Decision Procedures for Recursive Data Structures with Integer Constraints

Ting Zhang, Henny B. Sipma, Zohar Manna

Stanford University

tingz,sipma,zm@cs.stanford.edu

Outline

Introduction

OutlineMotivation

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathsf{Th}^{orall \, \omega} \, (\, \mathfrak{B}^{\, \omega} \,)$

```
Decison Procedure for \mathsf{Th}^{orall (\mathfrak{B}^{=k})}
```

Related Work

Future Work

Motivation

Recursive data structures

- Oppen's Algorithms
- Recursive data structures with integer constraints
- Decision procedure for structures with infinite atom domain
- Decision procedure for structures with finite atom domain
- Related work
- Future work

Motivation: Program Verification

Introduction	
 Outline 	
 Motivation 	

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathsf{Th}^{orall \, (\mathfrak{B}^{\, \omega})}$

Decison Procedure for $\mathsf{Th}^{orall (\mathfrak{B}^{=k})}$

Related Work

Future Work

Recursive data structures are essential constructs in programming languages.

To verify programs we need to reason about these data structures.

- Programming languages often involve multiple data domains.
- Common "mixed" constraints are combinations of data structures with integer constraints on the size of those structures.

Recursive Data Structures

Introduction

Recursive Data Structures

Recursive Data Structures

Language and Structure

Axiomatization

Example

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for
$Th^{\forall}(\mathfrak{B}^{\omega})$

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{=k})$

Related Work

Future Work

Definition 1 A data structure is recursive if

it is partially composed of smaller or simpler instances of the same structure.

No Junk: the data domain is the set of data objects generated exclusively by applying constructors.

No Confusion: each data object is uniquely generated.

Recursive Data Structures = Term Algebras.

Example 1 A tree is composed of subtrees and leaves. Other examples include lists, stacks, counters, and records.

Language and Structure

Introduction

- Recursive Data Structures
- Recursive Data Structures
- Language and Structure
- Axiomatization
- Example
- Oppen's Algorithm

```
Recursive Data Structures with Integer Constraints
```

```
Decison Procedure for \mathsf{Th}^{\forall}(\mathfrak{B}^{\omega})
```

```
Decison Procedure for \mathsf{Th}^{\forall}(\mathfrak{B}^{=k})
```

```
Related Work
```

Future Work

A recursive data structure \mathfrak{A}_{λ} : $\langle \lambda; \mathcal{A}, \mathcal{C}, \mathcal{S}, \mathcal{T} \rangle$ consists of

- λ : The data domain.
- A: A set of **atoms** (constants): $a, b, c \dots$
- C: A finite set of constructors: α , β , γ , ... each of which is associated with an arity, e.g., $\alpha : \underbrace{\lambda \times \ldots \times \lambda} \to \lambda$.
- S: A finite set of selectors: $s_1^{\alpha}, \ldots, s_k^{\alpha} : \lambda \to \lambda$ for each $\alpha \in C$.
- \mathcal{T} : A finite set of testers: $Is_{\alpha} : \lambda \to \mathcal{B}$ for each $\alpha \in \mathcal{C}$.
- A special predicate $Is_A : \lambda \to B$.

Axiomatization

Introduction

Recursive Data Structures

Recursive Data Structures

Language and Structure

AxiomatizationExample

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathsf{Th}^{orall \, \omega} \, (\mathfrak{B}^{\, \omega} \,)$

Decison Procedure for $\mathsf{Th}^{orall (\mathfrak{B}^{=k})}$

Related Work

Future Work

Construction vs. selection.

 $\mathbf{s}_i^\alpha(x) = y \leftrightarrow \exists \bar{z}_\alpha \big(\alpha(\bar{z}_\alpha) = x \wedge y = z_i) \big) \vee \big(\forall \bar{z}_\alpha(\alpha(\bar{z}_\alpha) \neq x) \wedge x = y \big).$

• Unification closure. $\alpha(\boldsymbol{x}_{\alpha}) = \alpha(\boldsymbol{y}_{\alpha}) \rightarrow \bigwedge_{1 \leq i \leq \operatorname{ar}(\alpha)} x_i = y_i.$

Acyclicity. $t(x) \neq x$, if t is built solely by constructors and t properly contains x.

