Decision Procedures for Recursive Data Structures with Integer Constraints

Ting Zhang, Henny B. Sipma, Zohar Manna
Stanford University
tingz,sipma,zm@cs.stanford.edu

Outline

Recursive Data Structures

Oppen's Algorithm
Recursive Data Structures with Integer Constraints

Decison Procedure for
$\operatorname{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Decison Procedure for
$\mathrm{Th}^{\forall}(\mathfrak{B}=k)$

Related Work

Future Work

- Motivation
- Recursive data structures
- Oppen's Algorithms
- Recursive data structures with integer constraints
- Decision procedure for structures with infinite atom domain
- Decision procedure for structures with finite atom domain

■ Related work
■ Future work

Motivation: Program Verification

Introduction

- Outline

O Motivation

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for
$\operatorname{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Decison Procedure for $\operatorname{Th}^{\forall}(\mathfrak{B}=k)$

Related Work

Future Work

- Recursive data structures are essential constructs in programming languages.
- To verify programs we need to reason about these data structures.
- Programming languages often involve multiple data domains.
- Common "mixed" constraints are combinations of data structures with integer constraints on the size of those structures.

Recursive Data Structures

Introduction
Recursive Data Structures
O Recursive Data Structures

- Language and Structure
- Axiomatization
- Example

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Decison Procedure for
$\underline{\operatorname{Th}}{ }^{\forall}(\mathfrak{B}=k)$
Related Work

Future Work

Definition 1 A data structure is recursive if
it is partially composed of smaller or simpler instances of the same structure.

- No Junk: the data domain is the set of data objects generated exclusively by applying constructors.
■ No Confusion: each data object is uniquely generated.

Recursive Data Structures = Term Algebras.

Example 1 A tree is composed of subtrees and leaves. Other examples include lists, stacks, counters, and records.

Language and Structure

Introduction
Recursive Data Structures

- Recursive Data Structures

O Language and Structure

- Axiomatization
- Example

Oppen's Algorithm
Recursive Data Structures with Integer Constraints

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Decison Procedure for
$\underline{\operatorname{Th}}{ }^{\forall}(\mathfrak{B}=k)$
Related Work

Future Work

A recursive data structure $\mathfrak{A}_{\lambda}:\langle\lambda ; \mathcal{A}, \mathcal{C}, \mathcal{S}, \mathcal{T}\rangle$ consists of

- λ : The data domain.
- \mathcal{A} : A set of atoms (constants): $a, b, c \ldots$
- \mathcal{C} : A finite set of constructors: $\alpha, \beta, \gamma, \ldots$ each of which is associated with an arity, e.g., $\alpha: \underbrace{\lambda \times \ldots \times \lambda}_{k} \rightarrow \lambda$.
- \mathcal{S} : A finite set of selectors: $\mathrm{s}_{1}^{\alpha}, \ldots, \mathrm{s}_{k}^{\alpha}: \lambda \rightarrow \lambda$ for each $\alpha \in \mathcal{C}$.
$\square \mathcal{T}$: A finite set of testers: $\mathrm{Is}_{\alpha}: \lambda \rightarrow \mathcal{B}$ for each $\alpha \in \mathcal{C}$.
- A special predicate $\mathrm{I}_{\mathrm{A}}: \lambda \rightarrow \mathcal{B}$.

Axiomatization

Introduction
Recursive Data Structures

- Recursive Data Structures
- Language and Structure
- Axiomatization
- Example

Oppen's Algorithm
Recursive Data Structures with Integer Constraints

Decison Procedure for
$\underline{T h}{ }^{\forall}\left(\mathfrak{B}^{\omega}\right)$
Decison Procedure for
$\underline{\mathrm{Th}}{ }^{\forall}(\mathfrak{B}=k)$
Related Work
Future Work

- Construction vs. selection.

$$
\left.\mathrm{s}_{i}^{\alpha}(x)=y \leftrightarrow \exists \bar{z}_{\alpha}\left(\alpha\left(\bar{z}_{\alpha}\right)=x \wedge y=z_{i}\right)\right) \vee\left(\forall \bar{z}_{\alpha}\left(\alpha\left(\bar{z}_{\alpha}\right) \neq x\right) \wedge x=y\right)
$$

- Unification closure. $\quad \alpha\left(\boldsymbol{x}_{\alpha}\right)=\alpha\left(\boldsymbol{y}_{\alpha}\right) \rightarrow \bigwedge_{1 \leq i \leq \operatorname{ar}(\alpha)} x_{i}=y_{i}$.
- Acyclicity. $\quad t(x) \neq x$, if t is built solely by constructors and t properly contains x.
- Uniqueness. $\quad \alpha\left(\boldsymbol{x}_{\alpha}\right) \neq \beta\left(\boldsymbol{y}_{\beta}\right), a \neq b$, and $a \neq \alpha\left(\boldsymbol{x}_{\alpha}\right)$, if a and b are distinct atoms and if α and β are distinct constructors.
- Domain closure.

