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Abstract

This term paper is a summary of topological properties of automorphisms and model-
theoretic consequences on countable structures. It is based on Section 4.1 of [1].

1 Introduction

In this section we recap some concepts in general topology and permutation groups. Most of
materials can be found in [2].

Definition 1.1 (Topological Space). Given a set U , a topology on U is a collection U of subsets
of U , called the open sets of U , such that ∅ ∈ U and U ∈ U and such that U is closed under
finite intersections and arbitrary (i.e., not necessarily finite or countable) unions. A set U with a
topology U defined upon it is called a topological space, denoted by (U,U).

We say a set X ⊆ U is closed if U \ X is open. A set X ⊆ U is said to be dense if any
closed superset of X is U itself. A neighborhood of a point x is an open set containing x.

Lemma 1.1. Let (U,U) be a topological space. A subset X of U is open iff it contains a neighbor-
hood of each of its elements.

Proof. (⇒) X itself is open and it is a neighborhood of any point in it.
(⇐) Let Y be a union of neighborhoods of all points of X which are contained in X . Clearly, Y is
open and X ⊆ Y . The assumption implies Y ⊆ X . Hence X = Y and X is open.

Lemma 1.2. Let (U,U) be a topological space. A subset X of U is closed iff for any u ∈ U , if all
neighborhood of u intersects X, then u ∈ X.

Proof. X is closed iff U \X is open, (by Lemma 1.1) iff for every u ∈ U \X , there is a neighborhood
of u which is contained in U \ X iff for any u ∈ U , if all neighborhood of u intersects X , then
u ∈ X .

Definition 1.2 (Continuous Function). Let f : (U,U) 7→ (V,V), f is said continuous if Z is an
open set of (V,V), then f−1[Y ] is an open set of (U,U).

Lemma 1.3. Let f : (U,U) 7→ (V,V), f is continuous iff for each x ∈ U and each neighborhood Y

of f(x), there exists a neighborhood X of x such that f [X ] ⊆ Y .
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Proof. (⇐) Let x ∈ U and Y be a neighborhood of f(x). f−1[Y ] is a neighborhood of x and
f [f−1[Y ]] = Y .
(⇒) Let Z be an open set of (V,V), x be any point of f−1[Z]. Since Z is open, Z is a neighborhood
of f(x). By the assumption let X be the neighborhood of x such that f [X ] ⊆ Z. Then we have
X ⊆ f−1[Z]. By Lemma 1.1 f−1[Z] is open.

We write H 4 G to mean H is a subgroup of G. Let H 4 G. The set gH is called the (left)
coset of H in G. (Similarly, Hg is called the (right) coset of H in G.) It is well-known that
the collection of cosets of F form a partition of G. The index of H in G is the number of distinct
cosets of H , written (G : H).

Lemma 1.4. If F 4 H 4 G, then H is the union of cosets of F in G.

Proof. Let gF be any coset of F in G. If g ∈ H , then gF ⊆ H . If g ∈ G\H , then gF ⊆ G\H .

Lemma 1.5. If H 4 G, then gH = kH iff g−1kH = H iff g−1k ∈ H.

Proof. Immediate.

Definition 1.3 (Topological Group). A group G is called a topological group if G has a topology
G and group multiplication and inversion are continuous functions of (G,G).

2 Topological properties of automorphisms

For any set Ω, the group of all permutations of Ω forms the symmetric group on Ω, written
in Sym(Ω). For any structure A, all automorphism forms a group (written Aut(A)) which is a
subgroup of Sym(dom(A)). Let G 4 Sym(Ω). The pointwise stabilizer of a set X ⊆ Ω in G

(written G(X)) is the set {g ∈ G : g(a) = a for all a ∈ X}.

An orbit of an element a ∈ Ω under G is the set {g(a) : g ∈ G}. We say G is transitive
on Ω if the orbit of every element is Ω itself. A structure is transitive if Aut(A) is transitive on
dom(A). A structure is called rigid if 1A is the only automorphism.

A subset S of Sym(Ω) is called basic open if there exists tuples ā and b̄ such that S =
{g ∈ G : g(ā) = b̄}. We write S(ā, b̄) for such S. An open set of Sym(Ω) is a union of basic open
sets. Also we say a set is (basic) open in Aut(A) if it is an intersection of an (basic) open set in
Sym(Ω) and Aut(A).

The following lemma summarizes some topological properties of Aut(A), and in particular
Sym(Ω) if A is simply a set.

Lemma 2.1. Write G for Aut(A).

(1) The open sets defined above form a topology of G. Under this topology, G is a topological
group.

(2) A subgroup H of G is open iff G(ā) ⊆ H for some tuple ā ∈ dom(A).

(3) A subset H of G is closed iff H satisfies the following condition: if for any g ∈ G and every
tuple ā ∈ dom(A) there is h ∈ H such that gā = hā, then g ∈ H.
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(4) A sugroup H of G is dense iff H and G and H has the same orbits on (domA)n for each
positive n.