- Uniqueness. $\alpha(\boldsymbol{x}_{\alpha}) \neq \beta(\boldsymbol{y}_{\beta}), a \neq b$, and $a \neq \alpha(\boldsymbol{x}_{\alpha})$, if a and b are distinct atoms and if α and β are distinct constructors.
- Domain closure.

$$\mathsf{Is}_{\alpha}(x) \leftrightarrow \exists \ \bar{z}_{\alpha}\alpha(\bar{z}_{\alpha}) = x, \qquad \mathsf{Is}_{A}(x) \leftrightarrow \bigwedge_{\alpha \in \mathcal{C}} \neg \mathsf{Is}_{\alpha}(x).$$

Example: LISP lists

Introduction

Recursive Data Structures

Recursive Data Structures

Language and Structure

Axiomatization

Example

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathsf{Th}^{orall (\mathfrak{B}^{\omega})}$

Decison Procedure for $\mathsf{Th}^{orall (\mathfrak{B}^{=k})}$

Related Work

Future Work

Signature:

 $\langle \mathsf{list}; \{\mathsf{nil}\}; \{\mathsf{cons}\}; \{\mathsf{car}, \mathsf{cdr}\}; \{\mathsf{ls}_\mathsf{A}, \mathsf{ls}_\mathsf{cons}\} \rangle$

Axioms:

(1)
$$ls_A(x) \leftrightarrow \neg ls_{cons}(x)$$
, (2) $car(cons(x,y)) = x$,
(3) $cdr(cons(x,y)) = y$, (4) $ls_A(x) \leftrightarrow \{car, cdr\}^+(x) = x$,
(5) $ls_{cons}(x) \leftrightarrow cons(car(x), cdr(x)) = x$.

Formulas:

cons(y, z) = cons(cdr(x), z) → cons(car(x), y) = x (valid).
 x = cons(y, y) → cons(car(x), y) = x (valid).

Directed Acyclic Graph

1								
	n	\tr	0	d 1	10	tı.		n
		ıu	U	uυ	ມບ	u	U	

Recursive Data Structures

- Oppen's Algorithm
- Directed Acyclic Graph
- Example
- Bidirectional Closure
- Type Completion
- Oppen's Algorithm
- Example
- Example (Cont'd)

Recursive Data Structures with
Integer Constraints

Decison Procedure for
$Th^{\forall}(\mathfrak{B}^{\omega})$

Decison Procedure for	
$Th^{\forall}(\mathfrak{B}^{=k})$	

Related Work

Future Work

Definition 2 A term t can be represented by a tree T_t such that

- t is a constant or variable, then T_t is a leaf vertex labeled by t,
- if t is in the form $\alpha(t_1, \ldots, t_k)$, then T_t is the tree having the root labeled by t and having T_{t_1}, \ldots, T_{t_k} as its subtrees.

A directed acyclic graph (DAG) G_t of t is obtained from T_t by "factoring out" the common subtrees (subterms).

The DAG of a formula is the DAG representing all terms in the formula.

Example: DAG Representation

Introduction

Recursive Data Structures

Oppen's Algorithm

Directed Acyclic Graph

Example

Bidirectional Closure

• Type Completion

- Oppen's Algorithm
- Example
- Example (Cont'd)

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathsf{Th}^{orall (\mathfrak{B}^{\omega})}$

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{=k})$

Related Work

Future Work

 $\operatorname{cons}(y,z) = \operatorname{cons}(x,z) \ \land \ \operatorname{cons}(x,y) \neq x.$

n_1	•	cons(x,y)	n_4	•	x
n_2	•	cons(x,z)	n_5	•	y
n_3	•	cons(y,z)	n_6	•	z

Bidirectional Closure

Introduction

Recursive Data Structures

Oppen's Algorithm

Directed Acyclic Graph

Example

Bidirectional Closure

• Type Completion

- Oppen's Algorithm
- Example
- Example (Cont'd)

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathsf{Th}^{orall \, \omega} \, (\mathfrak{B}^{\, \omega} \,)$

Decison Procedure for
$$\mathsf{Th}^{orall (\mathfrak{B}^{=k})}$$

Related Work

Future Work

R: a binary relation.