$$
\left|\mathrm{s}_{\alpha}(x) \leftrightarrow \exists \bar{z}_{\alpha} \alpha\left(\bar{z}_{\alpha}\right)=x, \quad \quad\right| \mathrm{s}_{A}(x) \leftrightarrow \bigwedge_{\alpha \in \mathcal{C}} \neg \mid \mathrm{s}_{\alpha}(x)
$$

Example: LISP lists

Introduction
Recursive Data Structures

- Recursive Data Structures
- Language and Structure
- Axiomatization

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$
Decison Procedure for
$\mathrm{Th}^{\forall}(\mathfrak{B}=k)$

Related Work
Future Work

Signature:

$$
\left.\langle\text { list; \{nil\}; \{cons }\} ;\{\text { car, cdr }\} ;\left\{\mathrm{Is}_{\mathrm{A}}, \mathrm{I}_{\text {cons }}\right\}\right\rangle
$$

Axioms:

$$
\begin{aligned}
& (1) \mathrm{I}_{\mathrm{A}}(x) \leftrightarrow \neg \mathrm{s}_{\mathrm{cons}}(x), \quad(2) \operatorname{car}(\operatorname{cons}(x, y))=x, \\
& (3) \operatorname{cdr}(\operatorname{cons}(x, y))=y, \quad(4) \mathrm{Is}_{\mathrm{A}}(x) \leftrightarrow\{\operatorname{car}, \operatorname{cdr}\}^{+}(x)=x, \\
& (5) \mathrm{I}_{\mathrm{cons}}(x) \leftrightarrow \operatorname{cons}(\operatorname{car}(x), c d r(x))=x
\end{aligned}
$$

Formulas:

■ $\operatorname{cons}(y, z)=\operatorname{cons}(\operatorname{cdr}(x), z) \rightarrow \operatorname{cons}(\operatorname{car}(x), y)=x$ (valid).
■ $x=\operatorname{cons}(y, y) \rightarrow \operatorname{cons}(\operatorname{car}(x), y)=x$ (valid).

Directed Acyclic Graph

Introduction
Recursive Data Structures

Oppen's Algorithm
O Directed Acyclic Graph

- Example
- Bidirectional Closure
- Type Completion
- Oppen's Algorithm
- Example
- Example (Contd)

Recursive Data Structures with Integer Constraints

Decison Procedure for
$\underline{\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)}$
Decison Procedure for
$\underline{\mathrm{Th}}{ }^{\forall}(\mathfrak{B}=k)$
Related Work
Future Work

Definition 2 A term t can be represented by a tree T_{t} such that

- t is a constant or variable, then T_{t} is a leaf vertex labeled by t,
- if t is in the form $\alpha\left(t_{1}, \ldots, t_{k}\right)$, then T_{t} is the tree having the root labeled by t and having $T_{t_{1}}, \ldots, T_{t_{k}}$ as its subtrees.

A directed acyclic graph (DAG) G_{t} of t is obtained from T_{t} by "factoring out" the common subtrees (subterms).

The DAG of a formula is the DAG representing all terms in the formula.

Example: DAG Representation

$$
\operatorname{cons}(y, z)=\operatorname{cons}(x, z) \wedge \operatorname{cons}(x, y) \neq x
$$

$$
\begin{array}{lllll}
n_{1} & : & \operatorname{cons}(x, y) & n_{4} & : \\
n_{2} & : & \operatorname{cons}(x, z) & n_{5} & : \\
n_{3} & : & y \\
\operatorname{cons}(y, z) & n_{6} & : & z
\end{array}
$$

Bidirectional Closure

Introduction
Recursive Data Structures
Oppen's Algorithm

- Directed Acyclic Graph
- Example
- Bidirectional Closure
- Type Completion
- Oppen's Algorithm
- Example
- Example (Cont'd)

Recursive Data Structures with Integer Constraints

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}{ }^{\omega}\right)$
Decison Procedure for
$\underline{\mathrm{Th}}{ }^{\forall}(\mathfrak{B}=k)$
Related Work

Future Work
R : a binary relation.
■ Unification Closure $R \downarrow$ of R : the smallest equivalence relation extending R such that

$$
\alpha\left(\boldsymbol{x}_{\alpha}\right)=\alpha\left(\boldsymbol{y}_{\alpha}\right) \rightarrow \bigwedge_{1 \leq i \leq \operatorname{ar}(\alpha)} x_{i}=y_{i} .
$$

- Congruence Closure $R \uparrow$ of R : the smallest equivalence relation extending R such that

$$
\bigwedge_{1 \leq i \leq \operatorname{ar}(\alpha)} x_{i}=y_{i} \rightarrow \alpha\left(\boldsymbol{x}_{\alpha}\right)=\alpha\left(\boldsymbol{y}_{\alpha}\right) .
$$

■ Bidirectional Closure $R \Uparrow=R \downarrow+R \uparrow$.

