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Importance of Orderings

+ Termination Proof. To rank system states:

〈x = 3, y = 2〉 > 〈x = 3, y = 1〉

Ordered Resolution. To restrict the search space:

A ∨ C ¬A ′ ∨ C ′

(C ∨ C ′)σ
σ = mgu(A ,A ′)

(∀B ∈ C ∪ C ′)
[
Aσ ≮ Bσ

]
Ordered Rewriting. To orient commutative equations:

x + y → y + x if (x + y)σ > (y + x)σ

y + x → x + y if (x + y)σ < (y + x)σ
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Fundamental: Satisfiability Problem of Ordering Constraints
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Beyond Existential Fragments

s → t | c
s[v]p → t | (c ∧ c′ ∧ s|p = u)

(u → v | c′)

total simplification rule: [KKR90, CT97]

s → t | c is simplified (at position p) to s[v]p → t | (c ∧ c′ ∧ s|p = u)
by u → v | c′ provided

TA |= ∀V(s) ( c → ∃V(u) ( c′ ∧ s|p = u ) ) ,

which necessarily involves quantifier alternation.

it states that
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Widely Used Orderings

Syntatic Nature Hybrid Nature
RPO

KBO
MPO LPO

syntactic
precedence

4 4 4

multiset
ordering

4

lexicographical
ordering

4 4

numerical
ordering

4

6 / 57
Knuth-Bendix Order and Its Decidability



Introduction Knuth-Bendix Order Decidability of KBO Conclusions

Widely Used Orderings

Syntatic Nature Hybrid Nature
RPO

KBO
MPO LPO

syntactic
precedence

4

4 4

multiset
ordering

4

lexicographical
ordering

4 4

numerical
ordering

4

6 / 57
Knuth-Bendix Order and Its Decidability



Introduction Knuth-Bendix Order Decidability of KBO Conclusions

Widely Used Orderings

Syntatic Nature Hybrid Nature
RPO

KBO
MPO LPO

syntactic
precedence

4 4

4

multiset
ordering

4

lexicographical
ordering

4

4

numerical
ordering

4

6 / 57
Knuth-Bendix Order and Its Decidability



Introduction Knuth-Bendix Order Decidability of KBO Conclusions

Widely Used Orderings

Syntatic Nature Hybrid Nature
RPO

KBO
MPO LPO

syntactic
precedence

4 4 4

multiset
ordering

4

lexicographical
ordering

4 4

numerical
ordering

4

6 / 57
Knuth-Bendix Order and Its Decidability



Introduction Knuth-Bendix Order Decidability of KBO Conclusions

Decidability Status

MPO LPO KBO

QFT

4

[JO91] [NRV99]
4

[Com90] [Nie93]
4

[KV00] [KV01]

UQT

4

[NR00]
4

[NR00]
4

[KV02]

GQT

?
6

[Tre92, CT97]

QFT: Quantifier-free Theory.

UQT: Unary Quantified Theory.

GQT: General Quantified Theory.
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Our Approach

+ Reduce term constraints to integer constraints.

T. Zhang, H.B. Sipma, and Z. Manna, Decision Procedures for
Recursive Data Structures with Integer Constraints. IJCAR’04.

Reduce term quantifiers to integer quantifiers.

T. Zhang, H.B. Sipma and Z. Manna, Term Algebras with Length
Function and Bounded Quantifier Alternation. TPHOLs’04.
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Reduce term quantifiers to integer quantifiers.

T. Zhang, H.B. Sipma and Z. Manna, Term Algebras with Length
Function and Bounded Quantifier Alternation. TPHOLs’04.

Reduction from term domain to integer domain!
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Term Algebras

A term algebra TA : 〈TA ;C,A,S,T〉 consists of

+ TA : The term domain.

C: set of constructors: α, β, γ, . . . .

A : set of constants: a, b , c, . . .. A ⊆ C.

S: set of selectors: α = (sα1 , . . . , s
α
k ).

T : set of testers. Isα for α ∈ C.