Unification Closure $R \downarrow$ of R: the smallest equivalence relation extending R such that

$$\alpha(\boldsymbol{x}_{\alpha}) = \alpha(\boldsymbol{y}_{\alpha}) \to \bigwedge_{1 \leq i \leq \operatorname{ar}(\alpha)} x_i = y_i.$$

Congruence Closure $R\uparrow$ of R: the smallest equivalence relation extending R such that

$$\bigwedge_{1 \leq i \leq \operatorname{ar}(\alpha)} x_i = y_i \to \alpha(\boldsymbol{x}_\alpha) = \alpha(\boldsymbol{y}_\alpha).$$

■ Bidirectional Closure $R \ddagger = R \downarrow + R \uparrow$.

Type Completion

Introduction

Recursive Data Structures

Oppen's Algorithm

Directed Acyclic Graph

Example

Bidirectional Closure

• Type Completion

• Oppen's Algorithm

Example

• Example (Cont'd)

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathsf{Th}^{orall \, \omega}(\mathfrak{B}^{\,\omega})$

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{=k})$

Related Work

Future Work

Definition 3 Φ' is a **type completion** of Φ if Φ' is obtained from Φ by adding tester predicates such that

for any term s(t) either $ls_{\alpha}(t)$ (for some constructor α) or $ls_{A}(t)$ is present in Φ' .

Example 2 A possible type completion for y = car(cdr(x)) is

 $y = \operatorname{car}(\operatorname{cdr}(x)) \wedge \operatorname{ls}_{\operatorname{cons}}(x) \wedge \operatorname{ls}_{\operatorname{A}}(\operatorname{cdr}(x)).$

A type completion Φ' is **compatible** with Φ if the satisfiability of Φ implies that Φ' is satisfiable and if any solution of Φ' is a solution of Φ .

Oppen's Algorithm for \mathfrak{A}_{λ}

Algorithm 1 Input

Introduction

Recursive Data Structures

Oppen's Algorithm

- Directed Acyclic Graph
- Example
- Bidirectional Closure
- Type Completion

Oppen's Algorithm

- Example
- Example (Cont'd)

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathrm{Th}^{\forall}(\mathfrak{B}^{\omega})$

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{=k})$

Related Work

Future Work

$\Phi: \underbrace{q_1 = r_1 \land \ldots \land q_k = r_k}_{\Phi_{eq}} \land \underbrace{s_1 \neq t_1 \land \ldots \land s_l \neq t_l}_{\Phi_{ne}}.$

- Guess a type completion Φ and simplify selector terms accordingly. We still use Φ to denote the resulting formula.
 Construct the DAG of Φ.
- 3. Compute the bidirectional closure $R \$ of

$$R = \{ (q_i, r_i) \mid 1 \le i \le k \}.$$

4. Return **FAIL** if $\exists i(s_i, t_i) \in R \ddagger$; return **SUCCESS** otherwise.

Solution = Type Completion + DAG + Bidirectional Closure.

Example: Oppen's Algorithm

Introduction

Recursive Data Structures

Oppen's Algorithm

Directed Acyclic Graph

Example

Bidirectional Closure

• Type Completion

Oppen's Algorithm

Example

• Example (Cont'd)

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{\omega})$

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{=k})$

Related Work

Future Work

The following graph shows the DAG for

 $\mathsf{Is}_{\mathsf{cons}}(x) \ \land \ \mathsf{cons}(y,z) = \mathsf{cons}(\mathsf{cdr}(x),z) \ \land \ \mathsf{cons}(\mathsf{car}(x),y) \neq x.$

Example (Cont'd): Oppen's Algorithm

Introduction

Recursive Data Structures

Initial partition.

Oppen's Algorithm

- Directed Acyclic Graph
- Example
- Bidirectional Closure
- Type Completion
- Oppen's Algorithm
- Example
- Example (Cont'd)

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathsf{Th}^{orall \, \omega} \, (\mathfrak{B}^{\, \omega} \,)$

```
Decison Procedure for \mathsf{Th}^{\forall}(\mathfrak{B}^{=k})
```

Related Work

Future Work

 $\{\{n_1\}, \{n_2\}, \{n_3\}, \{n_4\}, \{n_5\}, \{n_6\}, \{n_7\}, \{n_8\}\}\}$ $\blacksquare \text{ Merge } n_3 \text{ and } n_4 \text{ since } n_3 = n_4.$ $\{\{n_1\}, \{n_2\}, \{n_3, n_4\}, \{n_5\}, \{n_6\}, \{n_7\}, \{n_8\}\}\}$

• Merge n_6 and n_7 by unification closure algorithm.