Type Completion

Introduction
$\underline{\text { Recursive Data Structures }}$
Oppen's Algorithm

- Directed Acyclic Graph
- Example
- Bidirectional Closure
- Example
- Example (Cont'd)

Recursive Data Structures with Integer Constraints

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Decison Procedure for $\mathrm{Th}^{\forall}(\mathfrak{B}=k)$

Related Work

Future Work

Definition $3 \Phi^{\prime}$ is a type completion of Φ if Φ^{\prime} is obtained from Φ by adding tester predicates such that
for any term $\mathrm{s}(t)$ either $\mathrm{Is}_{\alpha}(t)$ (for some constructor α) or $\mathrm{I}_{\mathrm{s}_{\mathrm{A}}}(t)$ is present in Φ^{\prime}.

Example 2 A possible type completion for $y=\operatorname{car}(\operatorname{cdr}(x))$ is

$$
y=\operatorname{car}(\operatorname{cdr}(x)) \wedge \mathrm{Is}_{\text {cons }}(x) \wedge \mathrm{I}_{\mathrm{A}}(\operatorname{cdr}(x)) .
$$

A type completion Φ^{\prime} is compatible with Φ if the satisfiability of Φ implies that Φ^{\prime} is satisfiable and if any solution of Φ^{\prime} is a solution of Φ.

Oppen's Algorithm for \mathfrak{A}_{λ}

Introduction
Recursive Data Structures

Oppen's Algorithm

- Directed Acyclic Graph
- Example
- Bidirectional Closure
- Type Completion
- Oppen's Algorithm
- Example
- Example (Cont'd)

Recursive Data Structures with Integer Constraints

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$
Decison Procedure for
$\underline{\mathrm{Th}}{ }^{\forall}(\mathfrak{B}=k)$
Related Work

Future Work

Algorithm 1 Input

$$
\Phi: \underbrace{q_{1}=r_{1} \wedge \ldots \wedge q_{k}=r_{k}}_{\Phi_{e q}} \wedge \underbrace{s_{1} \neq t_{1} \wedge \ldots \wedge s_{l} \neq t_{l}}_{\Phi_{n e}} .
$$

1. Guess a type completion Φ and simplify selector terms accordingly. We still use Φ to denote the resulting formula.
2. Construct the DAG of Φ.
3. Compute the bidirectional closure $R \sharp$ of

$$
R=\left\{\left(q_{i}, r_{i}\right) \mid 1 \leq i \leq k\right\} .
$$

4. Return FAIL if $\exists i\left(s_{i}, t_{i}\right) \in R \sharp$; return SUCCESS otherwise.

Solution = Type Completion + DAG + Bidirectional Closure.

Example: Oppen’s Algorithm

Introduction
Recursive Data Structures

Oppen's Algorithm

- Directed Acyclic Graph
- Example
- Bidirectional Closure
- Type Completion
- Oppen's Algorithm
- Example
- Example (Cont'd)

Recursive Data Structures with Integer Constraints

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Decison Procedure for
$\mathrm{Th}^{\forall}(\mathfrak{B}=k)$

Related Work

Future Work

The following graph shows the DAG for

$$
\operatorname{ls}_{\mathrm{cons}}(x) \wedge \operatorname{cons}(y, z)=\operatorname{cons}(\operatorname{cdr}(x), z) \wedge \operatorname{cons}(\operatorname{car}(x), y) \neq x
$$

$$
\begin{array}{lll}
n_{1} & : & x \\
n_{2} & : & \operatorname{cons}(\operatorname{car}(x), y) \\
n_{3} & : & \operatorname{cons}(\operatorname{cdr}(x), z) \\
n_{4} & : & \operatorname{cons}(y, z)
\end{array}
$$

$$
n_{5} \quad: \quad \operatorname{car}(x)
$$

$$
n_{6} \quad: \quad \operatorname{cdr}(x)
$$

$$
n_{7}: \quad y
$$

$$
n_{8}: z
$$

Example (Cont'd): Oppen's Algorithm

Introduction

Recursive Data Structures

Oppen's Algorithm

- Directed Acyclic Graph
- Example
- Bidirectional Closure
- Type Completion
- Oppen's Algorithm
- Example

O Example (Cont'd)
Recursive Data Structures with Integer Constraints

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Decison Procedure for
$\mathrm{Th}^{\forall}(\mathfrak{B}=k)$

