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Motivation: Program Verification

ncdcior m Recursive data structures are essential constructs in
programming languages.

RERUE2 DE GeS = To verify programs we need to reason about these data

Oppen’s Algorithm Str u Ctu res.

meserconans @ Programming languages often involve multiple data domains.
Decison Procedre for = Common “mixed” constraints are combinations of data

ThY (BY)

o structures with integer constraints on the size of those

ThY (8 =F) structures.

Related Work

Future Work

STeP Group, June 29, 2004 IJCAR 2004 - p. 3/31



http://step-cs.stanford.edu/

Recursive Data Structures

Inrosction Definition 1 A data structure is recursive if

T it is partially composed of smaller or simpler instances
¢ ot of the same structure.

e Example

Opper's Algoritm = No Junk: the data domain is the set of data objects
Recurse Dats Sictues i generated exclusively by applying constructors.

becison Procsdure fo = No Confusion: each data object is uniquely generated.
ThY (BY)

Decison Procedure for .

ThY (B3 =k) [1 Recursive Data Structures = Term Algebras.

Related Work

Future Work Example 1 A tree is composed of subtrees and leaves. Other

examples include lists, stacks, counters, and records.
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J_F"
. Language and Structure

<
Inroduction A recursive data structure A, : (\; A,C, S, T) consists of
Re:LZI:sTvZ?;:\j:LZiTeS m )\ The data domain.

= A: A set of atoms (constants): a, b, c. ...

Oppen's Algorithm = C: Afinite set of constructors: «, 3, v, ...each of which is
Recursive Data Structures with associated with an arity, .g., a : A x ... x A = A.

e —— ~

Decison Procedure for k

ThY (:8¢) = S: Afinite set of selectors: s¢,...,sg : A = A foreach a € C.
ok = 7 Afinite set of testers: Is, : A — B for each a € C.

Related Work = A special predicate Isp : A — B.

Future Work
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= Axiomatization

introduction = Construction vs. selection.

Recursive Data Structures

e Recursive Data Structures SQ (ZU) =y < Hza (a(Za) — x/\y — zz))\/<vza(a(2a) # ZE)/\ZE = y)

e Language and Structure 1

e Example

= Unification closure.  a(za) = a(ya) = Ai<icar(a) i = ¥i-

Oppen’s Algorithm

= Acyclicity. t(x) # x, if ¢ is built solely by constructors and ¢

Recursive Data Structures with

Integer Constraints properly Contalns T.

ey = Uniqueness. a(za) # B(ys), a# b, and a # a(z,), ifa
Deszon proceure and b are distinct atoms and if o« and 3 are distinct

Th (B ) constructors.

Related Work

= Domain closure.

Future Work

Isq(z) <> d Zpa(Zy) = o, Isq(x) < /\ —lse ().
acC
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- Example: LISP lists

Introduction

Recursive Data Structures

e Recursive Data Structures
e Language and Structure
e Axiomatization

Oppen’s Algorithm

Recursive Data Structures with
Integer Constraints

Decison Procedure for

ThY (BY)

Decison Procedure for

ThY (8 =F)

Related Work

Future Work

STeP Group, June 29, 2004

Signature:
(list; {nil}; {cons}; {car, cdr}; {lsa, Iscons })
Axioms:

(1) Isa(x) > —lscons(z), (2) car(cons(z,y)) = =,
(3) cdr(cons(z,y)) =y, (4)lIsa(z) < {car cdr} ™ (z) =z,
(5) Iscons(x) <> cons(car(x), cdr(x)) =

Formulas:

= cons(y, z) = cons(cdr(x), z) — cons(car(x),y) = x (valid).
= ¢ = cons(y,y) — cons(car(z),y) = x (valid).

IJCAR 2004 - p. 7/31
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o
& Directed Acyclic Graph

Inroducton Definition 2 A term ¢t can be represented by a tree T} such that
T = ¢ is a constant or variable, then T; is a leaf vertex

- it o cron labeled by ¢,

e Example . . . 1

« Bidrectional Closure w iftisinthe form a(ty,...,tx), then T} is the tree

e Type Completion . .