 $\{\{n_1\},\{n_2\},\{n_3,n_4\},\{n_5\},\{n_6,n_7\},\{n_8\}\}$

• Merge n_1 and n_2 by congruence closure algorithm.

 $\{\{n_1, n_2\}, \{n_3, n_4\}, \{n_5\}, \{n_6, n_7\}, \{n_8\}\}$

```
\sim The conjunction is unsatisfiable since n_1 \neq n_2.
```


Language and Structure

Introduction

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Language and Structure

Diffi culty of N-O Combination

Length Constraint

Example

Main Theorem

Decison Procedure for $Th^{\forall}(\mathfrak{B}^{\omega})$

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{=k})$

Related Work

Future Work

Presburger arithmetic (PA): $\mathscr{L}_{\mathbb{Z}}$, $\mathfrak{A}_{\mathbb{Z}}$.

Two-sorted language $\Sigma = \Sigma_{\lambda} \cup \Sigma_{\mathbb{Z}} \cup \{|.|\}$:

1. Σ_{λ} : signature of recursive data structures.

2. $\Sigma_{\mathbb{Z}}$: signature of Presburger arithmetic.

3. $|.| : \lambda \to \mathbb{N}$, the length function defined by

$$|t| = \begin{cases} 1 & \text{if } t \text{ is an atom,} \\ \sum_{i=1}^{k} |t_i| & \text{if } t \equiv \alpha(t_1, \dots, t_k). \end{cases}$$

 $\gg |t| :$ generalized integer terms.

Two-sorted structures:

• $\mathfrak{B}^{\omega} = \langle \mathfrak{A}^{\omega}_{\lambda}; \mathfrak{A}_{\mathbb{Z}}; |.| \rangle; \lambda$ contains infinitely many atoms.

• $\mathfrak{B}^{=k} = \langle \mathfrak{A}_{\lambda}^{=k}; \mathfrak{A}_{\mathbb{Z}}; |.| \rangle; \lambda$ contains exactly *k* atoms.

Difficulty of N-O Combination

Introduction

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Language and Structure

Diffi culty of N-O Combination

Length Constraint

Example

Main Theorem

```
Decison Procedure for \mathsf{Th}^{orall}(\mathfrak{B}^{\omega})
```

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{=k})$

Related Work

Future Work

Nelson-Oppen combination methods is not directly applicable to the extended theory.

Example 3 Consider in
$$\mathfrak{B}^{=1}$$
 with $\lambda = \{a\}$.

$$\underbrace{|u|=3}_{\Phi_{\mathbb{Z}}} \land \underbrace{u \neq \operatorname{cons}(\operatorname{cons}(a,a),a) \land u \neq \operatorname{cons}(a,\operatorname{cons}(a,a))}_{\Phi_{\lambda}}$$

is unsatisfiable in $\mathfrak{B}^{=1}$, while $\Phi_{\mathbb{Z}}$ is satisfiable in $\mathfrak{A}_{\mathbb{Z}}$ and Φ_{λ} is satisfiable in \mathfrak{A}_{λ} .

There are "hidden" constraints on data structure length.

Length Constraint

Introduction

Recursive Data Structures

Oppen's Algorithm

- Recursive Data Structures with Integer Constraints
- Language and Structure
- Diffi culty of N-O Combination
- Length Constraint
- Example
- Main Theorem

```
Decison Procedure for \mathsf{Th}^{orall \,}(\mathfrak{B}^{\,\omega})
```

```
Decison Procedure for \mathsf{Th}^{orall (\mathfrak{B}^{=k})}
```

Related Work

Future Work

• An arithmetic constraint Φ_{Δ} is a **length constraint** of Φ_{λ} , if

there is one-to-one correspondence between integer variables and terms occurring in Φ_{λ} .

• Φ_{Δ} is sound, if

for any satisfying assignment ν_{λ} of Φ_{λ} , $|\nu_{\lambda}|$ is a satisfying assignment for Φ_{Δ} .

• Φ_{Δ} is complete, if

whenever Φ_{λ} is satisfiable, for any satisfying assignment ν_{Δ} of Φ_{Δ} there exists a satisfying assignment ν_{λ} of Φ_{λ} such that $|\nu_{\lambda}| = \nu_{\Delta}$.

• Φ_{Δ} is **induced** by Φ_{λ} , if

 Φ_Δ is both sound and complete.