Proof. (1) Let two open sets

A =
⋃

i∈I

{Ai} =
⋃

i∈I

{S(āi, b̄i)}

B =
⋃

j∈J

{Bj} =
⋃

j∈J

{S(āj , b̄j)}

where S(āk, b̄k) is a basic open set in G. It follows that

A ∩ B =
⋃

i∈I,j∈J

S(āi, b̄i) ∩ S(āj , b̄j)

Observe that
S(āi, b̄i) ∩ S(āj , b̄j) = S(āiāj , b̄ib̄j)

So A ∩ B is open. Other conditions are satisfied immediately by definition.

If g−1 ∈ S(ā, b̄), then g ∈ S(b̄, ā) and S−1(ā, b̄) = S(b̄, ā). Also if gh ∈ S(ā, b̄), then
h ∈ S(ā, c̄) and g ∈ S(c̄, b̄) where c̄ = hā. Moreover, S(ā, c̄)S(c̄, b̄) ⊆ S(ā, b̄). By Lemma 1.3
multiplication and inversion are continuous, and hence G is a topological group.

(2) Let H be a subgroup of G containing G(ā) for some ā ∈ dom(A). Since G(ā) is a subgroup
of H , by Lemma 1.4, H is a union of cosets of G(ā). Each cosets gG(ā) is S(ā, gā) which is
basic open. It follows that H is open. Conversely, suppse that H is open. It contains S(ā, b̄)
for some ā, b̄ ∈ dom(A). Then it contains S(b̄, ā) and hence S(ā, b̄)S(b̄, ā). It follows that
G(ā) = S(ā, ā) ⊆ S(ā, b̄)S(b̄, ā) ⊆ H .

(3) Note that any neighborhood of g contains a basic open set S(ā, gā) for some ā ∈ dom(A) and
any basic open set S(ā, gā) for any ā ∈ dom(A) is a neighborhood of g. So the assumption
can be translated to “for any g ∈ G, if every neighborhood of g intersects H , then g ∈ H”,
which by Lemma 1.2 is equivalent to “H is closed in G.”

(4) If H and G has the same orbits, then for any g ∈ G and every tuple ā ∈ dom(A) there exists
h ∈ H such that g(ā) = h(ā). By (3), G is the only closed super set of H , that is, H is dense.
Conversely, assuming that there exists g ∈ G and ā ∈ dom(A) such that there is no h ∈ H

such that g(ā) = h(ā), we have S(ā, g(ā)) 6= ∅ and S(ā, g(ā)) ∩ H = ∅. Then H is contained
in G \ S(ā, g(ā)) which is closed. So H is not dense.

Theorem 2.1. Let Ω be a set, H 4 G 4 Sym(Ω). The following are equivalent:

(1) H is closed in G.

(2) There is a structure A with dom(A) = Ω such that H = G ∩ Aut(A).

In particular, for any structure A with dom(A) = Ω, Aut(A) is a closed subgroup of Sym(Ω).
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Proof. (1 ⇒ 2) For each orbit ∆ of H on Ωn with 0 < n < ω, define relation symbol R∆ such that
RA

∆ = ∆. Obviously, A |= R∆(ā) ⇔ A |= R∆(hā) for all h ∈ H , and hence H ⊆ G ∩ Aut(A). On
the other hand, let g ∈ G ∩ Aut(A). Let ā be any tuple of of Ω. There exists some orbit ∆ of H

such that ā ∈ ∆. As g is an automorphism, gā ∈ ∆. By definition of ∆, there exists h ∈ H such
that gā = hā. It follows that g ∈ H for H is closed, and hence G ∩ Aut(A) ⊆ H .
(2 ⇒ 1) Let any g ∈ G and ā ∈ dom(A). Assume that there is h ∈ H such that gā = hā. For any
formula φ(x̄),

A |= φ(ā) ⇔ A |= φ(hā) ⇔ A |= φ(gā)

Hence g ∈ Aut(A) ⊆ H . It follows that H is closed.

3 Model-theoretic consequences in countable structures

Theorem 3.1. If G is a closed group of Sym(ω) and H is a closed subgroup of G, then the
following are equivalent.

(1) H is open in G.

(2) (G : H) ≤ ω.

(3) (G : H) < 2ω.

Proof. (1 ⇒ 2) By Lemma 2.1 since H is open in G, there exists ā ∈ ω such that G(ā) ⊆ H . For
any two cosets gH and jH of H , gH = jH iff gj−1 ∈ H . Thus if gā = jā, then gj−1ā = ā, and
hence gj−1 ∈ G(ā) ⊆ H . So gH 6= jH iff gā 6= jā. As there are at most ω distinct outcomes of gā,
(G : H) ≤ ω.
(2 ⇒ 3) Immediate.
(3 ⇒ 1) We define sequences (āi : i < ω), (b̄i : i < ω) of tuples of ω and a sequence (ḡi : i < ω) of
in G such that the following condition are satisfied.

