- x_2 : cdr(x)
- x_{11} : car(car(x))
- x_{12} : cdr(car(x))
- x_{22} : cdr(cdr(x))
- x_{122} : cdr(cdr(car(x)))

Example

In summary,

$$\begin{array}{l} 0^{w}_{(y^{w})} <^{l}_{3} y \implies \\ \exists x \big(\operatorname{car}(x) <^{l}_{2} \operatorname{cdr}(\operatorname{cdr}(x)) \land \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) <^{l}_{3} y \big) \end{array}$$

Solution: $x_{122} = 0^{w}_{(y^{w})}!$

- x_1 : car(x)
- x_2 : cdr(x)
- x_{11} : car(car(x))
- x_{12} : cdr(car(x))
- x_{22} : cdr(cdr(x))
- x_{122} : cdr(cdr(car(x)))

54 / 57

- 2 Knuth-Bendix Order
- 3 Decidability of KBO

Conclusions and Open Problems

Orderings with Partial Precedence

Knuth-Bendix Order with Partial Precedence

Conclusions and Open Problems

• Orderings with Partial Precedence

Knuth-Bendix Order with Partial Precedence

Orderings on Nonground Term Domain

Knuth-Bendix Order on Nonground Term Domain

Conclusions and Open Problems

• Orderings with Partial Precedence

Knuth-Bendix Order with Partial Precedence

• Orderings on Nonground Term Domain

Knuth-Bendix Order on Nonground Term Domain

Multiple Orderings on One Term Domain

Two Knuth-Bendix Orders

Conclusions and Open Problems

• Orderings with Partial Precedence

Knuth-Bendix Order with Partial Precedence

• Orderings on Nonground Term Domain

Knuth-Bendix Order on Nonground Term Domain

• Multiple Orderings on One Term Domain

Two Knuth-Bendix Orders

Difficulty: Lack of technique to deal with partial orderings.

56 / 57

Thank you for your attention!

Questions?

Hubert Comon.

Solving symbolic ordering constraints.

International Journal of Foundations of Computer Science, 1(4):387–411, 1990.

Hubert Comon and Ralf Treinen.

The first-order theory of lexicographic path orderings is undecidable.

Theoretical Computer Science, 176(1-2):67–87, 1997.

Jean-Pierre Jouannaud and Mitsuhiro Okada.

Satisfiability of systems of ordinal notation with the subterm property is decidable.

In 18th International Colloquium on Automata, Languages and Programming, volume 510 of LNCS, pages 455–468. Springer-Verlag, 1991.

C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolic constraints. *Revue Francaise d' Intelligence Artificielle*, 4(3):9–52, 1990.

57 / 57

Special issue on automated deduction.

Konstantin Korovin and Andrei Voronkov.

A decision procedure for the existential theory of term algebras with the Knuth-Bendix ordering.

In Proc. 15th IEEE Symp. Logic in Comp. Sci., pages 291 – 302, 2000.

Konstantin Korovin and Andrei Voronkov.

Knuth-Bendix constraint solving is NP-complete.

In Proceedings of 28th International Colloquium on Automata, Languages and Programming (ICALP'01), volume 2076 of Lecture Notes in Computer Science, pages 979–992. Springer-Verlag, 2001.

Konstantin Korovin and Andrei Voronkov.

The decidability of the first-order theory of the Knuth-Bendix order in the case of unary signatures.

In Proceedings of the 22th Conference on Foundations of Software Technology and Theoretical Computer Science, (FSTTCS'02),

Decidability of KBO

volume 2556 of *Lecture Notes in Computer Science*, pages 230–240. Springer-Verlag, 2002.

Robert Nieuwenhuis.

Simple LPO constraint solving methods. Information Processing Letters, 47(2):65–69, 1993.

Paliath Narendran and Michael Rusinowitch. The theory of total unary RPO is decidable. In *CL 2000*, volume 1861 of *Lecture Notes in Artificial Intelligence*, pages 660–672. Springer-Verlag, 2000.

Paliath Narendran, Michael Rusinowitch, and Rakesh M. Verma.

RPO constraint solving is in NP.

In Proceedings of the 12th International Workshop on Computer Science Logic (CSL 98), volume 1584 of LNCS, pages 385 – 398. Springer-Verlag, 1999.

Ralf Treinen.

A new method for undecidability proofs of first order theories.

Journal of Symbolic Computation, 14:437–457, 1992.

Ting Zhang, Henny B. Sipma, and Zohar Manna. The decidability of the first-order theory of term algebras with Knuth-Bendix order.

In Robert Nieuwenhuis, editor, *the 20th International Conference on Automated Deduction (CADE'05)*, volume 3632 of *LNCS*, pages 131–148. Springer-Verlag, 2005.

Hubert Comon.

Solving symbolic ordering constraints. International Journal of Foundations of Computer Science, 1(4):387–411, 1990.

Hubert Comon and Ralf Treinen.

The first-order theory of lexicographic path orderings is undecidable.

Theoretical Computer Science, 176(1-2):67–87, 1997.

Jean-Pierre Jouannaud and Mitsuhiro Okada.

Satisfiability of systems of ordinal notation with the subterm property is decidable.

In 18th International Colloquium on Automata, Languages and Programming, volume 510 of LNCS, pages 455–468. Springer-Verlag, 1991.

C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolic constraints.

Revue Francaise d' Intelligence Artificielle, 4(3):9–52, 1990. Special issue on automated deduction.

Konstantin Korovin and Andrei Voronkov.

A decision procedure for the existential theory of term algebras with the Knuth-Bendix ordering.

In Proc. 15th IEEE Symp. Logic in Comp. Sci., pages 291 – 302, 2000.

Konstantin Korovin and Andrei Voronkov.

Knuth-Bendix constraint solving is NP-complete. In Proceedings of 28th International Colloquium on Automata, Languages and Programming (ICALP'01), volume 2076 of Lecture

Notes in Computer Science, pages 979–992. Springer-Verlag, 2001.

Konstantin Korovin and Andrei Voronkov.

The decidability of the first-order theory of the Knuth-Bendix order in the case of unary signatures.

In Proceedings of the 22th Conference on Foundations of Software Technology and Theoretical Computer Science, (FSTTCS'02), volume 2556 of Lecture Notes in Computer Science, pages 230–240. Springer-Verlag, 2002.

Robert Nieuwenhuis.

Simple LPO constraint solving methods. Information Processing Letters, 47(2):65–69, 1993.

Paliath Narendran and Michael Rusinowitch.

The theory of total unary RPO is decidable. In *CL 2000*, volume 1861 of *Lecture Notes in Artificial Intelligence*, pages 660–672. Springer-Verlag, 2000.

Paliath Narendran, Michael Rusinowitch, and Rakesh M. Verma.

RPO constraint solving is in NP.

In Proceedings of the 12th International Workshop on Computer Science Logic (CSL 98), volume 1584 of LNCS, pages 385 – 398. Springer-Verlag, 1999.

Ralf Treinen.

A new method for undecidability proofs of first order theories. *Journal of Symbolic Computation*, 14:437–457, 1992.

Ting Zhang, Henny B. Sipma, and Zohar Manna.

The decidability of the first-order theory of term algebras with Knuth-Bendix order.

In Robert Nieuwenhuis, editor, *the 20th International Conference on Automated Deduction (CADE'05)*, volume 3632 of *LNCS*, pages 131–148. Springer-Verlag, 2005.