Each element in TA is uniquely generated by constructors.

note that
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LISP List

〈 list ; {cons, nil}; {nil}; {car , cdr}; {Isnil , Iscons} 〉

signature

Isnil(x)↔ ¬Iscons(x)

x = car(cons(x, y))

y = cdr(cons(x, y))

Isnil(x)↔ {car , cdr}+(x) = x

Iscons(x)↔ cons(car(x), cdr(x)) = x

axioms
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Knuth-Bendix Order

A Knuth-Bendix order (KBO) ≺kb is parametrically defined with

+ w : TA → N: a weight function such that

w(α(t1, . . . , tk )) = w(α) +
k∑

i=1

w(ti).

≺σ: a linear precedence order on C such that

α1 ≺
σ α2 ≺

σ . . . ≺σ α|C|.
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Knuth-Bendix Order

A KBO ≺kb is recursively defined (with respect to w and ≺σ) such
that u ≺kb v if one of the following conditions holds.

+ w(u) < w(v)

w(u) = w(v) and type(u) ≺σ type(v)

w(u) = w(v), u ≡ α(u1, . . . , uk ), v ≡ α(v1, . . . , vk ), and

∃i
(
1 ≤ i ≤ k ∧ ui ≺

kb vi ∧ ∀j ( 1 ≤ j < i → uj = vj )
)
.
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Example: Knuth-Bendix Order

Consider the KBO on LISP list structure parameterized with

w(cons) = w(nil) = 1 and nil ≺σ cons.

cons

nil cons

nil nil

≺kb

cons

cons

nil nil

nil
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Quantifier Elimination

+ Suffices to eliminate ∃-quantifiers from primitive formulas

∃x̄ ( A1(x̄) ∧ . . . ∧ An(x̄) ) ,

where Ai(x̄) (1 ≤ i ≤ n) are literals.

Suffices to assume Ai . x = t if x < t , because

∃x (x = t ∧ ϕ(x, ȳ)) ↔ ϕ(t , ȳ).
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Selector Language

For simplicity, we only use selectors and testers in our language.

The depth of x in a selector term t is the number of selectors in t .
For example, the depth of x in s1(. . . (sn(x) . . .)) is n.

By depthϕ(x), we mean the maximum depth of x in ϕ.

Formulas are assumed to be type complete, i.e., the type of every
term is asserted by a tester literal.

Selector terms are assumed to be proper. For example,
car(x) , cdr(x) abbreviates car(x) , cdr(x) ∧ Iscons(x).

notation
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Main Idea

+ Solved Form. Eliminating ∃x from (∃x)ϕ(x, ȳ) is easy once

ϕ(x, ȳ) is solved in x.

Depth Reduction. Transforming ϕ(x, ȳ) into a solved form amounts
to peeling off selectors in front of x, since

ϕ(x, ȳ) solved in x if and only if depthϕ(x) = 0.
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Solved Form

+ ϕ(x, ȳ) is solved in x if it is in the form∧
i≤m

ui ≺
kb x ∧

∧
j≤n

x ≺kb vj ∧ ϕ′(ȳ),

where x does not appear in ui , vi and ϕ′.

If ϕ(x, ȳ) is solved in x, then (∃x) ϕ(x, ȳ) simplifies to

ϕ′(ȳ) ∧
∧

i≤m,j≤n

ui ≺
kb
2 vj

where x ≺kb
n y, called gap order, states there is an increasing chain

from x to y of length at least n.
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Depth Reduction: Case 1

All occurrences of x have depth greater than 0.

In this case, ∃xϕ(x, ȳ) must be in the form

∃xϕ′(sα1 (x), . . . , sαk (x), ȳ),

which can be rewritten to

∃x1, . . . ,∃xkϕ
′(x1, . . . , xk , ȳ).

20 / 57
Knuth-Bendix Order and Its Decidability



Introduction Knuth-Bendix Order Decidability of KBO Conclusions

Depth Reduction: Case 2

Some occurrences of x have depth 0 and some do not.

