Decidability of integer multiplication and ordinal addition

Two applications of the Feferman-Vaught theory

Ting Zhang
Stanford University

Stanford

February 2003

The motivation

- There are many similar ways of forming products of algebraic systems in modern algebra and set theory.
- Usually definitions of products involve an index set I and in some cases take into account the structure on I.
- How to discover the first order properties of a complex system by the properties of its components?

The Feferman-Vaught theory answered the question in great generality. Namely, it provides a way of relating the first order properties of a product system to the properties of its factor systems and the properties of some subset algebras on the index set.

Direct Product

- Let $\left\langle\mathfrak{A}_{i} \mid i \in I\right\rangle$ be an indexed family of systems $\mathfrak{A}_{i}=\left\langle A_{i}, \ldots\right\rangle$ of the same signature μ and let the corresponding language be \mathscr{L}_{μ}.
- The direct product $\mathfrak{A}=\prod_{i \in I} \mathfrak{A}_{i}$ is the \mathscr{L}_{μ}-structure such that
- The carrier A of \mathfrak{A} is the Cartesian product of $\left\langle A_{i} \mid i \in I\right\rangle$.
- If F is a n-ary function symbol and $\boldsymbol{a}=\left\langle a_{0}, \ldots, a_{n-1}\right\rangle$ is a n-tuple of A, then for each $i \in I$,

$$
F^{\mathfrak{A}}(\boldsymbol{a})(i)=F^{\mathfrak{A}_{i}}\left(a_{0}(i), \ldots, a_{n-1}(i)\right) .
$$

- If R is a n-ary relation symbol and $\boldsymbol{a}=\left\langle a_{0}, \ldots, a_{n-1}\right\rangle$ is a n-tuple of A, then

$$
\boldsymbol{a} \in R^{\mathfrak{A}} \quad \text { iff }\left\langle a_{0}(i), \ldots, a_{n-1}(i)\right\rangle \in R^{\mathfrak{A}_{i}} \quad \text { for each } i \in I
$$

Preliminary Notations

- Let \mathscr{L}_{μ} be the language of component systems $\left\langle\mathfrak{A}_{i} \mid i \in I\right\rangle$.
- Let \mathscr{L}_{σ} be the language of the basic subset algebra

$$
\mathfrak{S}_{I}=\langle S(I), \Lambda, \cup, \cap,-, \subseteq\rangle
$$

- Let \mathscr{L}_{π} be the language of generalized products $\mathscr{P}(\mathfrak{A}, \mathfrak{S})$.
- A sequence $\zeta=\left\langle\Phi, \theta_{0}, \ldots, \theta_{m}\right\rangle$ is called a reduction sequence if Φ is a formula of \mathscr{L}_{σ} with at most the free variables X_{0}, \ldots, X_{m}, and $\theta_{0}, \ldots, \theta_{m}$ are formulas of \mathscr{L}_{μ}.
- A variable v is free in ζ if v is free in at least one of $\theta_{0}, \ldots, \theta_{m}$.

Generalized products

- For each reduction sequence $\zeta=\left\langle\Phi, \theta_{0}, \ldots, \theta_{m}\right\rangle$ with p free variables, let P_{ζ} be

$$
\left\{\left\langle a_{0}, \ldots, a_{p-1}\right\rangle \mid \boldsymbol{a} \in A^{\omega} \text { and } \mathfrak{S} \models \Phi\left[\left\|\theta_{0}\right\| \boldsymbol{a}, \ldots,\left\|\theta_{m}\right\| \boldsymbol{a}\right]\right\}
$$

By the generalized product $\mathscr{P}(\mathfrak{A}, \mathfrak{S})$ of the algebraic systems $\mathfrak{A}=\left\langle\mathfrak{A}_{i} \mid i \in I\right\rangle$ with respect to the algebra \mathfrak{S} of subsets of I, we mean the system

$$
\mathfrak{A}=\left\langle A, P_{\zeta_{0}}, \ldots, P_{\zeta_{n}}, \ldots\right\rangle
$$

\mathscr{A} If all the system \mathfrak{A}_{i} for $i \in I$ are identical to a system \mathfrak{B}, then $\mathscr{P}(\mathfrak{A}, \mathfrak{S})$ is called the generalized power of \mathfrak{B} with respect to \mathfrak{S}.