« Oppen's Algorithm having the root labeled by ¢ and having 7%, ,...,T;, as

e Example .

s its subtrees.

Recursive Data Structures with

e s A directed acyclic graph (DAG) G; of t is obtained from T; by
if{?(”gzje)d“ef” “factoring out” the common subtrees (subterms).

ok [0 The DAG of a formula is the DAG representing all terms in
— the formula.

Future Work

STeP Group, June 29, 2004 IJCAR 2004 - p. 8/31



http://step-cs.stanford.edu/

Example: DAG Representation

Introduction

cons(y, z) = cons(x,z) A cons(x,y) # x.

Recursive Data Structures

Oppen'’s Algorithm
e Directed Acyclic Graph n1 n

2 ns
e Bidirectional Closure
e Type Completion
e Oppen’s Algorithm
e Example
5 n

e Example (Contd) N4 n

6

Recursive Data Structures with
Integer Constraints

ecison Procedure for . .
e et ny : cons(x,y) ng :ox

Decison Procedure for n2 . Cons (aj7 Z) n5
ThY (B3=F)

ng : cons(y,z) ne : =z

Related Work

Future Work
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= Bidirectional Closure

Introduction R a blnary re|at|0n.

Recursive Data Structures

- = Unification Closure R| of R: the smallest equivalence
Oppen’s Algorithm . .
« Diected Acyclc Graph relation extending R such that

e Example

e Type Completion ( ) — ( ) L — )
e Oppen’s Algorithm « ma 8 ya } x’t y’L .
e Example 1§z§ar(a)

e Example (Cont'd)

e =" m Congruence Closure R of R: the smallest equivalence

Decison Procedure for relatlon eXtendIng R SUCh that

ThY (BY)

e A wi=yi— alza) = alya).
1<i<ar(«)

Related Work

Future Work = Bidirectional Closure R{ = R| + R?.

STeP Group, June 29, 2004
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Type Completion

e Definition 3 &’ is atype completion of ¢ if ’ is obtained
REGUrsive Defa StGHIES from & by adding tester predicates such that

en’s Algorithm .
S e for any term s(¢) either Is,(¢) (for some constructor «) or
:Ei):il:ZEtli‘i)naICIosure ISA (t) IS present In @I.

e Oppen’s Algorithm

« Example Example 2 A possible type completion for y = car(cdr(x)) is

e Example (Cont'd)

Recursive Data Structures with y e Car(cdr(x)) /\ ISCOI’]S (x) /\ ISA (Cdr(x))

Integer Constraints

Decison Procedure for

ThY (B%) [1 A type completion &' is compatible with & if the
Decson ot satisfiability of ® implies that &’ is satisfiable and if any
ThY (B—"%)

solution of ®’ is a solution of ®.

Related Work

Future Work

STeP Group, June 29, 2004
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Oppen’s Algorithm for 2,

Introduction Algorithm 1 Input

Recursive Data Structures

(I)qu:Tl/\.../\qk:Tk/\Sl#tl/\.../\Sl#tl.

Oppen'’s Algorithm
e Directed Acyclic Graph ' Vv
e Example q)eq éne

e Bidirectional Closure
e Type Completion

1. Guess a type completion ® and simplify selector terms
e Example . . .
—-—— accordingly. We still use ¢ to denote the resulting formula.

Recursive Data Structures with 2 . CO nstru Ct th e DAG Of @ .

Integer Constraints

Decson e 3. Compute the bidirectional closure R{ of

ThY (BY)

Decison Procedure for R — {(Q’Lj ’I“Z) | ]. S Z S k}

ThY (B8=k)

Related Work 4. Return FAIL if Ji(s;,t;) € RY; return SUCCESS otherwise.