Example: Length Constraint

Introduction

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Language and Structure

• Diffi culty of N-O Combination

Length Constraint

Example

Main Theorem

Decison Procedure for $\mathsf{Th}^{orall \, \omega} \, (\, \mathfrak{B}^{\, \omega} \,)$

Deciso	n Procedure for
Th∀ ($\mathfrak{B}^{=k}$

Related Work

Future Work

 $\Phi_{\lambda} : \operatorname{cons}(x, y) = z.$

• Φ^1_{Δ} : $|x| < |z| \land |y| < |z|$ is sound but not complete.

Reason: the integer assignment

$$\nu_{\Delta}: \{ |x| = 3, |y| = 3, |z| = 4 \}$$

can not be realized.

• Φ_{Δ}^2 : $|x| + |y| = |z| \land |x| > 5 \land |y| > 0$ is complete but not sound.

Reason: it does not satisfy the data assignment

$$\nu_{\lambda}: \{x = a, y = a, z = \operatorname{cons}(a, a)\}.$$

• $\Phi_{\Delta}: |x| + |y| = |z| \land |x| > 0 \land |y| > 0$ is both sound and complete, and hence is the induced constraint from Φ_{λ} .

Main Theorem

n	tr	\sim	Ы		\sim	hı.	\sim	n	
	u.	υ	u	u	U	u	υ		

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints • Language and Structure

• Diffi culty of N-O Combination

Length Constraint

ExampleMain Theorem

```
Decison Procedure for \operatorname{Th}^{\forall}(\mathfrak{B}^{\omega})
```

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{=k})$

Related Work

Future Work

Main Theorem 1 Let Φ be a mixed constraint in the form $\Phi_{\mathbb{Z}} \wedge \Phi_{\lambda}$ and Φ_{Δ} the induced length constraint with respect to Φ_{λ} . Then Φ is satisfiable in \mathfrak{B} if and only if

- 1. $\Phi_{\Delta} \wedge \Phi_{\mathbb{Z}}$ is satisfiable in $\mathfrak{A}_{\mathbb{Z}}$, and
- 2. Φ_{λ} is satisfiable in \mathfrak{A}_{λ} .

The decision problem for quantifier-free theories reduces to computing the induced length constraints in Presburger arithmetic.

Notations

Introduction

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decision Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{\omega})$

• Notations

• Construction of Φ_{Λ}

• DP for Th $^{\forall}(\mathfrak{B}^{\omega})$

Example

• Example (Cont'd)

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{=k})$

Related Work

Future Work

 $\begin{aligned} \mathsf{Tree}(t) &: \quad \exists x_1, \dots, x_n \ge 0 \left(|t| = \left(\sum_{i=1}^n (d_i - 1) x_i\right) + 1 \right) \\ \mathsf{Node}^{\alpha}(t, \boldsymbol{t}_{\alpha}) &: \quad |t| = \sum_{i=1}^{\delta(\alpha)} |t_i| \\ \mathsf{Tree}^{\alpha}(t) &: \quad \exists \boldsymbol{t}_{\alpha} \left(\mathsf{Node}^{\alpha}(t, \boldsymbol{t}_{\alpha}) \land \bigwedge_{i=1}^{\delta(\alpha)} \mathsf{Tree}(t_i) \right) \end{aligned}$

• t_{α} stands for $t_1, \ldots, t_{ar(\alpha)}$.

• d_1, \ldots, d_n are the distinct arities of the constructors.

• Tree(t) is true iff |t| is the length of a well-formed tree.

Node^{α}(t, t_{α}) forces the length of an α -typed node with known children to be the sum of the lengths of its children.

Tree^{α}(*t*) states the length constraint for an α -typed tree.

Construction of Φ_{Δ} in \mathfrak{B}^{ω}

Recursive Data Structures

Introduction

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for

 $\mathsf{Th}^{\forall}(\mathfrak{B}^{\omega})$

Notations

ullet Construction of Φ_Δ

• DP for $\mathsf{Th}^{\forall}(\mathfrak{B}^{\omega})$

Example

Example (Cont'd)

```
Decison Procedure for \mathsf{Th}^{\forall}(\mathfrak{B}^{=k})
```

Related Work

Future Work

Algorithm 2 Input: 1. Φ_{λ} : a (type-complete) data constraint, 2. G_{λ} : the DAG of Φ_{λ} , 3. $R \ddagger$: the bidirectional closure obtained by Algorithm 1. Initially set $\Phi_{\Delta} = \emptyset$. For each term *t* add the following to Φ_{Δ} .