The basic theorem for generalized products

There is an effective procedure to compute, for each formula φ of \mathscr{L}_{π}, a partitioning sequence $\zeta=\left\langle\Phi, \theta_{0}, \ldots, \theta_{m}\right\rangle$ such that given any non-empty indexed family $\mathfrak{A}=\left\langle\mathfrak{A}_{i} \mid i \in I\right\rangle$ and any algebra $\mathfrak{S}=\langle S(I), \ldots\rangle$ with product $\mathscr{P}(\mathfrak{A}, \mathfrak{S})=\langle A, \ldots\rangle$ and any sequence $\boldsymbol{a} \in A^{\omega}$, we have:

$$
\mathfrak{A} \models \varphi[\boldsymbol{a}] \quad \text { iff } \quad \mathfrak{S} \models \Phi\left[\left\|\theta_{0}\right\| \boldsymbol{a}, \ldots,\left\|\theta_{m}\right\| \boldsymbol{a}\right] .
$$

In particular, if φ is a sentence, so are $\theta_{0}, \ldots, \theta_{m}$, and

$$
\mathfrak{A} \models \varphi \quad \text { iff } \quad \mathfrak{S} \models \Phi\left[\left\|\theta_{0}\right\|, \ldots,\left\|\theta_{m}\right\|\right]
$$

The construction

Case $\varphi=\neg \varphi^{\prime}$. Suppose that φ^{\prime} and a reduction sequence $\zeta^{\prime}=\left\langle\Phi^{\prime}, \theta_{0}^{\prime}, \ldots, \theta_{m}^{\prime}\right\rangle$ satisfy the induction hypothesis. Take

$$
\zeta=\left\langle\neg \Phi^{\prime}, \theta_{0}, \ldots, \theta_{m}\right\rangle .
$$

Case $\varphi=\varphi_{1} \vee \varphi_{2}$. Suppose that $\varphi_{i}(i=0,1)$ has a reduction sequence $\zeta_{i}=\left\langle\Phi_{i}, \theta_{0}^{(i)}, \ldots, \theta_{m_{i}}^{(i)}\right\rangle$. Take

$$
\zeta=\left\langle\Phi_{1} \vee \Phi_{2}, \theta_{0}^{(1)}, \ldots, \theta_{m_{1}}^{(1)}, \theta_{0}^{(2)}, \ldots, \theta_{m_{2}}^{(2)}\right\rangle .
$$

The construction

Case $\varphi=\exists v_{k} \varphi^{\prime}$. Suppose that φ^{\prime} and a reduction sequence $\zeta^{\prime}=\left\langle\Phi^{\prime}, \theta_{0}^{\prime}, \ldots, \theta_{m}^{\prime}\right\rangle$ satisfy the induction hypothesis. Take

$$
\begin{equation*}
\zeta=\left\langle\Phi, \theta_{0}, \ldots, \theta_{m}\right\rangle \tag{1}
\end{equation*}
$$

where $\theta_{i}=\exists v_{k} \theta_{i}^{\prime} \quad(i \leq m)$, and

$$
\begin{align*}
& \Phi=\exists U_{0} \ldots U_{m}\left[\operatorname{Part}_{m}\left(U_{0}, \ldots, U_{m}\right) \wedge\right. \\
&\left.\bigwedge_{i \leq m}\left(U_{i} \subseteq V_{i}\right) \wedge \Phi^{\prime}\left(U_{0}, \ldots, U_{m}\right)\right] . \tag{2}
\end{align*}
$$

Consequences of the basic theorem

The decision problem for the theory of the generalized product of systems $\left\langle\mathfrak{A}_{i} \mid i \in I\right\rangle$ with respect to \mathfrak{S}, in the case that I is finite can be reduced to the decision problem for the theories of the factors. I.e., if each factor has a decidable theory, then so has the (finite) generalized product.

The decision problem for the theory of the generalized power $\mathfrak{B}^{\mathfrak{S}}$ reduces to the decision problems for the theories of \mathfrak{B} and of \mathfrak{S}. I.e., if theory of \mathfrak{B} and theory of \mathfrak{S} are decidable, so is the theory of $\mathfrak{B}^{\mathfrak{G}}$.

