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Abstract

Interpolation theorem has an important role in classic predicate logic. Two prominent
applications are Robinson’s joint consistency theorem and Beth’s definability theorem (though
both were proved originally in different ways). It also have close relation to cut-elimination of
sequent calculus. However, interpolation theorem fails in quantified modal logic S5 and related
extensions. In this term paper we compare the positive and negative results. In Section 1, we
prove interpolation theorem in classic logic and in Section 2 we show the failure of interpolation
theorem in S5 and S5B respectively. This work is based on [1, 2].

1 Interpolation Theorem in Classic Predicate Logic

Throughout this paper we treat equality as a logical constant.

Theorem 1.1 (Interpolation Theorem). Let φ1, φ2 be two first-order sentences. If φ1 |= φ2, then
there exists a sentence θ such that φ1 |= θ, θ |= φ2 and θ only contains nonlogical parameters that
appear both in φ1 and φ2. In this situation θ is called the interpolant of φ1 and φ2.

Proof. We prove it by showing that if there is no interpolant for φ1 and φ2, then φ1 ∧ ¬φ2 is
consistent. Let Σi denote signatures of φi (i = 1, 2). Let Σ = Σ1 ∪ Σ2 and Σ0 = Σ1 ∩ Σ2. Let L1,
L2, L0 and L be languages in corresponding signatures. We also assume that each language is
augmented with an set C of infinite new constant symbols.

Let ϕ1, ϕ2 be sentences in L1, L2 respectively. We say ϕ1 and ϕ2 are inseparable if there
is no sentence ϕ in L0 such that ϕ1 |= ϕ and ϕ2 |= ¬ϕ. If φ1 and φ2 don’t have interpolant then
φ1 and ¬φ2 are inseparable. For suppose there is θ such that φ1 |= θ and ¬φ2 |= ¬θ. Then φ1 |= θ

and θ |= φ2, i.e., θ is an interpolant.

Let δ0, δ1, . . ., ψ0, ψ1, . . . enumerate all sentences in L1 and L2 respectively. Construct
increasing sequences of theories T0, T1, . . . and U0, U1, . . . as follows. Let T0 = {φ1} and U0 =
{¬φ2}. At each step first set

X =

{

Ti ∪ {δi} if Ti ∪ {δi} is inseparable from Ui

Ti otherwise.
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Y =

{

Ui ∪ {ψi} if Ui ∪ {ψi} is inseparable from Ti+1

Ui otherwise.

Then let

Ti+1 =

{

X ∪ {σ(c)} for some c ∈ C, if δi = ∃xσ(x) ∈ X

X otherwise.

Ui+1 =

{

Y ∪ {λ(d)} for some d ∈ C, if ψi = ∃xλ(x) ∈ Y

Y otherwise.

Note that each time we use a fresh constant as the witness. Finally let Tω =
⋃

i<ω Ti and Uω =
⋃

i<ω Ui. As φ1 ∈ Tω and φ2 ∈ Uω it suffices to show that Tω ∪ Uω is consistent. We proceed in
the following steps.

(1) Ti and Ui are inseparable for i < ω.

This is obvious from the construction.

(2) Tω and Uω are inseparable.

Suppose there exists θ such that Tω |= θ and Uω |= ¬θ. By compactness there is j < ω such
that Tj |= θ and Uj |= ¬θ. Then Tj and Uj are separable.

(3) Tω and Uω are both consistent.

If Tω is not consistent, then Tω |= x 6= x while Uω |= x = x. Then Tω and Uω are separable.
Similarly we have contradiction if Uω is not consistent.

(4) Tω and Uω are both complete.

Suppose neither Tω |= θ nor Tω |= ¬θ for some θ ∈ L1. Without loss assume θ is δi and ¬θ
is δj . Certainly θ 6∈ Ti+1 and ¬θ 6∈ Tj+1. By the construction there exists θ1 and θ2 in L

respectively such that
Ti ∪ {δi} |= θ1 and Ui |= ¬θ1

Tj ∪ {δj} |= θ2 and Uj |= ¬θ2

Then we have
Tω |= θ1 ∨ θ2 and Uω |= ¬θ1 ∧ ¬θ2

So Tω and Uω are separable, a contradiction. Similarly Uω is complete.

(5) Tω ∩ Uω is complete.