Decompose 0-depth occurrences of x in terms of

sα1 (x), . . . , sαk (x),

which amounts to expressing x ≺kb
n t and t ≺kb

n x using

sα1 (x), . . . , sαk (x).
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sα1 (x), . . . , sαk (x),

which amounts to expressing x ≺kb
n t and t ≺kb

n x using

sα1 (x), . . . , sαk (x).

Then apply the reduction as in Case 1!
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Language Extensions

+ Decompose ≺kb into three disjoint suborders ≺w , ≺p and ≺l .

Extend ≺w , ≺p and ≺l to ≺w
n , ≺p

n and ≺l
n, respectively.

Add boundary functions to delineate gap orders.

Add Presburger arithmetic explicitly to represent the weight function.

Extend all aforementioned notions to tuples of terms.
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Suborders

u ≺w v def
== w(u) < w(v)

weight order

u ≺p v def
== w(u) = w(s) & type(u) ≺σ type(v)

precedence order

u ≺l v def
== w(u) = w(v) & type(u) = type(v) & u ≺kb v

lexicographical order
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Gap Orders

u ≺kb
n v def

== (∃u1 · · · ∃un)
(
u ≺kb u1 ≺

kb · · · ≺kb un �
kb v

)kb gap order

u ≺w
n v def

== u ≺kb
n v ∧ u ≺w v

weight gap order

u ≺p
n v def

== u ≺kb
n v ∧ u ≺p v

precedence gap order

u ≺l
n v def

== u ≺kb
n v ∧ u ≺l v

lexicographical gap order
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Boundary Functions

0w , 1w : N→ TA ; 0p , 1p : N2 → TA such that

0w(n) : the smallest term of weight n

0p(n, p) : the smallest term of weight n and type αp

1w(n) : the largest term of weight n

1p(n, p) : the largest term of weight n and type αp

u ≺w
5 v ↔

∨
n1+n2+n3=5

u ≺pl
n1

1w
(uw)
≺w

n2
0w

(vw)
≺

pl
n3

v

example
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Counting Constraints

CNTn(x) states that

there are at least n + 1 distinct TA-terms of weight x.

In particular, CNT0(x) (or Tree(x)) states that

x is a legitimate weight of a term.

0w
(x)
≺

pl
n 1w

(x)
↔ CNTn(x)

example

CNTn(x) is expressible in Presburger arithmetic.

note that
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Knuth-Bendix Order with Presburger
Arithmetic

KBO
+ = 〈 TA,PA, (.)w ,≺

]
n, 0

∗(. . .), 1∗(. . .) 〉

where n ∈ N, ] ∈ {w, p, l}, ∗ ∈ {w, p},

(.)w : weight function,

≺
]
n : gap orders,

0∗(...), 1∗(...) : boundary functions

∃x :TA
(

0w
(xw)
≺l

2 x ≺l
3 1w

(xw)

)example
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Quantifier Elimination for Knuth-Bendix Order

INPUT: (∃x̄) ϕ(x̄, ȳ)
while x̄ , ∅ do

if (∀x ∈ x̄) depthϕ(x) > 0 then

Depth Reduction:
 variable selection
decomposition
simplification


else {(∃x ∈ x̄) depthϕ(x) = 0}

Elimination
end if

end while
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Variable Selection

Select a variable x ∈ x̄ such that sαi (x) appears in ϕ(x̄, ȳ).

The selection is done in depth-first manner; we always choose vari-
ables generated in the previous round.

note that
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Decomposition

+ Rewrite (∃x̄) ϕ(x̄, ȳ) to

∃x1 . . .∃xk∃x̄

 ∧
1≤i≤k

sαi (x) = xi ∧ ϕ(x̄, ȳ)

 .

+ Rewrite x ≺]n t and t ≺]n x to quantifier-free formulas where x
only occurs in sα1 (x), . . . , sαk (x).