Future Work

[1 Solution = Type Completion + DAG + Bidirectional Closure.
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= Example: Oppen’s Algorithm

introduction The following graph shows the DAG for

Recursive Data Structures

oo Aoriin IScons(€) A cons(y, z) = cons(cdr(x),z) A cons(car(z),y) # x.

e Directed Acyclic Graph
e Example

e Bidirectional Closure
e Type Completion
e Oppen’s Algorithm

ni n2 ns ng
e Example (Cont'd)
Recursive Data Structures with
Integer Constraints
ns ne nr ns

Decison Procedure for

ThY (BY)
Decison Procedure for
ThY (3=F) ny . ng car(x)
Bshizl ny : cons(car(x),y) neg : cdr(x)
Future Work

ng : cons(cdr(z),z) ny oy

ng : cons(y,z) ng : 2z

STeP Group, June 29, 2004 IJCAR 2004 - p. 13/31
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Introduction

Recursive Data Structures

Oppen'’s Algorithm
e Directed Acyclic Graph

e Example

e Bidirectional Closure
e Type Completion

e Oppen’s Algorithm

e Example

e Example (Cont'd)

Recursive Data Structures with
Integer Constraints

Decison Procedure for

ThY (BY)

Decison Procedure for

ThY (8 =F)

Related Work

Future Work

STeP Group, June 29, 2004

. Example (Cont’d): Oppen’s Algorithm

= |nitial partition.

Ut Anats Ansts {nat; {ns g, \net, {7}, {Ns}}

= Merge n3 and n4 since ns = ny.

{{n1}7 {n2}7 {n37 n4}7 {n5}7 {nﬁ}v {n7}7 {n8}}

Merge ng and n; by unification closure algorithm.

{{711}, {nQ}a {n37 TL4}, {TL5}, {n67 n7}7 {n8}}

Merge n; and ny by congruence closure algorithm.

{{n17 n2}7 {n37 n4}7 {n5}7 {nﬁv n7}7 {77’8}}

[1 The conjunction is unsatisfiable since nq # ns.

IJCAR 2004 - p. 14/31
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Introduction

Recursive Data Structures

Oppen'’s Algorithm

Recursive Data Structures with
Integer Constraints

- Language and Siucure
e Diffi culty of N-O Combination
e Length Constraint
e Example
e Main Theorem

Decison Procedure for

ThY (BY)

Decison Procedure for

ThY (8 =F)

Related Work

Future Work

STeP Group, June 29, 2004

Language and Structure

Presburger arithmetic (PA): .27, 2.
Two-sorted language ¥ = ¥, U Yz U{].|}:

1. X,: signature of recursive data structures.
2. Y7 signature of Presburger arithmetic.
3. |.| : A= N, the length function defined by

4] = 1 If t¢is an atom,

[0 |t] : generalized integer terms.
Two-sorted structures:

m SBY = < cj\’;?(z; |
n BF = (ATF Ay |

); A contains exactly k atoms.

Sl i t=alty,. . ).

); A contains infinitely many atoms.

IJCAR 2004 - p. 15/31
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Introduction

Recursive Data Structures

Oppen'’s Algorithm

Recursive Data Structures with
Integer Constraints

e Language and Structure

o Diffi culty of N-O Combination
e Length Constraint

e Example

e Main Theorem

Decison Procedure for

ThY (BY)

Decison Procedure for

ThY (8 =F)

Related Work

Future Work

STeP Group, June 29, 2004

Difficulty of N-O Combination

Nelson-Oppen combination methods is not directly applicable
to the extended theory.

Example 3 Consider in 8= with A = {a}.

lu| =3 A u # cons(cons(a,a),a) A u # cons(a,cons(a,a))
W - = _J/
q)Z (I)A

is unsatisfiable in B=1, while &, is satisfiable in 2, and @, is
satisfiable in 2.

[1 There are “hidden” constraints on data structure length.