Examples of generalized products

- Direct products
- Weak direct products
- Cardinal sums
- Countably weak direct products
- Ordinal products
- Weak ordinal products
- Ordinal sums

Direct products

- The direct product of an indexed family $\mathfrak{A}=\left\langle\mathfrak{A}_{i} \mid i \in I\right\rangle$, where for each $i \in I, \mathfrak{A}_{i}=\left\langle A_{i}, R_{i}\right\rangle$, is the system

$$
\langle A, R\rangle,
$$

where $A=\mathscr{P}\left(A_{i} \mid i \in I\right)$, and for any $a, b \in A$,

$$
\langle a, b\rangle \in R \text { iff }\left\{i \mid\langle a(i), b(i)\rangle \in R_{i}\right\}=I .
$$

A direct product can be viewed as a generalized product by letting

- $\mathfrak{S}=\langle S(I), \Lambda, \cup, \cap,-, \subseteq\rangle$,
- $\theta=R v_{0} v_{1}, \Phi \equiv V_{0}=\bar{\Lambda}$ and $\zeta=\langle\Phi, \theta\rangle$.

Weak direct products

- A weak direct product of an family $\mathfrak{A}=\left\langle\mathfrak{A}_{i} \mid i \in I\right\rangle$, where for each $i \in I, \mathfrak{A}_{i}=\left\langle A_{i}, R_{i}\right\rangle$, is the system $\left\langle A^{*}, R^{*}\right\rangle$, where $A^{*} \subseteq A$,

$$
a \in A^{*} \quad \text { iff }\left\{i \mid i \in I \text { and } \mathfrak{A}_{i} \models \neg \psi[a(i)]\right\} \text { is finite, }
$$

and where R^{*} is the relation R restricted to A^{*}.
A weak direct product can be viewed as a relativized generalized product by letting

- $\mathfrak{S}=\langle S(I), \Lambda, \cup, \cap,-, \subseteq$, Fin \rangle,
- $\theta^{*}=\neg \psi\left(v_{0}\right), \theta=R v_{0} v_{1}, \Phi \equiv V_{0}=\bar{\Lambda}$, and $\zeta=\left\langle\Phi, \theta^{*}, \theta\right\rangle$.

Cardinal sums

- A cardinal sum of a non-empty indexed family $\mathfrak{A}=\left\langle\mathfrak{A}_{i} \mid i \in I\right\rangle$, where A_{i} and A_{j} are disjoint for any $i, j \in I$, is the system

$$
\left\langle\bigcup_{i \in I} A_{i}, \bigcup_{i \in I} R_{i}\right\rangle
$$

- The cardinal sum can be reformulated as the relativized generalized product of the systems $\mathfrak{B}=\left\langle\mathfrak{B}_{i} \mid i \in I\right\rangle$, where

$$
\mathfrak{B}_{i}=\left\langle A_{i} \cup\left\{c_{i}\right\}, R_{i},\left\{c_{i}\right\}\right\rangle
$$

and for each $i \in I, c_{i} \notin A_{i}$.

Cardinal sums

- More precisely, let $A=\mathscr{P}\left(B_{i} \mid i \in I\right)$ and let $A^{*} \subseteq A$ for which

$$
a \in A^{*} \quad \text { iff }\left\{i \mid a(i) \neq c_{i}\right\} \text { is a singleton. }
$$

- For $a, b \in A^{*}$, let

$$
\langle a, b\rangle \in R^{*} \quad \text { iff }\left\{i \mid\langle a(i), b(i)\rangle \in R_{i}\right\} \neq \Lambda .
$$

A cardinal sum can be viewed as a relativized generalized product by putting

- $\mathfrak{S}=\langle S(I), \Lambda, \cup, \cap,-, \subseteq\rangle$,
- $\theta^{*} \equiv v_{0} \neq c, \theta=R v_{0} v_{1}, \Phi \equiv X_{0} \neq \Lambda$, and $\zeta=\left\langle\Phi, \theta^{*}, \theta\right\rangle$.

The basic subset algebras

A sentence of \mathscr{L}_{σ} of the basic subset algebras says "how many elements are in the domain."

The theory of any one system \mathfrak{S}_{I} is decidable.
The theory of all systems \mathfrak{S}_{I} is decidable.
The theory of all systems \mathfrak{S}_{I} is the same as the theory of all systems \mathfrak{S}_{I} where I is finite.

Two systems \mathfrak{S}_{I} and $\mathfrak{S}_{I^{\prime}}$ are elementarily equivalent if and only if I and I^{\prime} both have the same finite cardinality or both are infinite.