Related Work

Future Work

- Initial partition.

$$
\left\{\left\{n_{1}\right\},\left\{n_{2}\right\},\left\{n_{3}\right\},\left\{n_{4}\right\},\left\{n_{5}\right\},\left\{n_{6}\right\},\left\{n_{7}\right\},\left\{n_{8}\right\}\right\}
$$

- Merge n_{3} and n_{4} since $n_{3}=n_{4}$.

$$
\left\{\left\{n_{1}\right\},\left\{n_{2}\right\},\left\{n_{3}, n_{4}\right\},\left\{n_{5}\right\},\left\{n_{6}\right\},\left\{n_{7}\right\},\left\{n_{8}\right\}\right\}
$$

- Merge n_{6} and n_{7} by unification closure algorithm.

$$
\left\{\left\{n_{1}\right\},\left\{n_{2}\right\},\left\{n_{3}, n_{4}\right\},\left\{n_{5}\right\},\left\{n_{6}, n_{7}\right\},\left\{n_{8}\right\}\right\}
$$

- Merge n_{1} and n_{2} by congruence closure algorithm.

$$
\left\{\left\{n_{1}, n_{2}\right\},\left\{n_{3}, n_{4}\right\},\left\{n_{5}\right\},\left\{n_{6}, n_{7}\right\},\left\{n_{8}\right\}\right\}
$$

The conjunction is unsatisfiable since $n_{1} \neq n_{2}$.

Language and Structure

Introduction
Recursive Data Structures
Oppen's Algorithm
Recursive Data Structures with
Integer Constraints

- Language and Structure
- Diffi culty of N-O Combination
- Length Constraint
- Example
- Main Theorem

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Decison Procedure for
$\mathrm{Th}^{\forall}(\mathfrak{B}=k)$
Related Work
Future Work

Presburger arithmetic (PA): $\mathscr{L}_{\mathbb{Z}}, \mathfrak{A}_{\mathbb{Z}}$.
Two-sorted language $\Sigma=\Sigma_{\lambda} \cup \Sigma_{\mathbb{Z}} \cup\{||$.$\} :$

1. Σ_{λ} : signature of recursive data structures.
2. $\Sigma_{\mathbb{Z}}$: signature of Presburger arithmetic.
3. |.| : $\lambda \rightarrow \mathbb{N}$, the length function defined by

$$
|t|=\left\{\begin{array}{lll}
1 & \text { if } & t \text { is an atom } \\
\sum_{i=1}^{k}\left|t_{i}\right| & \text { if } & t \equiv \alpha\left(t_{1}, \ldots, t_{k}\right) .
\end{array}\right.
$$

$|t|$: generalized integer terms.
Two-sorted structures:

- $\mathfrak{B}^{\omega}=\left\langle\mathfrak{A}_{\lambda}^{\omega} ; \mathfrak{A}_{\mathbb{Z}} ;\right| \cdot| \rangle ; \lambda$ contains infinitely many atoms.
- $\mathfrak{B}^{=k}=\left\langle\mathfrak{A}_{\lambda}^{=k} ; \mathfrak{A}_{\mathbb{Z}} ;\right| \cdot| \rangle ; \lambda$ contains exactly k atoms.

Difficulty of N-O Combination

Introduction
Recursive Data Structures
Oppen's Algorithm
Recursive Data Structures with Integer Constraints

- Language and Structure
- Diffi culty of N-O Combination
- Length Constraint
- Example
- Main Theorem

Decison Procedure for $T h^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Decison Procedure for
$\underline{T h^{\forall}(\mathfrak{B}=k)}$
Related Work

Future Work

Nelson-Oppen combination methods is not directly applicable to the extended theory.
Example 3 Consider in $\mathfrak{B}^{=1}$ with $\lambda=\{a\}$.

$$
\underbrace{|u|=3}_{\Phi_{\mathbb{Z}}} \wedge \underbrace{u \neq \operatorname{cons}(\operatorname{cons}(a, a), a) \wedge u \neq \operatorname{cons}(a, \operatorname{cons}(a, a))}_{\Phi_{\lambda}}
$$

is unsatisfiable in $\mathfrak{B}^{=1}$, while $\Phi_{\mathbb{Z}}$ is satisfiable in $\mathfrak{A}_{\mathbb{Z}}$ and Φ_{λ} is satisfiable in \mathfrak{A}_{λ}.

There are "hidden" constraints on data structure length.

