Decidability of integer multiplication and ordinal addition

Two applications of the Feferman-Vaught theory

Ting Zhang Stanford University

Stanford

February 2003

LOGIC SEMINAR

The motivation

- There are many similar ways of forming products of algebraic systems in modern algebra and set theory.
- Usually definitions of products involve an index set *I* and in some cases take into account the structure on *I*.
- How to discover the first order properties of a complex system by the properties of its components?
- The Feferman-Vaught theory answered the question in great generality. Namely, it provides a way of relating the first order properties of a product system to the properties of its factor systems and the properties of some subset algebras on the index set.

Direct Product

- Let ⟨𝔄_i | i ∈ I⟩ be an indexed family of systems 𝔄_i = ⟨A_i,...⟩ of the same signature μ and let the corresponding language be ℒ_μ.
- The direct product $\mathfrak{A} = \prod_{i \in I} \mathfrak{A}_i$ is the \mathscr{L}_μ -structure such that
 - The carrier A of \mathfrak{A} is the Cartesian product of $\langle A_i \mid i \in I \rangle$.
 - If F is a n-ary function symbol and $a = \langle a_0, \ldots, a_{n-1} \rangle$ is a *n*-tuple of A, then for each $i \in I$,

$$F^{\mathfrak{A}}(\boldsymbol{a})(i) = F^{\mathfrak{A}_i}(a_0(i), \dots, a_{n-1}(i)).$$

- If R is a n-ary relation symbol and $a = \langle a_0, \ldots, a_{n-1} \rangle$ is a n-tuple of A, then

 $\boldsymbol{a} \in R^{\mathfrak{A}}$ iff $\langle a_0(i), \ldots, a_{n-1}(i) \rangle \in R^{\mathfrak{A}_i}$ for each $i \in I$.

Preliminary Notations

- Let \mathscr{L}_{μ} be the language of component systems $\langle \mathfrak{A}_i \mid i \in I \rangle$.
- Let \mathscr{L}_{σ} be the language of the basic subset algebra

$$\mathfrak{S}_I = \langle S(I), \Lambda, \cup, \cap, \bar{}, \subseteq \rangle$$

- Let \mathscr{L}_{π} be the language of generalized products $\mathscr{P}(\mathfrak{A},\mathfrak{S})$.
- A sequence ζ = ⟨Φ, θ₀, ..., θ_m⟩ is called a reduction sequence if
 Φ is a formula of ℒ_σ with at most the free variables X₀, ..., X_m,
 and θ₀, ..., θ_m are formulas of ℒ_μ.
- A variable v is free in ζ if v is free in at least one of $\theta_0, \ldots, \theta_m$.

Generalized products

• For each reduction sequence $\zeta = \langle \Phi, \theta_0, \dots, \theta_m \rangle$ with p free variables, let P_{ζ} be

$$ig\{ \langle a_0, \dots, a_{p-1}
angle \mid oldsymbol{a} \in A^\omega ext{ and } \mathfrak{S} \models \Phi[\| heta_0\|_{oldsymbol{a}}, \dots, \| heta_m\|_{oldsymbol{a}}] ig\}.$$

$$\mathfrak{A} = \langle A, P_{\zeta_0}, \dots, P_{\zeta_n}, \dots \rangle.$$

If all the system \mathfrak{A}_i for $i \in I$ are identical to a system \mathfrak{B} , then $\mathscr{P}(\mathfrak{A},\mathfrak{S})$ is called the **generalized power** of \mathfrak{B} with respect to \mathfrak{S} .