• |t| = 1, if t is an atom;

$$|t|=|s|$$
 , if $(t,s)\in R$

• Tree(t) if t is an untyped leaf vertex.

• Node^{α}(t, t_{α}) if t is an α -typed vertex with children t_{α} .

• Tree^{α}(*t*) if *t* is an α -typed leaf vertex.

Decision Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{\omega})$

Introduction

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for

 $\mathsf{Th}^{\forall}(\mathfrak{B}^{\omega})$

Notations

 \bullet Construction of Φ_Δ

• DP for $\mathsf{Th}^{orall }(\mathfrak{B}^{\omega})$

ExampleExample (Cont'd)

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{=k})$

Related Work

Future Work

Input: $\Phi_{\lambda} \wedge \Phi_{\mathbb{Z}}$.

- 1. Guess a type completion Φ'_{λ} of Φ_{λ} .
- 2. Call Algorithm 1 on Φ'_{λ} .
 - **Return FAIL** if Φ'_{λ} is unsatisfiable; continue otherwise.
- 3. Construct Φ_{Δ} from G'_{λ} using Algorithm 2.

• Return SUCCESS if $\Phi_{\Delta} \land \Phi_{\mathbb{Z}}$ is satisfiable.

Return FAIL otherwise.

Example: DP for $\mathsf{Th}^{\forall}(\mathfrak{B}^{\omega})$

Introduction

Recursive Data Structures
Oppen's Algorithm
Recursive Data Structures with
Integer Constraints

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{\omega})$ • Notations

• Construction of Φ_{Λ}

• DP for $\mathsf{Th}^{\forall}(\mathfrak{B}^{\omega})$

Example

• Example (Cont'd)

```
Decison Procedure for \mathsf{Th}^{\forall}(\mathfrak{B}^{=k})
```

Related Work

Future Work

 $|\mathbf{s}_{\mathsf{cons}}(y) \wedge x = \mathsf{cons}(\mathsf{car}(y), y) \wedge |\mathsf{cons}(\mathsf{car}(y), y)| < 2|\mathsf{car}(x)|. \tag{1}$

 n_7 : $\mathsf{cdr}(y)$

Example (Cont'd): DP for $Th^{\forall}(\mathfrak{B}^{\omega})$

Introduction

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{\omega})$

Notations

• Construction of Φ_{Λ}

• DP for Th \forall (\mathfrak{B}^{ω})

Example

Example (Cont'd)

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{=k})$

Related Work

Future Work

Unification and congruence closure:

 $\{\{n_1, n_2\}, \{n_3, n_5\}, \{n_4, n_6\}, \{n_7\}\}.$

Induced length constraints:

 $|\mathsf{car}(x)| \ge 1 \ \land \ |\mathsf{cdr}(x)| \ge 1 \ \land \ |\mathsf{car}(y)| \ge 1 \ \land \ |\mathsf{cdr}(y)| \ge 1. \ \textbf{(2)}$

 $|x| = |\operatorname{cons}(\operatorname{car}(y), y)| \wedge |\operatorname{car}(x)| = |\operatorname{car}(y)| \wedge |\operatorname{cdr}(x)| = |y|.$ (3)

 $|x| = |\operatorname{car}(x)| + |\operatorname{cdr}(x)| \land |y| = |\operatorname{car}(y)| + |\operatorname{cdr}(y)| \land$ $|\operatorname{cons}(\operatorname{car}(y), y)| = |\operatorname{car}(y)| + |y|.$

(2), (3) and (4) imply $|cons(car(y), y)| \ge 2|car(x)| + 1$.

Constraint (1) is unsatisfiable.