Length Constraint

Introduction
Recursive Data Structures
Oppen's Algorithm
Recursive Data Structures with
Integer Constraints

- Language and Structure
- Diffi culty of N-O Combination

- Length Constraint

- Example
- Main Theorem

Decison Procedure for
$T h^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Decison Procedure for
$\mathrm{Th}^{\forall}(\mathfrak{B}=k)$
Related Work
Future Work

- An arithmetic constraint Φ_{Δ} is a length constraint of Φ_{λ}, if there is one-to-one correspondence between integer variables and terms occurring in Φ_{λ}.
- Φ_{Δ} is sound, if
for any satisfying assignment ν_{λ} of $\Phi_{\lambda},\left|\nu_{\lambda}\right|$ is a satisfying assignment for Φ_{Δ}.
- Φ_{Δ} is complete, if
whenever Φ_{λ} is satisfiable, for any satisfying assignment ν_{Δ} of Φ_{Δ} there exists a satisfying assignment ν_{λ} of Φ_{λ} such that $\left|\nu_{\lambda}\right|=\nu_{\Delta}$.
- Φ_{Δ} is induced by Φ_{λ}, if
Φ_{Δ} is both sound and complete.

Example: Length Constraint

Introduction
$\underline{\text { Recursive Data Structures }}$
Oppen's Algorithm
Recursive Data Structures with
Integer Constraints

- Language and Structure
- Diffi culty of N-O Combination
- Length Constraint
- Main Theorem

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$
Decison Procedure for
$\underline{T h}{ }^{\forall}(\mathfrak{B}=k)$
Related Work
Future Work
$\Phi_{\lambda}: \operatorname{cons}(x, y)=z$.
■ $\Phi_{\Delta}^{1}:|x|<|z| \wedge|y|<|z|$ is sound but not complete.
Reason: the integer assignment

$$
\nu_{\Delta}:\{|x|=3,|y|=3,|z|=4\}
$$

can not be realized.
■ $\Phi_{\Delta}^{2}:|x|+|y|=|z| \wedge|x|>5 \wedge|y|>0$ is complete but not sound.
Reason: it does not satisfy the data assignment

$$
\nu_{\lambda}:\{x=a, y=a, z=\operatorname{cons}(a, a)\}
$$

$\square \Phi_{\Delta}:|x|+|y|=|z| \wedge|x|>0 \wedge|y|>0$ is both sound and complete, and hence is the induced constraint from Φ_{λ}.

Main Theorem

Recursive Data Structures
Oppen's Algorithm
Recursive Data Structures with Integer Constraints

- Language and Structure
- Diffi culty of N-O Combination
- Length Constraint
- Example

Main Theorem 1 Let Φ be a mixed constraint in the form $\Phi_{\mathbb{Z}} \wedge \Phi_{\lambda}$ and Φ_{Δ} the induced length constraint with respect to Φ_{λ}. Then Φ is satisfiable in \mathfrak{B} if and only if

1. $\Phi_{\Delta} \wedge \Phi_{\mathbb{Z}}$ is satisfiable in $\mathfrak{A}_{\mathbb{Z}}$, and
2. Φ_{λ} is satisfiable in \mathfrak{A}_{λ}.

The decision problem for quantifier-free theories reduces to computing the induced length constraints in Presburger arithmetic.

Notations

$$
\begin{array}{ll}
\operatorname{Tree}(t) & : \exists x_{1}, \ldots, x_{n} \geq 0\left(|t|=\left(\sum_{i=1}^{n}\left(d_{i}-1\right) x_{i}\right)+1\right) \\
\operatorname{Node}^{\alpha}\left(t, \boldsymbol{t}_{\alpha}\right) & :|t|=\sum_{i=1}^{\delta(\alpha)}\left|t_{i}\right| \\
\operatorname{Tree}^{\alpha}(t) & : \exists \boldsymbol{t}_{\alpha}\left(\operatorname{Node}^{\alpha}\left(t, \boldsymbol{t}_{\alpha}\right) \wedge \bigwedge_{i=1}^{\delta(\alpha)} \operatorname{Tree}\left(t_{i}\right)\right)
\end{array}
$$

- \boldsymbol{t}_{α} stands for $t_{1}, \ldots, t_{\operatorname{ar}(\alpha)}$.
- d_{1}, \ldots, d_{n} are the distinct arities of the constructors.
- Tree (t) is true iff $|t|$ is the length of a well-formed tree.
- Node ${ }^{\alpha}\left(t, \boldsymbol{t}_{\alpha}\right)$ forces the length of an α-typed node with known children to be the sum of the lengths of its children.