∃x1 . . .∃xk∃x̄
( ∧

1≤i≤k
sαi (x) = xi ∧ ϕ′(sα1 (x), . . . , sαk (x), (x̄ \ x), ȳ)

)
.

resulting in
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)
.

resulting in

30 / 57
Knuth-Bendix Order and Its Decidability



Introduction Knuth-Bendix Order Decidability of KBO Conclusions

Decomposition

+ Rewrite (∃x̄) ϕ(x̄, ȳ) to
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)
.

resulting in

30 / 57
Knuth-Bendix Order and Its Decidability



Introduction Knuth-Bendix Order Decidability of KBO Conclusions

Simplification

∃x1 . . .∃xk∃x̄

 ∧
1≤i≤k

sαi (x) = xi ∧ ϕ′(sα1 (x), . . . , sαk (x), (x̄ \ x), ȳ)

 .
now

Replace sαi (x) by xi in ϕ′.

Remove
∧

1≤i≤k
sαi (x) = xi from the matrix.

Remove ∃x from the prenex.

∃x1 . . .∃xk∃(x̄ \ x) (ϕ′((x̄ \ x), x1, . . . , xk , ȳ) ) .

resulting in
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resulting in

31 / 57
Knuth-Bendix Order and Its Decidability



Introduction Knuth-Bendix Order Decidability of KBO Conclusions

Simplification

∃x1 . . .∃xk∃x̄

 ∧
1≤i≤k

sαi (x) = xi ∧ ϕ′(sα1 (x), . . . , sαk (x), (x̄ \ x), ȳ)
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Elimination

∃x

∧
i≤m

ui ≺
kb x ∧

∧
j≤n

x ≺kb vj ∧ ϕ′(ȳ)

 ,
now

which simplifies to

ui′ ≺
kb
2 vj′ ∧ ϕ′(ȳ)

∧ “ui′ is the greatest of {ui | i ≤ m}”

∧ “vj′ is the smallest of {vj | j ≤ n}”.
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Technical Tricks

+ Elimination of Equalities.

∃x
(

x = 0w
((car(x))w+5) ∧ car(x) ≺p

4 cdr(x)
)
.

Simplification of Selector Terms.

car(0w
((car(x))w)).

Elimination of Negations.

¬
(
car(x) ≺w

3 cdr(x)
)
.

Termination.
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Elimination of Equalities

∃x
(

x = 0w
((car(x))w+5) ∧ car(x) ≺p

4 cdr(x)
)example

+ Reverse Substitution⇒

∃x
(

x = 0w
((car(x))w+5) ∧ car(0w

((car(x))w+5)) ≺
p
4 cdr(0w

((car(x))w+5))
)
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Elimination of Equalities

∃x
(

x = 0w
((car(x))w+5) ∧ car(0w

((car(x))w+5)) ≺
p
4 cdr(0w

((car(x))w+5))
)continue with

+ Reduction to Integer Quantifiers⇒

∃(car(x))w

∃(cdr(x))w


Tree((car(x))w + 5) ∧ Tree((cdr(x))w + 5)

∧ (α)w + (car(x))w + (cdr(x))w = (car(x))w + 5

∧ car(0w
((car(x))w+5)) ≺

p
4 cdr(0w

((car(x))w+5))


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∧ (α)w + (car(x))w + (cdr(x))w = (car(x))w + 5

∧ car(0w
((car(x))w+5)) ≺

p
4 cdr(0w

((car(x))w+5))


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p
4 cdr(0w

((car(x))w+5))


continue with

+ Renaming⇒

∃z∃y


Tree(z) ∧ Tree(y)

∧ (α)w + z + y = z + 5

∧ car(0w
(z)) ≺

p
4 cdr(0w

(z))


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Simplification of Selector Terms

car(0w
((car(x))w))

example

which simplifies to

0w
fcar ((car(x))w)

where fcar(·) is an integer function expressible in Presburger
arithmetic.
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Elimination of Negations

¬
(
car(x) ≺w

3 cdr(x)
)example

simplifies to

cdr(x) ≺w
1 car(x)

∨ (cdr(x))w = (car(x))w

∨ car(x) �w
1 cdr(x)

∨ car(x) �w
2 cdr(x).
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Termination

Termination is subtle as many complexity measures increase.