Subset algebras with Fin

- Denote by $\mathfrak{S}_{I}^{\prime}=\langle S(I), \Lambda, \cup, \cap,-, \subseteq, F i n\rangle$ the subset algebras with $F i n$ and let $\mathscr{L}_{\sigma}^{\prime}$ be the corresponding language.
- Any formula $\varphi(\boldsymbol{y})$ of $\mathscr{L}_{\sigma}^{\prime}$ reduces to a disjunctive normal form where each literal is in one of the following forms

$$
\begin{aligned}
E_{i}(C(\boldsymbol{y})) & \text { or } \\
& A_{j}(C(\boldsymbol{y})) \\
& \text { or } \quad A_{k}(C(\boldsymbol{y})) \wedge \operatorname{Fin}(C(\boldsymbol{y})) \\
& \text { or } \quad \neg \operatorname{Fin}(C(\boldsymbol{y})) .
\end{aligned}
$$

A sentence of $\mathscr{L}_{\sigma}^{\prime}$ says "how many elements are in the domain" and/or "whether the domain is finite."

Integer multiplication

- Let $\mathfrak{A}=\langle\mathbb{P}, \cdot\rangle$ be the system where \mathbb{P} is the set of positive integers and \cdot is the ordinary multiplication.
- Let $\mathfrak{B}=\langle\omega,+\rangle$ be Presburger arithmetic.
- Let $\mathfrak{C}=\langle C, M\rangle$ be the relational system, where C is the set of sequences $a \in \omega^{(\omega)}$ for which

$$
\{i \mid i \in \omega \text { and } a(i) \neq 0\} \text { is finite, }
$$

and for $a, b, c \in C$,

$$
\langle a, b, c\rangle \in M \quad \text { iff } a(i)+b(i)=c(i) \text { for all } i \in \omega
$$

Integer multiplication

- \mathfrak{C} is a relativized generalized power of \mathfrak{B} with respect to the subset algebra

$$
\mathfrak{S}_{\omega}^{\prime}=\langle S(\omega), \Lambda, \cup, \cap,-\subseteq, \text { Fin }\rangle
$$

- \mathfrak{C} is isomorphic to \mathfrak{A} under the map $f: C \rightarrow \mathbb{P}$ for which

$$
f(x)=f\left(x_{0}, \ldots, x_{n}, \ldots\right)=p_{0}^{x_{0}} p_{1}^{x_{1}} \cdots p_{n}^{x_{n}} \cdots
$$

where $p_{0}, \ldots, p_{n}, \ldots$ is the increasing enumeration of primes.
The theory of \mathfrak{A} is decidable. It follows that the theory of integer multiplication is also decidable.

Decision procedure for integer multiplication

1. Given a sentence of structure \mathfrak{C}, find the reduction sequence

$$
\left\langle\Phi, \theta_{0}, \ldots, \theta_{m-1}\right\rangle
$$

where Φ is a formula of $\mathfrak{S}_{\omega}^{\prime}$, and $\theta_{i}(i<m)$ are sentences of Presburger arithmetic \mathfrak{B}.
2. Call the decision procedure of \mathfrak{B} to construct an assignment tuple

$$
\left\langle V_{0}, \ldots, V_{m-1}\right\rangle
$$

where for each $i<m, V_{i}=I$, if θ_{i} is true, and $V_{i}=\Lambda$ otherwise.
3. Call the decision procedure of the basic subset algebra to decide the truth of the sentence

$$
\Phi\left[V_{0}, \ldots, V_{m-1}\right]
$$

Subset algebras with \prec

- Denote by $\mathfrak{S}_{I}^{\prec}=\langle S(I), \Lambda, \cup, \cap,-, \subseteq, \prec\rangle$ the subset algebras, where I is linearly ordered by a relation $<$ and \prec is an induced order on singleton subsets of I, for which

$$
X \prec Y \text { iff there exist } i, j \in I \text { s.t. } X=\{i\}, Y=\{j\} \text { and } i<j \text {. }
$$

\mathfrak{S}_{I}^{\prec} is a version of monadic second order systems of linear orders.
In particular, when $I=\omega, \operatorname{Th}\left(\mathfrak{S}_{\omega}^{\prec}\right)$ is $S 1 S$ and decidable.