Construction of Φ_{Δ} in \mathfrak{B}^{ω}

Introduction

$\underline{\text { Recursive Data Structures }}$
Oppen's Algorithm
Recursive Data Structures with Integer Constraints

Decison Procedure for
$\frac{\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)}{\text { Notations }}$

- Construction of $\Phi \triangle$
- DP for $\mathrm{Th}{ }^{\forall}\left(\mathfrak{B}^{\omega}\right)$
- Example
- Example (Cont'd)

Decison Procedure for
$\underline{\mathrm{Th}}{ }^{\forall}(\mathfrak{B}=k)$
Related Work
Future Work

Algorithm 2 Input:

1. Φ_{λ} : a (type-complete) data constraint,
2. G_{λ} : the DAG of Φ_{λ},
3. $R A$: the bidirectional closure obtained by Algorithm 1 . Initially set $\Phi_{\Delta}=\emptyset$. For each term t add the following to Φ_{Δ}.

- $|t|=1$, if t is an atom;
- $|t|=|s|$, if $(t, s) \in R \sharp$.
- Tree (t) if t is an untyped leaf vertex.
- $\operatorname{Node}^{\alpha}\left(t, \boldsymbol{t}_{\alpha}\right)$ if t is an α-typed vertex with children \boldsymbol{t}_{α}.
- Tree ${ }^{\alpha}(t)$ if t is an α-typed leaf vertex.

Decision Procedure for $\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Introduction
Recursive Data Structures
Oppen's Algorithm
Recursive Data Structures with Integer Constraints

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

- Notations
- Construction of $\Phi \Delta$
- DP for $\mathrm{Th}^{\forall}(\mathfrak{B} \omega)$
- Example
- Example (Cont'd)

Decison Procedure for
$\underline{\mathrm{Th}}{ }^{\forall}(\mathfrak{B}=k)$
Related Work
Future Work

Input: $\Phi_{\lambda} \wedge \Phi_{\mathbb{Z}}$.

1. Guess a type completion Φ_{λ}^{\prime} of Φ_{λ}.
2. Call Algorithm 1 on Φ_{λ}^{\prime}.

■ Return FAIL if Φ_{λ}^{\prime} is unsatisfiable; continue otherwise.
3. Construct Φ_{Δ} from G_{λ}^{\prime} using Algorithm 2.

- Return SUCCESS if $\Phi_{\Delta} \wedge \Phi_{\mathbb{Z}}$ is satisfiable.

■ Return FAIL otherwise.

Example: DP for $\operatorname{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

- Notations
- Construction of $\Phi \Delta$
- DP for $T h^{\forall}\left(\mathfrak{B}^{\omega}\right)$
- Example
- Example (Cont'd)

Decison Procedure for
$\underline{T h}{ }^{\forall}(\mathfrak{B}=k)$
Related Work

$$
\begin{equation*}
\operatorname{ls}_{\mathrm{cons}}(y) \wedge x=\operatorname{cons}(\operatorname{car}(y), y) \wedge|\operatorname{cons}(\operatorname{car}(y), y)|<2|\operatorname{car}(x)| \tag{1}
\end{equation*}
$$

Example (Cont'd): DP for $\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Introduction

Recursive Data Structures
Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

- Notations
- Construction of Φ_{Δ}
- DP for $T h^{\forall}\left(\mathfrak{B}^{\omega}\right)$
- Example

Decison Procedure for
$\mathrm{Th}^{\forall}(\mathfrak{B}=\boldsymbol{k})$

Related Work

Future Work

- Unification and congruence closure:

$$
\left\{\left\{n_{1}, n_{2}\right\},\left\{n_{3}, n_{5}\right\},\left\{n_{4}, n_{6}\right\},\left\{n_{7}\right\}\right\}
$$

- Induced length constraints:

$$
\begin{gather*}
|\operatorname{car}(x)| \geq 1 \wedge|\operatorname{cdr}(x)| \geq 1 \wedge|\operatorname{car}(y)| \geq 1 \wedge|\operatorname{cdr}(y)| \geq 1 \tag{2}\\
|x|=|\operatorname{cons}(\operatorname{car}(y), y)| \wedge|\operatorname{car}(x)|=|\operatorname{car}(y)| \wedge|\operatorname{cdr}(x)|=|y| \tag{3}\\
|x|=|\operatorname{car}(x)|+|\operatorname{cdr}(x)| \wedge|y|=|\operatorname{car}(y)|+|\operatorname{cdr}(y)| \wedge \\
|\operatorname{cons}(\operatorname{car}(y), y)|=|\operatorname{car}(y)|+|y| . \tag{4}
\end{gather*}
$$

(2), (3) and (4) imply $|\operatorname{cons}(\operatorname{car}(y), y)| \geq 2|\operatorname{car}(x)|+1$.

Constraint (1) is unsatisfiable.