(1) b̄0 = 〈〉; b̄i+1 is a concatenation of all sequences of the form

(ki · · · k0)(ā0
∧ · · · ∧āi)

where either kj = gj or kj = 1 for 0 ≤ j ≤ i.

(2) gib̄i = b̄i.

(3) hāi 6= giāi for all h ∈ H .

(4) i ∈ āi.

(5) gi 6∈ H and gi ∈ G.

Condition (2) and (5) are satisfiable as H is not open, that is, for any tuple ā ∈ ω, there is g 6∈ H

but g ∈ G(ā). Since H is closed, by Condition (5), there exists āi ∈ ω such that hāi 6= giāi for all
h ∈ H . Then Condition (3) is satisfiable too. We can have Condition (4) by adding i into āi. Now
we show that each subset of {gi : i < ω} corresponds to a distinct (right) coset of H in G. Put
S ⊆ {gi : i < ω}. For each i < ω define

gS
i =

{

gi if i ∈ S

1 if i 6∈ S
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fS
i = gS

i gS
i−1 · · · g

S
0

For all for j > i, because gS
i gS

i−1 · · · g
S
0 (āi) ⊆ b̄j , we have fS

j (āi) = fS
i (āi). So for each S ⊆ ω, we

can define
gS(i) = fS

i (i)

Obviously gS is injective. For any j < ω, put i = (fS
j )−1(j). If i ≤ j, then

gS(i) = fS
j (i) = fS

j ((fS
j )−1(j)) = j

Otherwise i > j, and

gS(i) = fS
i (i) = (gS

i · · · gS
j+1f

S
j )((fS

j )−1(j)) = (gS
i · · · gS

j+1)(j) = j

So gS is subjective, and hence gS is a permutation. For any ā ∈ ω, let j = max(ā), then
gS(ā) = fS

j (ā). Clearly, each fS
j ∈ G, and hence gS ∈ G for G is closed. There are 2ω subsets

of ω. It suffices to show that if S, T ⊆ ω, S 6= T , then HgS 6= HgT . Let i be the least element
which differentiates S from T . Without loss, assume that i ∈ S, but i 6∈ T . Then fT

i = fS
i−1. Put

c̄ = (fS
i−1)

−1(āi) and j = max(c̄). We have

gS(c̄) = gS(c̄) = fS
j (c̄) = gS

j · · · gS
i+1gif

S
i−1((f

S
i−1)

−1(āi)) = gS
j · · · gS

i+1gi(āi) = gi(āi)

gT (c̄) = gT (c̄) = fT
j (c̄) = gT

j · · · gT
i+1f

T
i ((fT

i )−1(āi)) = gT
j · · · gT

i+1(āi) = āi

Since for all h ∈ H , gi(āi) 6= hāi, we have that for all h ∈ H , gS(c̄) 6= hgT (c̄). That is, gS 6= hgT

for all h ∈ H . So HgS 6= HgT for S 6= T . The proof is finished.

We can translate Theorem 3.1 to a model-theoretic version.

Theorem 3.2 (Kueker-Reyes Theorem). Let L− and L+ be signatures with L− ⊆ L+. Let A be
a countable structure of L+ and B be the reduct A|L−. Let G = Aut(B). Then the following are
equivalent.

(1) There exists ā ∈ dom(A) such that G(ā) ⊆ Aut(A).

(2) There are at most countably infinite expansion of B which is isomorphic to A.

(3) The number of distinct expansions of B which are isomorphic to A is less than 2ω.

Proof. Put H = Aut(B). Let A′ be an expansion of B with symbols in L+\L− interpreted such that

A is isomorphic to A′ under mapping f : A 7→ A′. It follows that fSB = fSA|L−

= SA′|L−

= SB.
That is, f is an automorphism of B, i.e., f ∈ G. So all expansions of B which are isomorphic to
A are in form gA with g ∈ G. Let gA, kA be two such expansions, we have

gA = kA ⇐⇒ gSA = kSA for every symbol in L+

⇐⇒ g−1kSA = SA for every symbol in L+

⇐⇒ g−1k ∈ H

⇐⇒ gH = kH

So the number of distinct expansions of B which are isomorphic to A is the same as the number
of distinct coset of H in G, i.e., the index of H in G. Moreover A is countable structure, we can
identify it with ω. Obviously, H 4 G 4 Sym(ω) with G closed in Sym(ω) and H closed in G by
Lemma 2.1. Thus the theorem is a special case of Theorem 3.1.
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Corollary 3.1. Let A be a countable structure. The following are equivalent.

(1) There is a tuple ā ∈ dom(A) such that (A, ā) is rigid.

(2) |Aut(A)| ≤ ω.

(3) |Aut(A)| ≤ 2ω.

Proof. Put G = Aut(A) and H = {1}. (1) implies G(ā) = {1} = H , and hence H is open subgroup
of G. The corollary follows from Theorem 3.2 with observation that |Aut(A)| = (G : H).
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