The basic theorem for generalized products

There is an effective procedure to compute, for each formula φ of \mathscr{L}_{π} , a partitioning sequence $\zeta = \langle \Phi, \theta_0, \ldots, \theta_m \rangle$ such that given any non-empty indexed family $\mathfrak{A} = \langle \mathfrak{A}_i \mid i \in I \rangle$ and any algebra $\mathfrak{S} = \langle S(I), \ldots \rangle$ with product $\mathscr{P}(\mathfrak{A}, \mathfrak{S}) = \langle A, \ldots \rangle$ and any sequence $a \in A^{\omega}$, we have:

$$\mathfrak{A} \models \varphi[\boldsymbol{a}] \quad \textit{iff} \quad \mathfrak{S} \models \Phi[\|\theta_0\|_{\boldsymbol{a}}, \dots, \|\theta_m\|_{\boldsymbol{a}}].$$

 ${\ensuremath{\@extstyle}}$ In particular, if φ is a sentence, so are θ_0,\ldots,θ_m , and

$$\mathfrak{A} \models \varphi \quad iff \quad \mathfrak{S} \models \Phi [\|\theta_0\|, \dots, \|\theta_m\|].$$

The construction

rightarrow Case $\varphi = \neg \varphi'$. Suppose that φ' and a reduction sequence $\zeta' = \langle \Phi', \theta'_0, \dots, \theta'_m \rangle$ satisfy the induction hypothesis. Take

$$\zeta = \langle \neg \Phi', \theta_0, \dots, \theta_m \rangle.$$

 $\$ Case $\varphi = \varphi_1 \lor \varphi_2$. Suppose that φ_i (i = 0, 1) has a reduction sequence $\zeta_i = \langle \Phi_i, \theta_0^{(i)}, \dots, \theta_{m_i}^{(i)} \rangle$. Take

$$\zeta = \langle \Phi_1 \lor \Phi_2, \theta_0^{(1)}, \dots, \theta_{m_1}^{(1)}, \theta_0^{(2)}, \dots, \theta_{m_2}^{(2)} \rangle.$$

The construction

rightarrow Case $\varphi = \exists v_k \varphi'$. Suppose that φ' and a reduction sequence $\zeta' = \langle \Phi', \theta'_0, \dots, \theta'_m \rangle$ satisfy the induction hypothesis. Take

$$\zeta = \langle \Phi, \theta_0, \dots, \theta_m \rangle, \tag{1}$$

where $\theta_i = \exists v_k \theta'_i \ (i \leq m)$, and

$$\Phi = \exists U_0 \dots U_m \left[Part_m(U_0, \dots, U_m) \land \bigwedge_{i \le m} (U_i \subseteq V_i) \land \Phi'(U_0, \dots, U_m) \right].$$
(2)

Consequences of the basic theorem

- The decision problem for the theory of the generalized product of systems $\langle \mathfrak{A}_i \mid i \in I \rangle$ with respect to \mathfrak{S} , in the case that I is finite can be reduced to the decision problem for the theories of the factors. I.e., if each factor has a decidable theory, then so has the (finite) generalized product.
- The decision problem for the theory of the generalized power 𝔅^𝔅 reduces to the decision problems for the theories of 𝔅 and of 𝔅.
 I.e., if theory of 𝔅 and theory of 𝔅 are decidable, so is the theory of 𝔅^𝔅.

Examples of generalized products

- Direct products
- Weak direct products
- Cardinal sums
- Countably weak direct products
- Ordinal products
- Weak ordinal products
- Ordinal sums

Direct products

The direct product of an indexed family 𝔅 = ⟨𝔅_i | i ∈ I⟩, where for each i ∈ I, 𝔅_i = ⟨A_i, R_i⟩, is the system

 $\langle A, R \rangle$,

where $A = \mathscr{P}(A_i \mid i \in I)$, and for any $a, b \in A$,

 $\langle a,b\rangle \in R \text{ iff } \{i \mid \langle a(i),b(i)\rangle \in R_i\} = I.$

- A direct product can be viewed as a generalized product by letting
 - $\mathfrak{S} = \langle S(I), \Lambda, \cup, \cap, \overline{-}, \subseteq \rangle$,
 - $\theta = Rv_0v_1, \ \Phi \equiv V_0 = \overline{\Lambda} \text{ and } \zeta = \langle \Phi, \theta \rangle.$

Weak direct products

A weak direct product of an family 𝔅 = ⟨𝔅_i | i ∈ I⟩, where for each i ∈ I, 𝔅_i = ⟨A_i, R_i⟩, is the system ⟨A^{*}, R^{*}⟩, where A^{*} ⊆ A,

 $a \in A^*$ iff $\{ i \mid i \in I \text{ and } \mathfrak{A}_i \models \neg \psi[a(i)] \}$ is finite,

and where R^* is the relation R restricted to A^* .