Since both Tω and Uω are complete. Let θ be a sentence in L . We have

θ ∈ Tω or ¬θ ∈ Tω

and
θ ∈ Uω or ¬θ ∈ Uω

Since Tω and Uω are inseparable, either θ ∈ Tω ∩ Uω or ¬θ ∈ Tω ∩ Uω.

(6) Tω ∪ Uω is consistent.

Let A = 〈A; c0, c1, . . .〉, B = 〈B; c0, c1, . . .〉 be models of Tω and Uω respectively. Because we
add one witness for each existential sentence we can assume that every element in domain
A and B is named by a constant. Let A′, B′ be L -reduct of A and B respectively. Since
Tω ∩ Uω is complete, diag(A) = diag(B). So A′ and B′ are isomorphic under mapping
f : cA

′

i → cB
′

i for i < ω. Hence we can “paste” A′ and B′ together to have a model C of
Tω ∪ Uω such that A′ and B′ are L1-reduct and L2-reduct of C respectively.
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2 Failure of Interpolation in Quantified S5 and S5B

2.1 Semantics of Quantified Modal Logics

We briefly review some relevant concepts of quantified modal logic. We follow Fine’s notation in
[2]. By S5B we mean S5 with constant domain. A structure A = 〈W,A, Ā, R, ν〉 is defined as
follows:

(1) W is a nonempty set of worlds.

(2) A is a nonempty domain.

(3) Ā assigns an individual domain Āw to each w ∈W .

(4) R is an accessibility relation on W ×W .

(5) ν is an interpretation of nonlogical parameters on W and A. More precisely, ν(c) ∈ A

for each constant c, ν(P ) ⊆ W × An for each n-ary predicate symbol P , ν(c) ∈ A and
ν(F ) : W ×An → A for each n-ary function symbol F .

Semantics is defined as usual. For simplicity we assume that we have a set of constants each of
which names an element in A.

(1) (A, w) |= c = d iff ν(c) = ν(d).

(2) (A, w) |= P (c0, . . . , cn−1) iff 〈w, ν(c0), . . . , ν(cn−1)〉 ∈ ν(P ).

(3) (A, w) |= ∀xφ(x) iff (A, w) |= φ(c) for all c such that ν(c) ∈ Āw.

(4) (A, w) |= 2φ iff (A, v) |= φ for all v such that Rwv.

2.2 Isomorphisms Between S5 Structures

Let A = 〈W,A, Ā, R, ν〉 be a S5-structure and w a world of A. A projection Aw of A on w is the
strcuture 〈A, Āw , νw〉, where

νw(F ) = {〈a1, . . . , an〉 ∈ An : 〈w, a1, . . . , an〉 ∈ ν(F )}

for every nonlogical parameter F . Similarly, a inner projection Āw of A on w is the strcuture
〈Āw , ν̄w〉, where

ν̄w(F ) = {〈a1, . . . , an〉 ∈ Ān
w : 〈w, a1, . . . , an〉 ∈ ν(F )}

for every nonlogical parameter F . Note that for the inner projection, interpretations of nonlogical
symbols are completely confined to the corresponding individual domain. Since projections (of
both types) are first-order structures, we have standard notion of isomorphism aomong them.

Let A = 〈W,A, Ā, R, ν〉 and A = 〈V,B, B̄, S, µ〉 be two S5-structures. We say a one-to-one
function σ from A to B is an isomorphism between A and B, written σ : A ∼= B, if

(1) ∀w ∈W∃v ∈ V (σ : Aw
∼= Bv), and

(2) ∀v ∈ V ∃w ∈ W (σ : Aw
∼= Bv)
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2.3 Two Easy Lemmas

Lemma 2.1. Suppose that: (i) σ : A ∼= B and (ii) for w ∈ W , v ∈ V , σ : Aw
∼= Bv. Then for

any formula φ(x1, . . . , xn) with free variables x1, . . . , xnand for any tuple a1, . . . , an ∈ A,

(A, w) |= φ[a1, . . . , an] iff (B, v) |= φ[σ(a1), . . . , σ(an)]

Proof. (1) φ(x1, . . . , xn) = P (x1, . . . , xn).