IJCAR 2004 - p. 16/31
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Length Constraint

o e = An arithmetic constraint ® 5 is a length constraint of &, if
Recursive Data Structures . .
o there is one-to-one correspondence between integer
ppen’s Algorithm . . .
R variables and terms occurring in ®,,.
< Cangunge and St = O, Is sound, if
e Diffi culty of N-O Combination . . . .
for any satisfying assignment v, of ®,, |v,|is a
e Example . . .
« Main Theorern satisfying assignment for ® A .
e may s &, is complete, if
inkiarsd whenever &, is satisfiable, for any satisfying
o assignment v of & there exists a satisfying
o assignment v, of ®, such that |v)| = va.
s &, Isinduced by ®,, If

® A Is both sound and complete.

STeP Group, June 29, 2004 IJCAR 2004 - p. 17/31
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Introduction
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- Example: Length Constraint

®, : cons(x,y) = z.
» &) :|z| < |2| A |y| < |2| is sound but not complete.
Reason: the integer assignment
vat{lz| = 3,ly| = 3,|2| = 4}

can not be realized.

n B2 x|+ |y| = |z] A|z| > 5 Aly| > 0is complete but not
sound.

Reason: it does not satisfy the data assignment
vyx:{r =a,y=a,z = cons(a,a)}.

m Op x|+ |yl = |2| Alz] > 0 A |y| > 0is both sound and
complete, and hence is the induced constraint from & .

IJCAR 2004 - p. 18/31
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Main Theorem

Inroducton Main Theorem 1 Let & be a mixed constraint in the form
Rectrsive Data Structures ®; A @) and ¢ the induced length constraint with respect to
Oppen's Algoritm ®,. Then & is satisfiable in 5 if and only if

ecursive Data Structures with . . . .

r:]tegerCo:straiits 1 @A /\ @Z |S Sat|Sf|ab|e IN Q(Z, and

e Language and Structure i . . .

» ificatyof -0 Combinir 2. ¢, is satisfiable in 2.

e Lengtl onstraint

e Example

— [1 The decision problem for quantifier-free theories reduces to
e may computing the induced length constraints in Presburger

arithmetic.

Decison Procedure for

ThY (8 =F)

Related Work

Future Work

STeP Group, June 29, 2004 IJCAR 2004 - p. 19/31
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Notations

Introduction

Recursive Data Structures Tree(t) : Hxl, .. :L"I’L 2 O < |t| — (Z?:l(dz — 1):62) —l— 1)
R::rns:/:z:::ructureswith NOdea (t7 ta) : |t| — Za(a) |tz|
Tree® (t) . Jt, (Node (t,80) A N Tree(ti)>

ThY (BY)
: = ¢, stands for ¢4, ...

e Construction of & A
. DPforThv(%w)

e Example
e Example (Contd)

s Lar(a) -
= dq,...,d, are the distinct arities of the constructors.
= Tree(t) is true iff |¢| is the length of a well-formed tree.

Node®(t, t,,) forces the length of an a-typed node with known
Related Work children to be the sum of the lengths of its children.

Future Work Tree®(t) states the length constraint for an a-typed tree.

Decison Procedure for

ThY (B3 =F)

STeP Group, June 29, 2004 IJCAR 2004 - p. 20/31
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Introduction

Recursive Data Structures

Oppen'’s Algorithm

Recursive Data Structures with
Integer Constraints

Decison Procedure for

ThY (BY)

e Notations

e Construction of & A

. DPforThv(%w)
e Example
e Example (Contd)

Decison Procedure for

ThY (B3 =F)

Related Work

Future Work

STeP Group, June 29, 2004

= Construction of &5 In B

Algorithm 2 Input:
1. ®,: a (type-complete) data constraint,

2. G: the DAG of ®,,

3. R} the bidirectional closure obtained by Algorithm /1.

Initially set &, = (). For each term ¢ add the following to ® .

it| =1, if t is an atom;

it| = |s|, if (¢,s) € RY.

Tree(t) if t is an untyped leaf vertex.

Node®(t,t,) if t is an a-typed vertex with children ¢,,.
Tree®(t) if t is an a-typed leaf vertex.