Complication for $\operatorname{Th}^{\forall}\left(\mathfrak{B}^{=k}\right)$

Introduction
Recursive Data Structures
Oppen's Algorithm
Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Decison Procedure for
$\frac{\mathrm{Th}}{}{ }^{\forall}(\mathfrak{B}=k)$
$T h{ }^{\forall}(\mathfrak{B}=k)$

- Counting Constraints
- Equality Completion
- Construction of Φ_{Δ}
- DP for $\mathrm{Th}^{\forall}\left(\mathfrak{B}^{=k}\right)$

Related Work
Future Work

Suppose that the atom domain contains only one atom. Then

$$
\begin{align*}
|x|=3 & \wedge \operatorname{ls}_{\mathrm{A}}(y) \wedge \\
& x \neq \operatorname{cons}(\operatorname{cons}(y, y), y) \wedge x \neq \operatorname{cons}(y, \operatorname{cons}(y, y)) \tag{5}
\end{align*}
$$

is unsatisfiable while by the previous procedure

$$
\begin{align*}
|y|=1 & \wedge|\operatorname{cons}(y, y)|=2 \\
& |\operatorname{cons}(\operatorname{cons}(y, y), y)|=3 \wedge \mid \operatorname{cons}(y, \operatorname{cons}(y, y) \mid=3 \tag{6}
\end{align*}
$$

is obviously satisfiable together with $|x|=3$.
Need to count how many distinct trees at certain length.

Counting Constraints

Introduction
Recursive Data Structures
Oppen's Algorithm
Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Decison Procedure for
$T{ }^{\forall} \forall(\mathfrak{B}=k)$

- Complication for
$T h^{\forall}(\mathfrak{B}=k)$
- Counting Constraints
- Equality Completion
- Construction of Φ_{Δ}
- DP for $\mathrm{Th}^{\forall}(\mathfrak{B}=k)$

Related Work
Future Work

Definition 4 A counting constraint is a predicate $\mathrm{CNT}_{k, n}^{\alpha}(x)$ that is true if and only if
there are at least $n+1$ different α-terms of length x in the language with exactly $k>0$ distinct atoms.

Example 4 For $\mathfrak{B}_{\text {list }}^{=1}, \operatorname{CNT}_{n, 1}^{\text {cons }}(x) \equiv x \geq m$ where m is the least number such that the m-th Catalan number

$$
C_{m}=\frac{1}{m}\binom{2 m-2}{m-1}
$$

is greater than n.
$\mathrm{CNT}_{k, n}^{\alpha}(x)$ is expressible by a quantifier-free Presburger formula that can be computed in time $O(n)$.

Equality Completion

Introduction
$\underline{\text { Recursive Data Structures }}$
Oppen's Algorithm
Recursive Data Structures with Integer Constraints

Decison Procedure for
$\underline{\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)}$
Decison Procedure for
$\mathrm{Th}{ }^{\forall}(\mathfrak{B}=k)$

- Complication for
$\mathrm{Th}{ }^{\forall}(\mathfrak{B}=k)$
- Counting Constraints
- Equality Completion
- Construction of Φ_{Δ}
- DP for $\mathrm{Th}^{\forall}\left(\mathfrak{B}^{=k}\right)$

Related Work
Future Work

Definition 5 (Equality Completion) Let S be a set of λ-terms. An equality completion θ of S is a formula consisting of the following literals:
for any $u, v \in S$, exactly one of $u=v$ and $u \neq v$, and exactly one of $|u|=|v|$ and $|u| \neq|v|$ are in θ.
Example 5 An equality completion of $S=\{x, y, z, \alpha(x, z)\}$ is

$$
\begin{equation*}
|y|=|\alpha(x, z)| \wedge|x|=|z| \wedge|y| \neq|x| \wedge \bigwedge_{t, t^{\prime} \in S ; t \neq t^{\prime}} t \neq t^{\prime} \tag{7}
\end{equation*}
$$

The notion of equality completion naturally generalizes to a conjunction of literals, e.g., the above is an equality completion of $\theta: y \neq \alpha(x, z)$.

Construction of Φ_{Δ} in $\mathfrak{B}^{=k}$

Introduction
Recursive Data Structures
Oppen's Algorithm
Recursive Data Structures with Integer Constraints

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$
Decison Procedure for
$\mathrm{Th}^{\forall}(\mathfrak{B}=k)$

- Complication for
$\mathrm{Th}{ }^{\forall}(\mathfrak{B}=k)$
- Counting Constraints
- Equality Completion
- Construction of $\Phi \Delta$
- DP for $\mathrm{Th}^{\forall}\left(\mathfrak{B}^{=k}\right)$

Related Work
Future Work

Let $\operatorname{CLT}_{n+1}\left(t_{0}, \ldots, t_{n}\right)$ denote that t_{0}, \ldots, t_{n} have the same length but are pairwise unequal.
Algorithm 3 Input:
Φ_{λ} (type and equality complete), G_{λ} and $R \sharp$.