(A, w) |= P [a1, . . . , an] ⇔ 〈w, a1, . . . , an〉 ∈ PA

⇔ 〈a1, . . . , an〉 ∈ PAw

⇔ 〈σ(a1), . . . , σ(an)〉 ∈ PBv

⇔ 〈v, σ(a1), . . . , σ(an)〉 ∈ PB

⇔ (B, v) |= P [a1, . . . , an]

(2) φ(x1, . . . , xn) = 2ϕ(x1, . . . , xn).

Assume that (A, w) |= 2ϕ[a1, . . . , an]. Then for any w′ ∈ W , (A, w′) |= ϕ[a1, . . . , an]. Since
σ : A ∼= B, for any v′ ∈ V there is w′ ∈W such that σ : Aw′ ∼= Bv′ . By induction hypothesis
(B, v′) |= ϕ[σ(a1), . . . , σ(an)] for any v′ ∈ V . That is, (B, v) |= 2ϕ[σ(a1), . . . , σ(an)]. By
symmetry, (B, v) |= 2ϕ[σ(a1), . . . , σ(an)] implies (A, w) |= 2ϕ[a1, . . . , an].

(3) φ(x1, . . . , xn) = ∀x0ϕ(x0, x1, . . . , xn).

(A, w) |= ∀x0ϕ[x0, a1, . . . , an] ⇔ (A, w) |= ϕ[a0, a1, . . . , an] for all a0 ∈ Āw

⇔ (B, v) |= ϕ[σ(a0), σ(a1), . . . , σ(an)] for all σ(a0) ∈ B̄v

⇔ (B, v) |= ∀x0ϕ[x0, σ(a1), . . . , σ(an)]

Lemma 2.2. Suppose that: (i) ρ : Āw
∼= B̄v and (ii) (∀ finite ρ′ ⊆ ρ)(∃σ ⊇ ρ′)(σ : A ∼= B). Then

for any formula φ(x1, . . . , xn) with free variables x1, . . . , xnand for any tuple a1, . . . , an ∈ Āw,

(A, w) |= φ[a1, . . . , an] iff (B, v) |= φ[ρ(a1), . . . , ρ(an)]

Proof. (1) φ(x1, . . . , xn) = P (x1, . . . , xn).

(A, w) |= P [a1, . . . , an] ⇔ 〈w, a1, . . . , an〉 ∈ PA

⇔ 〈a1, . . . , an〉 ∈ P Āw

⇔ 〈ρ(a1), . . . , ρ(an)〉 ∈ P B̄v

⇔ 〈v, ρ(a1), . . . , ρ(an)〉 ∈ PB

⇔ (B, v) |= P [a1, . . . , an]

(2) φ(x1, . . . , xn) = 2ϕ(x1, . . . , xn).

Assume that (A, w) |= 2ϕ[a1, . . . , an]. Then for any w′ ∈ W , (A, w′) |= ϕ[a1, . . . , an].
Since a1, . . . , an are finite, by the assumption there is σ such that σ : A ∼= B and σ �

{a1, . . . , an} = ρ′. So for any v′ ∈ V there is w′ ∈ W such that σ : Aw′ ∼= Bv′ By Lemma
2.1 (B, v′) |= ϕ[σ(a1), . . . , σ(an)] for all v′ ∈ V . Since σ and ρ agree on a1, . . . , an we have
(B, v′) |= ϕ[ρ(a1), . . . , ρ(an)]. Hence (B, v) |= 2ϕ[ρ(a1), . . . , ρ(an)]. As ρ is one-to-one, by
symmetry, (B, v) |= 2ϕ[ρ(a1), . . . , ρ(an)] implies (A, w) |= 2ϕ[a1, . . . , an].
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(3) φ(x1, . . . , xn) = ∀x0ϕ(x0, x1, . . . , xn).

(A, w) |= ∀x0ϕ[x0, a1, . . . , an] ⇔ (A, w) |= ϕ[a0, a1, . . . , an] for all a0 ∈ Āw

⇔ (B, v) |= ϕ[ρ(a0), ρ(a1), . . . , ρ(an)] for all ρ(a0) ∈ B̄v

⇔ (B, v) |= ∀x0ϕ[x0, ρ(a1), . . . , ρ(an)]

2.4 Failure of Interpolation Theorem in Quantified S5

To show the failure of interpolation theorem it suffices to construct a counterexample.