IJCAR 2004 - p. 21/31
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4_&-
. Decision Procedure for Th"(5)

Introduction InpUt @A /\ (bZ.

Recursive Data Structures

- 1. Guess a type completion @/, of ®,.
ppen’s Algorithm
Recursive Data Structures with 2' Ca” Algorlthm m On @’)\-

Integer Constraints

= Return FAIL if &) is unsatisfiable; continue otherwise.
. Construct @, from G, using Algorithm 2.

Decison Procedure for
ThY (BY) 3

e Notations

e Construction of & A

e P THY (BY) s Return SUCCESS if A A &7 Is satisfiable.

e Example .
e Example (Contd) u Return FAI L OtherWISe

Decison Procedure for

ThY (B3 =F)

Related Work

Future Work
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. ®
% Example: DP for Th(8%)

Introduction

Recursive Data Structures

Oppen'’s Algorithm

Recursive Data Structures with
Integer Constraints

Decison Procedure for
ThY (BY)

e Notations

ni

e Construction of & A

oDPforThv(%w)

e Example (Contd)

Decison Procedure for

ThY (B3 =F)

n4 ns
Related Work

Future Work

STeP Group, June 29, 2004

Iscons () Ax = cons(car(y), y) A |cons(car(y),y)| < 2|car(z)|. (1)

h

cons(car(y), y)

IJCAR 2004 - p. 23/31
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0
- Example (Cont’d): DP for Th"(5)

Inrosction = Unification and congruence closure:

Recursive Data Structures

Oppen'’s Algorithm {{n17 n2}7 {n37 n5}7 {n47 n6}7 {n7}}'

megmoomune - m Induced length constraints:

T (B car(z)] > 1 A |edr(z)] > 1 A Jear(y)| > 1 A |edr(y)] > 1. @)

e Notations
e Construction of & A

oDPforThv(%w)

|| = |cons(car(y), y)| A |car(z)| = |car(y)| A fedr(z)] = [y]. (3)

Decison Procedure for

ThY (B3 =F)

2] = Jear(x)] + [edr(@)| A [y] = |car(y)] + [cdr(y)| A
Future Work |Cons(car(y)7 y)| — |Car(y)| —|_ ‘y| (4)

2), (3) and (@) imply |cons(car(y),y)| > 2|car(z)| + 1.

[1 Constraint (1) is unsatisfiable.

STeP Group, June 29, 2004 IJCAR 2004 - p. 24/31
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Decison Procedure for

ThY (B8=k)

e Complication for
ThY (B=k)

e Counting Constraints

e Equality Completion
e Construction of © A

. DPforThv(%:k)

Related Work

Future Work

STeP Group, June 29, 2004

Complication for Th”(B=*)

Suppose that the atom domain contains only one atom. Then

lz| =3 A lIsa(y) A
x # cons(cons(y,y),y) A x # cons(y,cons(y,y))

IS unsatisfiable while by the previous procedure

y| =1 A [eons(y,y)| =2 A
cons(cons(y,y),y)| =3 A |cons(y, cons(y, y)| = 3

IS obviously satisfiable together with |z| = 3.

[1 Need to count how many distinct trees at certain length.

(5)

(6)

IJCAR 2004 - p. 25/31
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ThY (BY)

Decison Procedure for

ThY (B =F)

e Complication for
ThY (B=F)

e Counting Constraints

e Equality Completion

e Construction of © A

. DPforThv(%:k)

Related Work

Future Work

STeP Group, June 29, 2004

Counting Constraints

Definition 4 A counting constraint is a predicate CNTy, ,, ()
that is true if and only if

there are at least n+1 different a-terms of length « in
the language with exactly £ > 0 distinct atoms.

Example 4 For B!, CNT’1*(z) = = > m where m is the least

n,l

number such that the m-th Catalan number
1 /2m — 2
o= (1)
m\m-—1

[ CNTy . (z) is expressible by a quantifier-free Presburger
formula that can be computed in time O(n).

IS greater than n.