Ordinal addition

- Let $\mathfrak{A}=\langle\omega,+\rangle$ be Presburger arithmetic.
- Let $\mathfrak{B}=\langle B, R\rangle$ be the relativized generalized power of \mathfrak{A} with respect to the subset algebra $\mathfrak{S}_{\rho}^{\prec}$, where B is the weak power $\omega^{(\rho)}$, and where the relation R is defined such that for $a, b, c \in A$,

$$
\langle a, b, c\rangle \in R \quad \text { if and only if }
$$

either, for all $\xi<\rho, b(\xi)=0$ and $a(\xi)=c(\xi) ;$
or, for some $\xi<\rho, b(\xi) \neq 0$ and $a(\xi)+b(\xi)=c(\xi)$,
and, for all η such that $\xi<\eta<\rho, b(\eta)=0$ and $a(\eta)=c(\eta)$, and, for all $\eta<\xi, b(\eta)=c(\eta)$.

Ordinal addition

- Let $\mathfrak{C}=\left\langle\omega^{\rho}, S\right\rangle$ be the relational system of addition of ordinal numbers, where ω^{ρ} should be read as the ordinal exponentiation, and S is addition of ordinal numbers restricted to ω^{ρ}.
- \mathfrak{C} and \mathfrak{B} are isomorphic under the map $f: C \rightarrow B$ for which if the Cantor normal form of $\alpha\left(\alpha<\omega^{\rho}\right)$ is

$$
\alpha=\omega^{\xi_{0}} \cdot k_{0}+\omega^{\xi_{1}} \cdot k_{1}+\ldots+\omega^{\xi_{p-1}} \cdot k_{p-1}
$$

(where $\rho>\xi_{0}>\xi_{1} \ldots>\xi_{p-1}$ and $0 \neq k_{i} \in \omega$ for $i<p$), then

$$
f\left(\xi_{i}\right)=k_{i} \text { for each } i<p, \quad \text { and } f(\eta)=0 \text { otherwise. }
$$

The theory of \mathfrak{B} is decidable, and so is the theory of \mathfrak{C}.

Cardinal addition

- Let $\mathfrak{A}=\langle\omega,+\rangle$ be Presburger arithmetic.
- Let $\mathfrak{B}=\langle\rho, S\rangle$ be the relational system, where ρ is an arbitrary ordinal number different from 0 and S be the relation such that for $\alpha, \beta, \gamma \in \rho$,

$$
\langle\alpha, \beta, \gamma\rangle \in S \text { iff } \alpha \leq \beta \text { and } \gamma=\beta \text { or } \beta \leq \alpha \text { and } \gamma=\alpha
$$

- Let $\mathfrak{C}=\langle C,+\rangle$ be the relational system of addition of cardinal numbers, where C is the set of all cardinal numbers $\leq \aleph_{\rho}$ and + is addition of cardinal numbers restricted to C.

Cardinal addition

- Let $\mathfrak{D}=\langle D, R\rangle$ be the relativized generalized product of \mathfrak{A} and \mathfrak{B}, where D is the disjoint union of ω and ρ, and where the relation R is defined such that for $\alpha, \beta, \gamma \in D$,

$$
\begin{array}{lll}
\langle\alpha, \beta, \gamma\rangle \in R & \text { iff } & \alpha, \beta \in \omega \text { and } \alpha+\beta=\gamma \\
& \text { or } & \alpha \in \omega \text { and } \beta \in \rho \text { and } \gamma=\beta \\
& \text { or } & \alpha \in \rho \text { and } \beta \in \omega \text { and } \gamma=\alpha \\
& \text { or } & \alpha \in \rho \text { and } \beta \in \rho \text { and }\langle\alpha, \beta, \gamma\rangle \in S .
\end{array}
$$

- \mathfrak{D} and \mathfrak{C} are isomorphic under the map $f: D \rightarrow C$ for which

$$
f(\alpha)=\alpha \quad \text { if } \alpha \in \omega, \quad \text { and } \quad f(\alpha)=\aleph_{\alpha} \quad \text { if } \alpha \in \rho
$$

The theory of \mathfrak{D} is decidable, and so is the theory of \mathfrak{C}.

REFERENCES

References

[FV59] S. Feferman and R.L. Vaught. The first order properties of products of algebraic systems. Fundamenta Mathematicae, 47:57-103, 1959.
[Hod97] Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, Cambridge, 1997.