+ Depth reduction increases the depth of other variables.

For example, x , t becomes

∨
1≤i≤k

sαi (t) , xi ∨ ¬Isα(t).
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Termination

+ Depth reduction introduces more existential quantifiers.

For example, (∃x̄) ϕ(x̄, ȳ) becomes

∃x1 . . .∃xk∃x̄

Isα(x) ∧
∧

1≤i≤k

sαi (x) = xi ∧ ϕ(x̄, ȳ)

 .
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Termination

+ Depth reduction introduces more order literals.

For example, u ≺w
5 v becomes

∨
n1+n2+n3=5

u ≺pl
n1

1w
(uw) ≺

w
n2

0w
(vw) ≺

pl
n3

v .
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Termination

+ Depth reduction introduces more equalities.

For example, x ≺l t becomes

car(x) = car(t) ∧ cdr(x) ≺kb cdr(t).
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Termination

+ Depth reduction introduces more equalities.

For example, x ≺l t becomes

car(x) = car(t) ∧ cdr(x) ≺kb cdr(t).

Why terminate?
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Termination

Open Gap Order Literals: gap orders between ordinary terms.
real measure

4 u ≺l
3 v u ≺p

3 v u ≺w
3 v . . .

6 u ≺l
3 1w

(uw)
0w

(uw)
≺

p
3 1w

(uw)
0w

(vw)
≺l

3 v . . .

example

No transformation generates new OGOLs.

The final elimination step removes at least one OGOL.

Without OGOLs, the depths of terms strictly decrease!

reason
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Example

Consider the KBO on LISP list structure parameterized with

w(cons) = w(nil) = 1 and nil ≺σ cons.

Consider the formula

∃x
(
car(x) ≺l

2 cdr(cdr(x)) ∧ cdr(cdr(car(x))) ≺l
3 y

)
where depth(x) = 3.
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Example

∃x
(
car(x) ≺l

2 cdr(cdr(x)) ∧ cdr(cdr(car(x))) ≺l
3 y

)

x

x1

x11 x12

x122

x2

x22

y

Solution: x =?

x1 : car(x)

x2 : cdr(x)

x11 : car(car(x))

x12 : cdr(car(x))

x22 : cdr(cdr(x))

x122 : cdr(cdr(car(x)))
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Example

Select x.

Decompose x in terms of car(x) and cdr(x). We have

∃x∃x1∃x2

(
car(x) = x1 ∧ cdr(x) = x2

∧ car(x) ≺l
2 cdr( cdr(x) ) ∧ cdr(cdr( car(x) )) ≺l

3 y
)
.

Simplification.

∃x1∃x2

(
x1 ≺

l
2 cdr( x2 ) ∧ cdr(cdr( x1 )) ≺l

3 y
)
,

where depth(x1) = 2 and depth(x2) = 1.
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Example
Continue with

∃x1∃x2

(
x1 ≺

l
2 cdr(x2) ∧ cdr(cdr(x1)) ≺

l
3 y

)
.

Select x1.
Decompose x1.

∃x1∃x2

(
car(x1) = car(cdr(x2)) ∧ cdr(x1) ≺

l
2 cdr(cdr(x2))

∧ cdr( cdr(x1) ) ≺l
3 y

)
.

Simplification.

∃x2∃x11∃x12

(
x11 = car(cdr(x2)) ∧ x12 ≺

l
2 cdr(cdr(x2))

∧ cdr( x12 ) ≺l
3 y

)
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Example

Continue with

∃x2∃x11∃x12

(
x11 = car(cdr(x2)) ∧ x12 ≺

l
2 cdr(cdr(x2))

∧ cdr(x12) ≺
l
3 y

)

Elimination. Since depth(x11) = 0, we have

∃x2∃x12

(
x12 ≺

l
2 cdr(cdr(x2)) ∧ cdr(x12) ≺

l
3 y

)
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Example
Continue with

∃x2∃x12

(
x12 ≺

l
2 cdr(cdr(x2)) ∧ cdr(x12) ≺

l
3 y

)
.