IJCAR 2004 - p. 26/31
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Recursive Data Structures

Oppen'’s Algorithm

Recursive Data Structures with
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ThY (BY)

Decison Procedure for

ThY (B =F)

e Complication for
ThY (B =F)

e Counting Constraints

e Equality Completion

e Construction of © A
. DPforThv(%:k)

Related Work

Future Work

STeP Group, June 29, 2004

Equality Completion

Definition 5 (Equality Completion) Let S be a set of A\-terms.
An equality completion 6 of S Is a formula consisting of the
following literals:

for any u,v € S, exactly one of u = v and u # v, and
exactly one of |u| = |v| and |u| # |v| are in 6.

Example 5 An equality completion of S = {z,y, z, a(x,2)} IS

yl =la(@,2)| Azl = [z Alyl #lz|A N\ t#£E. @)
t,t' €St

[1 The notion of equality completion naturally generalizes to a
conjunction of literals, e.g., the above is an equality
completion of 0 : y # a(x, 2).

IJCAR 2004 - p. 27/31
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Construction of ® in B=*

introduction Let CLT,,+1(to,...,t,) denote that ¢, . .., t,, have the same
Recursive Data Structures |ength but are pa”'Wlse unequal
Oppen'’s Algorithm

Algorithm 3 Input:

Recursive Data Structures with
Integer Constraints

N ®, (type and equality complete), G, and R{.

ThY (BY)

ol 1. Call Algorithm 2 to obtain ®A.
e 2. For each t occurring in CLT,,11(to, - - -, t,), add CNTG, (|¢]).

e Counting Constraints

e Equality Completion Example 6 FormUIa GS) Imp|leS

e Construction of <I>A
. DPforThv(%:k)

CLT35(z, cons(cons(y, y),y), cons(y, cons(y, y)))

Related Work

Future Work which gives the counting constraint |z| > 4. A contradiction.

STeP Group, June 29, 2004 IJCAR 2004 - p. 28/31
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~ | Decision Procedure for Th"(8=*)

Introduction InpUt @)\ /\ @Z.

Recursive Data Structures

N 1. Guess a type and equality completion @ of ®,.
Recursive Data Structures with 2' Ca” Algorlthm m On @’)\-

Integer Constraints

= Return FAIL if &) is unsatisfiable; continue otherwise.

Decison Procedure for

Thﬂ%% 3. Construct @, from G, using Algorithm 3.
Th(BE) » Return SUCCESS if ®5 A @7 is satisfiable.
ThY (3 =F) = Return FAIL otherwise.

e Counting Constraints
e Equality Completion
e Construction of © A

. DPforThv(%:k)

Related Work

Future Work

STeP Group, June 29, 2004 IJCAR 2004 - p. 29/31
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Related Work on Arithmetic Integration

Introduction

Combining integer with sets and multisets [Zar02b, Zar02a].
Tese R S = Combining integer with lists [Zar01].

Oppen'’s Algorithm

= Quantifier-free theory of term algebras with Knuth-Bendix
Integer Constraints Order HKVOO, ‘KVOlﬂ

ey = First-order theory of term algebras with Knuth-Bendix order
Decison Procedure for HZS M O4a] -

Th7(B=H) = First-order theory of term algebras with integer constraints
[ZSMO4b].

Future Work

STeP Group, June 29, 2004 IJCAR 2004 - p. 30/31
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L
= _ _ .
~ Future Work on Arithmetic Integration

introducion = Recursive data structures with subterm relation. E.g.,

Recursive Data Structures

y = cons(x,cons(z,x)) — |y| < |z|.

Oppen'’s Algorithm
meomcommne - m Queues (flat lists without concatenation). E.g.,
ihv(;w)df rcons(rcons(y, a), b) = cons(b, cons(a,y)) — |y| =2 1.

Decison Procedure for

ThY (8 =F) = \Word concatenation. E.g.,

Related Work

roaoy=yobox — |z| =yl

Future Work

STeP Group, June 29, 2004 IJCAR 2004 - p. 31/31
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