- A weak direct product can be viewed as a *relativized* generalized product by letting
 - $\mathfrak{S} = \langle S(I), \Lambda, \cup, \cap, \overline{-}, \subseteq, Fin \rangle$,
 - $\theta^* = \neg \psi(v_0)$, $\theta = Rv_0v_1$, $\Phi \equiv V_0 = \overline{\Lambda}$, and $\zeta = \langle \Phi, \theta^*, \theta \rangle$.

Cardinal sums

• A cardinal sum of a non-empty indexed family $\mathfrak{A} = \langle \mathfrak{A}_i \mid i \in I \rangle$, where A_i and A_j are disjoint for any $i, j \in I$, is the system

$$\langle \bigcup_{i\in I} A_i, \bigcup_{i\in I} R_i \rangle.$$

• The cardinal sum can be reformulated as the relativized generalized product of the systems $\mathfrak{B} = \langle \mathfrak{B}_i \mid i \in I \rangle$, where

$$\mathfrak{B}_i = \langle A_i \cup \{c_i\}, R_i, \{c_i\} \rangle$$

and for each $i \in I$, $c_i \notin A_i$.

Cardinal sums

• More precisely, let $A = \mathscr{P}(B_i \mid i \in I)$ and let $A^* \subseteq A$ for which $a \in A^*$ iff $\{i \mid a(i) \neq c_i\}$ is a singleton.

$$\bullet \ \ {\rm For} \ a,b\in A^* {\rm , \ let}$$

$$\langle a,b\rangle \in R^* \text{ iff } \{i \mid \langle a(i),b(i)\rangle \in R_i\} \neq \Lambda.$$

- A cardinal sum can be viewed as a relativized generalized product by putting
 - $\mathfrak{S} = \langle S(I), \Lambda, \cup, \cap, \overline{-}, \subseteq \rangle$,
 - $\theta^* \equiv v_0 \neq c$, $\theta = Rv_0v_1$, $\Phi \equiv X_0 \neq \Lambda$, and $\zeta = \langle \Phi, \theta^*, \theta \rangle$.

The basic subset algebras

- rightarrow A sentence of \mathscr{L}_{σ} of the basic subset algebras says "how many elements are in the domain."
- rightarrow The theory of any one system \mathfrak{S}_I is decidable.
- rightarrow The theory of all systems \mathfrak{S}_I is decidable.
- The theory of all systems \mathfrak{S}_I is the same as the theory of all systems \mathfrak{S}_I where I is finite.
- Two systems \mathfrak{S}_I and $\mathfrak{S}_{I'}$ are elementarily equivalent if and only if I and I' both have the same finite cardinality or both are infinite.

Subset algebras with *Fin*

- Denote by $\mathfrak{S}'_I = \langle S(I), \Lambda, \cup, \cap, \neg, \subseteq, Fin \rangle$ the subset algebras with Fin and let \mathscr{L}'_{σ} be the corresponding language.
- Any formula $\varphi(y)$ of \mathscr{L}'_{σ} reduces to a disjunctive normal form where each literal is in one of the following forms

$$egin{aligned} E_i(C(oldsymbol{y})) & ext{or} & A_j(C(oldsymbol{y})) \ & ext{or} & A_k(C(oldsymbol{y})) \wedge Fin(C(oldsymbol{y})) \ & ext{or} &
ext{-}Fin(C(oldsymbol{y})). \end{aligned}$$

 $<\!\!\!<\!\!\!<\!\!\!<\!\!\!<\!\!\!<\!\!\!<\!\!\!>$ A sentence of \mathscr{L}'_{σ} says "how many elements are in the domain" and/or "whether the domain is finite."