(4)

Complication for $\mathsf{Th}^{\forall}(\mathfrak{B}^{=k})$

Introduction

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathsf{Th}^{orall}(\mathfrak{B}^{\omega})$

```
Decision Procedure for

Th^{\forall}(\mathfrak{B}^{=k})

• Complication for

Th^{\forall}(\mathfrak{B}^{=k})
```

Counting ConstraintsEquality Completion

• Construction of Φ_{Λ}

```
• DP for Th\forall (\mathfrak{B}^{=k})
```

Related Work

Future Work

Suppose that the atom domain contains only one atom. Then $|x| = 3 \land Is_A(y) \land$ $x \neq cons(cons(y, y), y) \land x \neq cons(y, cons(y, y))$ (5)

is unsatisfiable while by the previous procedure

$$\begin{split} |y| &= 1 \ \land \ |\mathsf{cons}(y,y)| = 2 \ \land \\ |\mathsf{cons}(\mathsf{cons}(y,y),y)| &= 3 \ \land \ |\mathsf{cons}(y,\mathsf{cons}(y,y)| = 3 \ \ \text{(6)} \end{split}$$

is obviously satisfiable together with |x| = 3.

Need to count how many distinct trees at certain length.

Counting Constraints

Introduction

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{\omega})$

```
Decison Procedure for

Th^{\forall}(\mathfrak{B}=k)

• Complication for

Th^{\forall}(\mathfrak{B}=k)

• Counting Constraints

• Equality Completion

• Construction of \Phi_{\Delta}

• DP for Th^{\forall}(\mathfrak{B}=k)
```

Related Work

Future Work

Definition 4 A counting constraint is a predicate $CNT_{k,n}^{\alpha}(x)$ that is **true** if and only if

there are at least n+1 different α -terms of length x in the language with exactly k > 0 distinct atoms.

Example 4 For $\mathfrak{B}_{list}^{=1}$, $CNT_{n,1}^{cons}(x) \equiv x \ge m$ where m is the least number such that the m-th **Catalan number**

$$C_m = \frac{1}{m} \binom{2m-2}{m-1}$$

is greater than n.

 $rightarrow CNT_{k,n}^{\alpha}(x)$ is expressible by a quantifier-free Presburger formula that can be computed in time O(n).

Equality Completion

Introduction

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{\omega})$

Decison Procedure for $Th^{\forall}(\mathfrak{B}^{=k})$ • Complication for $Th^{\forall}(\mathfrak{B}^{=k})$ • Counting Constraints • Equality Completion • Construction of Φ_{Δ} • DP for $Th^{\forall}(\mathfrak{B}^{=k})$

Related Work

Future Work

Definition 5 (Equality Completion) Let *S* be a set of λ -terms. An **equality completion** θ of *S* is a formula consisting of the following literals:

for any $u, v \in S$, exactly one of u = v and $u \neq v$, and exactly one of |u| = |v| and $|u| \neq |v|$ are in θ .

Example 5 An equality completion of $S = \{x, y, z, \alpha(x, z)\}$ is

$$|y| = |\alpha(x,z)| \wedge |x| = |z| \wedge |y| \neq |x| \wedge \bigwedge_{t,t' \in S; t \not\equiv t'} t \neq t'.$$
 (7)

The notion of equality completion naturally generalizes to a conjunction of literals, e.g., the above is an equality completion of $\theta : y \neq \alpha(x, z)$.

Construction of Φ_{Δ} in $\mathfrak{B}^{=k}$

Introduction

Recursive Data Structures

Oppen's Algorithm

```
Recursive Data Structures with Integer Constraints
```

```
Decison Procedure for \mathsf{Th}^{orall \, (\mathfrak{B}^{\, \omega})}
```

```
Decison Procedure for

Th \forall (\mathfrak{B} = k)

• Complication for

Th \forall (\mathfrak{B} = k)

• Counting Constraints

• Equality Completion

• Construction of \Phi_{\Delta}

• DP for Th^{\forall}(\mathfrak{B} = k)
```

Related Work

Future Work

Let $CLT_{n+1}(t_0, ..., t_n)$ denote that $t_0, ..., t_n$ have the same length but are pairwise unequal.

Algorithm 3 Input:

 Φ_{λ} (type and equality complete), G_{λ} and $R \ddagger$.

1. Call Algorithm 2 to obtain Φ_{Δ} . 2. For each *t* occurring in $CLT_{n+1}(t_0, \ldots, t_n)$, add $CNT_{k,n}^{\alpha}(|t|)$.

Example 6 Formula (5) implies

 $\mathsf{CLT}_3(x, \mathsf{cons}(\mathsf{cons}(y, y), y), \mathsf{cons}(y, \mathsf{cons}(y, y)))$

which gives the counting constraint $|x| \ge 4$. A contradiction.