1. Call Algorithm 2 to obtain Φ_{Δ}.
2. For each t occurring in $\operatorname{CLT}_{n+1}\left(t_{0}, \ldots, t_{n}\right)$, add $\mathrm{CNT}_{k, n}^{\alpha}(|t|)$.

Example 6 Formula (5) implies

$$
\operatorname{CLT}_{3}(x, \operatorname{cons}(\operatorname{cons}(y, y), y), \operatorname{cons}(y, \operatorname{cons}(y, y)))
$$

which gives the counting constraint $|x| \geq 4$. A contradiction.

Decision Procedure for $\mathrm{Th}^{\forall}\left(\mathfrak{B}^{=k}\right)$

```
Introduction
```

Recursive Data Structures
Oppen's Algorithm
Recursive Data Structures with Integer Constraints

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Decison Procedure for
Th ${ }^{\forall}(\mathfrak{B}=k)$

- Complication for
$\mathrm{Th}{ }^{\forall}(\mathfrak{B}=k)$
- Counting Constraints
- Equality Completion
- Construction of $\Phi \Delta$
-DP for $\mathrm{Th}^{\forall}\left(\mathfrak{B}^{=k}\right)$
Related Work
Future Work

Input: $\Phi_{\lambda} \wedge \Phi_{\mathbb{Z}}$.

1. Guess a type and equality completion Φ_{λ}^{\prime} of Φ_{λ}.
2. Call Algorithm 1 on Φ_{λ}^{\prime}.

■ Return FAIL if Φ_{λ}^{\prime} is unsatisfiable; continue otherwise.
3. Construct Φ_{Δ} from G_{λ}^{\prime} using Algorithm 3 .
$■$ Return SUCCESS if $\Phi_{\Delta} \wedge \Phi_{\mathbb{Z}}$ is satisfiable.
■ Return FAIL otherwise.

Related Work on Arithmetic Integration

- Combining integer with sets and multisets [Zar02b, Zar02a].
- Combining integer with lists [Zar01].
- Quantifier-free theory of term algebras with Knuth-Bendix order [KV00, KV01].
- First-order theory of term algebras with Knuth-Bendix order [ZSM04a].
- First-order theory of term algebras with integer constraints [ZSM04b].

Future Work on Arithmetic Integration

Introduction
Recursive Data Structures
Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for
$\mathrm{Th}^{\forall}\left(\mathfrak{B}^{\omega}\right)$

Decison Procedure for
$\mathrm{Th}^{\forall}(\mathfrak{B}=k)$

Related Work

Future Work

- Recursive data structures with subterm relation. E.g.,

$$
y \preceq \operatorname{cons}(x, \operatorname{cons}(x, x)) \rightarrow|y| \leq|x| .
$$

- Queues (flat lists without concatenation). E.g.,

$$
\operatorname{rcons}(\operatorname{rcons}(y, a), b)=\operatorname{cons}(b, \operatorname{cons}(a, y)) \rightarrow|y| \equiv_{2} 1
$$

- Word concatenation. E.g.,

$$
x \circ a \circ y=y \circ b \circ x \rightarrow|x|=|y|
$$

[KV00] Konstantin Korovin and Andrei Voronkov. A decision procedure for the existential theory of term algebras with the Knuth-Bendix ordering. In Proc. 15th IEEE Symp. Logic in Comp. Sci., pages 291-302, 2000.
[KV01] Konstantin Korovin and Andrei Voronkov. KnuthBendix constraint solving is NP-complete. In Proceedings of 28th International Colloquium on Automata, Languages and Programming (ICALP), volume 2076 of Lecture Notes in Computer Science, pages 979-992. Springer-Verlag, 2001.
[Zar01] Calogero G. Zarba. Combining lists with integers. In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, International Joint Conference on Automated Reasoning (Short Papers), Technical Report DII 11/01, pages 170-179. University of Siena, Italy, 2001.
[Zar02a] Calogero G. Zarba. Combining multisets with integers. In Andrei Voronkov, editor, Proc. of the $18^{\text {th }}$ Intl. Conference on Automated Deduction, volume 2392 of Lecture Notes in Artifi cial Intelligence, pages 363-376. Springer, 2002.
[Zar02b] Calogero G. Zarba. Combining sets with integers. In Alessandro Armando, editor, Frontiers of Combining

Systems, volume 2309 of Lecture Notes in Artifi cial Intelligence, pages 103-116. Springer, 2002.
[ZSM04a] Ting Zhang, Henny Sipma, and Zohar Manna. The decidability of the fi rst-order theory of term algebras with Knuth-Bendix order, 2004. Submitted.
[ZSM04b] Ting Zhang, Henny Sipma, and Zohar Manna. Term algebras with length function and bounded quantifi er alternation, 2004. To appear in the Proceedings of the $17^{\text {th }}$ International Conference on Theorem Proving in Higher Order Logics.