Integer multiplication

- Let 𝔅 = ⟨𝔅, ·⟩ be the system where 𝔅 is the set of positive integers and · is the ordinary multiplication.
- Let $\mathfrak{B} = \langle \omega, + \rangle$ be Presburger arithmetic.
- Let $\mathfrak{C} = \langle C, M \rangle$ be the relational system, where C is the set of sequences $a \in \omega^{(\omega)}$ for which

 $\{i \mid i \in \omega \text{ and } a(i) \neq 0\}$ is finite,

and for $a, b, c \in C$,

 $\langle a, b, c \rangle \in M$ iff a(i) + b(i) = c(i) for all $i \in \omega$.

Integer multiplication

• C is a relativized generalized power of $\mathfrak B$ with respect to the subset algebra

$$\mathfrak{S}'_{\omega} = \langle S(\omega), \Lambda, \cup, \cap, \overline{-}, \subseteq, Fin \rangle.$$

• \mathfrak{C} is isomorphic to \mathfrak{A} under the map $f: C \to \mathbb{P}$ for which

$$f(x) = f(x_0, \dots, x_n, \dots) = p_0^{x_0} p_1^{x_1} \cdots p_n^{x_n} \cdots$$

where p_0, \ldots, p_n, \ldots is the increasing enumeration of primes.

The theory of \mathfrak{A} is decidable. It follows that the theory of integer multiplication is also decidable.

Decision procedure for integer multiplication

1. Given a sentence of structure \mathfrak{C} , find the reduction sequence

$$\langle \Phi, \theta_0, \ldots, \theta_{m-1} \rangle$$

where Φ is a formula of \mathfrak{S}'_{ω} , and θ_i (i < m) are sentences of Presburger arithmetic \mathfrak{B} .

2. Call the decision procedure of ${\mathfrak B}$ to construct an assignment tuple

 $\langle V_0, \ldots, V_{m-1} \rangle$

where for each i < m, $V_i = I$, if θ_i is true, and $V_i = \Lambda$ otherwise.

3. Call the decision procedure of the basic subset algebra to decide the truth of the sentence

$$\Phi[V_0,\ldots,V_{m-1}]$$

Subset algebras with \prec

 Denote by 𝔅[≺]_I = ⟨S(I), Λ, ∪, ∩, [−], ⊆, ≺⟩ the subset algebras, where I is linearly ordered by a relation < and ≺ is an induced order on singleton subsets of I, for which

 $X \prec Y$ iff there exist $i, j \in I$ s.t. $X = \{i\}, Y = \{j\}$ and i < j.

 \mathfrak{S}_I^{\prec} is a version of monadic second order systems of linear orders.

rightarrow In particular, when $I = \omega$, $Th(\mathfrak{S}_{\omega}^{\prec})$ is S1S and decidable.

Ordinal addition

- Let $\mathfrak{A} = \langle \omega, + \rangle$ be Presburger arithmetic.
- Let $\mathfrak{B} = \langle B, R \rangle$ be the relativized generalized power of \mathfrak{A} with respect to the subset algebra $\mathfrak{S}_{\rho}^{\prec}$, where B is the weak power $\omega^{(\rho)}$, and where the relation R is defined such that for $a, b, c \in A$,

 $\begin{array}{ll} \langle a,b,c\rangle \in R & \text{ if and only if} \\ either, \text{ for all } \xi < \rho, \ b(\xi) = 0 & \text{and} \ a(\xi) = c(\xi); \\ \text{ or, for some } \xi < \rho, \ b(\xi) \neq 0 & \text{and} \ a(\xi) + b(\xi) = c(\xi), \\ \text{ and, for all } \eta \text{ such that } \xi < \eta < \rho, \ b(\eta) = 0 & \text{and} \ a(\eta) = c(\eta), \\ \text{ and, for all } \eta < \xi, \ b(\eta) = c(\eta). \end{array}$