Decision Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{=k})$

Introduction

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathsf{Th}^{orall (\mathfrak{B}^{\omega})}$

```
Decison Procedure for

Th^{\forall}(\mathfrak{B}^{=k})

• Complication for

Th^{\forall}(\mathfrak{B}^{=k})

• Counting Constraints

• Equality Completion

• Construction of \Phi_{\Delta}

• DP for Th^{\forall}(\mathfrak{B}^{=k})
```

Related Work

Future Work

Input : $\Phi_{\lambda} \wedge \Phi_{\mathbb{Z}}$.

- 1. Guess a type and equality completion Φ'_{λ} of Φ_{λ} . 2. Call Algorithm 1 on Φ'_{λ} .
 - Return **FAIL** if Φ'_{λ} is unsatisfiable; continue otherwise.
- 3. Construct Φ_{Δ} from G'_{λ} using Algorithm 3.
 - Return SUCCESS if $\Phi_{\Delta} \wedge \Phi_{\mathbb{Z}}$ is satisfiable.
 - Return FAIL otherwise.

Related Work on Arithmetic Integration

1										
	In	tr	n	n	11	\sim	tı	n	n	
Ц		u.	U	u	u	C	u	U		

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Deciso	n Procedure	fo
Th∀	(\mathfrak{B}^{ω})	

```
Decison Procedure for \mathsf{Th}^{\forall}(\mathfrak{B}^{=k})
```

Related Work

Related Work

Future Work

- Combining integer with sets and multisets [Zar02b, Zar02a].
- Combining integer with lists [Zar01].
- Quantifier-free theory of term algebras with Knuth-Bendix order [KV00, KV01].
- First-order theory of term algebras with Knuth-Bendix order [ZSM04a].
- First-order theory of term algebras with integer constraints [ZSM04b].

Future Work on Arithmetic Integration

Introduction

Recursive Data Structures

Oppen's Algorithm

Recursive Data Structures with Integer Constraints

Decison Procedure for $\mathsf{Th}^{orall \, \omega} \, (\mathfrak{B}^{\, \omega} \,)$

Decison Procedure for $\mathsf{Th}^{\forall}(\mathfrak{B}^{=k})$

Related Work

Future Work

Recursive data structures with subterm relation. E.g., y ≤ cons(x, cons(x, x)) → |y| ≤ |x|.
Queues (flat lists without concatenation). E.g., rcons(rcons(y, a), b) = cons(b, cons(a, y)) → |y| ≡₂ 1.
Word concatenation. E.g.,

$$x \circ a \circ y = y \circ b \circ x \to |x| = |y|.$$

- [KV00] Konstantin Korovin and Andrei Voronkov. A decision procedure for the existential theory of term algebras with the Knuth-Bendix ordering. In *Proc. 15th IEEE Symp. Logic in Comp. Sci.*, pages 291 – 302, 2000.
- [KV01] Konstantin Korovin and Andrei Voronkov. Knuth-Bendix constraint solving is NP-complete. In Proceedings of 28th International Colloquium on Automata, Languages and Programming (ICALP), volume 2076 of Lecture Notes in Computer Science, pages 979–992. Springer-Verlag, 2001.
- [Zar01] Calogero G. Zarba. Combining lists with integers. In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, International Joint Conference on Automated Reasoning (Short Papers), Technical Report DII 11/01, pages 170–179. University of Siena, Italy, 2001.
- [Zar02a] Calogero G. Zarba. Combining multisets with integers. In Andrei Voronkov, editor, Proc. of the 18th Intl. Conference on Automated Deduction, volume 2392 of Lecture Notes in Artifi cial Intelligence, pages 363–376. Springer, 2002.
- [Zar02b] Calogero G. Zarba. Combining sets with integers. In Alessandro Armando, editor, *Frontiers of Combining*

Systems, volume 2309 of *Lecture Notes in Artifi cial Intelligence*, pages 103–116. Springer, 2002.

- [ZSM04a] Ting Zhang, Henny Sipma, and Zohar Manna. The decidability of the first-order theory of term algebras with Knuth-Bendix order, 2004. Submitted.
- [ZSM04b] Ting Zhang, Henny Sipma, and Zohar Manna. Term algebras with length function and bounded quantifi er alternation, 2004. To appear in the Proceedings of the 17^{th} International Conference on Theorem Proving in Higher Order Logics.