Select x12.
Decompose x12.

∃x2∃x12

(
car(x12) = car(cdr(cdr(x2))) ∧ car(x12) ≺

l
2 cdr(cdr(x2))

∧ cdr(x12) ≺
l
3 y

)
.

Simplification.

∃x2∃x121∃x122

(
x121 = car(cdr(cdr(x2))) ∧ x121 ≺

l
2 cdr(cdr(x2))

∧ x122 ≺
l
3 y

)
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Example

Continue with

∃x2∃x121∃x122

(
x121 = car(cdr(cdr(x2))) ∧ x122 ≺

l
2 cdr(cdr(x2))

∧ x122 ≺
l
3 y

)

Elimination. Since depth(x121) = 0, we have

∃x2∃x122

(
x122 ≺

l
2 cdr(cdr(x2)) ∧ x122 ≺

l
3 y

)
.
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Example

Continue with

∃x2∃x122

(
x122 ≺

l
2 cdr(cdr(x2)) ∧ x122 ≺

l
3 y

)
.

Elimination. Guessing a gap order completion, we have

∃x2∃x122

(
x122 ≺

l
2 cdr(cdr(x2)) ≺

l
1 y

)
,

which simplifies to

∃x2

(
0w

((cdr(cdr(x2)))w)
≺l

2 cdr(cdr(x2)) ≺
l
1 y

)
.

+ The number of OGOLs reduced to 1!
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l
3 y

)
.

Elimination. Guessing a gap order completion, we have

∃x2∃x122
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2 cdr(cdr(x2)) ≺

l
1 y

)
,

which simplifies to
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1 y
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Example

Continue with

∃ x2

(
0w

(( cdr(cdr(x2)) )w)
≺l

2 cdr(cdr(x2)) ≺
l
1 y

)
.

Depth Reduction. Repeating twice the depth-reduction
subprocedure, we have

∃ x222

(
0w

( x222
w
)
≺l

2 x222 ≺
l
1 y

)
.
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Example
Continue with

∃ x222

(
0w

( (x222)w )
≺l

2 x222 ≺
l
1 y

)
.

Reduce term quantifiers to integer quantifiers.

∃ z
(

0w
( z )
≺l

3 y ∧ Tree( z )
)
.

Eliminate integer quantifiers.

0w
( yw )

≺l
3 y ∧ Tree( yw ).

As 0w
(yw) ≺

l
3 y ⇒ Tree(yw), we have

0w
(yw) ≺

l
3 y.
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Example
In summary,

0w
(yw)
≺l

3 y =⇒

∃x
(
car(x) ≺l

2 cdr(cdr(x)) ∧ cdr(cdr(car(x))) ≺l
3 y

)

x

x1

x11 x12

x122

x2

x22

y

Solution: x122 = 0w
(yw)

!

x1 : car(x)

x2 : cdr(x)

x11 : car(car(x))

x12 : cdr(car(x))

x22 : cdr(cdr(x))

x122 : cdr(cdr(car(x)))
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Conclusions and Open Problems

+ Orderings with Partial Precedence

Knuth-Bendix Order with Partial Precedence

Orderings on Nonground Term Domain

Knuth-Bendix Order on Nonground Term Domain

Multiple Orderings on One Term Domain

Two Knuth-Bendix Orders
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Conclusions and Open Problems

Orderings with Partial Precedence

Knuth-Bendix Order with Partial Precedence

Orderings on Nonground Term Domain

Knuth-Bendix Order on Nonground Term Domain

Multiple Orderings on One Term Domain

Two Knuth-Bendix Orders

Difficulty: Lack of technique to deal with partial orderings.

56 / 57
Knuth-Bendix Order and Its Decidability



Introduction Knuth-Bendix Order Decidability of KBO Conclusions

Thank you for your attention!

Questions?
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