Ordinal addition

- Let 𝔅 = ⟨ω^ρ, S⟩ be the relational system of addition of ordinal numbers, where ω^ρ should be read as the ordinal exponentiation, and S is addition of ordinal numbers restricted to ω^ρ.
- € and 𝔅 are isomorphic under the map f : C → B for which if
 the Cantor normal form of α (α < ω^ρ) is

$$\alpha = \omega^{\xi_0} \cdot k_0 + \omega^{\xi_1} \cdot k_1 + \ldots + \omega^{\xi_{p-1}} \cdot k_{p-1}$$

(where $\rho > \xi_0 > \xi_1 \dots > \xi_{p-1}$ and $0 \neq k_i \in \omega$ for i < p), then

 $f(\xi_i) = k_i$ for each i < p, and $f(\eta) = 0$ otherwise.

Cardinal addition

- Let $\mathfrak{A} = \langle \omega, + \rangle$ be Presburger arithmetic.
- Let $\mathfrak{B} = \langle \rho, S \rangle$ be the relational system, where ρ is an arbitrary ordinal number different from 0 and S be the relation such that for $\alpha, \beta, \gamma \in \rho$,

 $\langle \alpha, \beta, \gamma \rangle \in S \text{ iff } \alpha \leq \beta \text{ and } \gamma = \beta \text{ or } \beta \leq \alpha \text{ and } \gamma = \alpha.$

Let 𝔅 = ⟨C, +⟩ be the relational system of addition of cardinal numbers, where C is the set of all cardinal numbers ≤ ℵ_ρ and + is addition of cardinal numbers restricted to C.

Cardinal addition

• Let $\mathfrak{D} = \langle D, R \rangle$ be the relativized generalized product of \mathfrak{A} and \mathfrak{B} , where D is the disjoint union of ω and ρ , and where the relation R is defined such that for $\alpha, \beta, \gamma \in D$,

$$egin{aligned} &\langle lpha,eta, \gamma
angle \in R & \textit{iff} & lpha,eta\in\omega \ \textit{and}\ lpha+eta=\gamma \ & or & lpha\in\omega \ \textit{and}\ eta\in
ho \ \textit{and}\ \gamma=eta \ & or & lpha\in
ho \ \textit{and}\ eta\in\omega \ \textit{and}\ \gamma=lpha \ & or & lpha\in
ho \ \textit{and}\ eta\in\omega \ \textit{and}\ \gamma=lpha \ & or & lpha\in
ho \ \textit{and}\ eta\in
ho \ \textit{and}\ \gamma=lpha \ & or & lpha\in
ho \ \textit{and}\ eta\in
ho \ \textit{and}\ \gamma=lpha \ & or & lpha\in
ho \ \textit{and}\ eta\in
ho \ \textit{and}\ eta\in
ho \ \textit{and}\ \gamma=lpha \ & or \ & \alpha\in
ho \ \textit{and}\ eta\in
ho \ \textit{and}\ eta\in
ho \ \textit{and}\ \langle lpha, eta, \gamma
angle\in S. \end{aligned}$$

• \mathfrak{D} and \mathfrak{C} are isomorphic under the map $f: D \to C$ for which $f(\alpha) = \alpha \quad \text{if } \alpha \in \omega, \quad \text{and} \quad f(\alpha) = \aleph_{\alpha} \quad \text{if } \alpha \in \rho.$ $\$ The theory of \mathfrak{D} is decidable, and so is the theory of \mathfrak{C} .

REFERENCES

References

- [FV59] S. Feferman and R.L. Vaught. The first order properties of products of algebraic systems. *Fundamenta Mathematicae*, 47:57–103, 1959.
- [Hod97] Wilfrid Hodges. *A Shorter Model Theory*. Cambridge University Press, Cambridge, 1997.