Lemma 2.3. Let

ϕ1 = p ∧ 2∀x2(p → ∃y(y = x)) and ϕ2 = q → 2∀x3(q ∧ ∃y(y = x))

Then ϕ1 |=S5 ϕ2.

Proof. Let A = 〈W,A, Ā, ν〉 be any S5-structure. Let w ∈ W . (A, w) |= ϕ1 iff p is true in w and
for any world w′ ∈W if p is true in w′, then Āw′ = A. Also (A, w) |= ϕ2 iff either q is not true in w
or there exists a world w′ ∈ W such that q is true in w′ and Āw′ = A. Now suppose (A, w) |= ϕ1.
Then Āw = A. If q is not true in w, then (A, w) |= ϕ2. If q is true in w, since Āw = A, (A, w) |= ϕ2.
Therefore ϕ1 |=S5 ϕ2.

Theorem 2.1. Let ϕ1, ϕ2 as above. There is no interpolant between ϕ1 and ϕ2.

Proof. Let N denote the set of natural numbers. Define a S5-structure A = 〈W,A, Ā, p, q〉 as
follows:

(1) A = N,

(2) W = {wi : i < ω},

(3) Āw0
= N, Āwi

= N − {i} for 0 < i < ω,

(4) V (wi, p) = 1 iff i = 0 and V (wi, q) = 1 iff i = 1.

Since p is only true at w0 and Āw0
= A,

(A, wi) |= p ∧ 2∀x2(p → ∃y(y = x)) iff i = 0

Similarly since q is only true at w1 yet Āw1
6= A,

(A, wi) |= q → 2∀x3(q ∧ ∃y(y = x)) iff i 6= 1

Let A′ be the reduct of A with no nonlogical parameters. Define ρ : A → A by ρ(0) = 0 and
ρ(i) = i+1 for i > 0. Obviously ρ : Ā′

w0

∼= Ā′
w1

. Also since A′ is equational, ρ is an automorphism
of A′. Let σ = ρ and quote Lemma 2.2 we have

(A′, w0) |= θ[i1, . . . , in] iff (A′, w1) |= θ[ρ(i1), . . . , ρ(in)]
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where θ(x1, . . . , xn) is a formula without nonlogical parameters. Now suppose there is a sentence
θ such that ϕ1 |= θ and θ |= ϕ2. Then

(A, w0) |= ϕ1 ⇒ (A, w0) |= θ ⇒ (A′, w0) |= θ

⇒ (A′, w1) |= θ ⇒ (A, w1) |= θ ⇒ (A, w1) |= ϕ2

A contradiction. Note that though we used propositional letters in the above proof, it doesn’t
put essential restriction on the applicability of this theorem. We can encode the properties of
propositional letters using unary predicates. More precisely, let

ϕ1 = 2∀u∀v(P (u) ↔ P (v)) ∧ ∀z(P (z) ∧ 2∀x2(P (z) → ∃y(y = x)))

ϕ2 = 2∀u∀v(Q(u) ↔ Q(v)) → ∀z(Q(z) → 2∀x3(Q(z) ∧ ∃y(y = x)))

The proof still go through.

2.5 Failure of Interpolation Theorem in Quantified S5B

Surprisingly, interpolation theorem even fails in quantified S5B. As before, we circumvent the
Beth’s theorem and construct a counterexample directly using the same idea in [2]. This time
we work with a language whose nonlogical parameters are proposition symbols p, q and a unary
predicate symbol P . The motivation to introduce P is to fake variable “inner domains” in order
to save the previous counterexample.

Lemma 2.4. Let

ϕ1 = p ∧ 2∀x2(p → P (x)) and ϕ2 = q → 2∀x3(q ∧ P (x))

Then ϕ1 |=S5B ϕ2.

Proof. Let A = 〈W,A, Ā, ν〉 be any S5-structure. Let w ∈ W . (A, w) |= ϕ1 iff p is true in w and
for any world w′ ∈W if p is true in w′, then PA

w′ = A. Also (A, w) |= ϕ2 iff either q is not true in w
or there exists a world w′ ∈ W such that q is true in w′ and PA

w′ = A. Now suppose (A, w) |= ϕ1.
Then PA

w = A. If q is not true in w, then clearly (A, w) |= ϕ2. If q is true in w, since PA
w = A,

(A, w) |= ϕ2. Therefore ϕ1 |=S5B ϕ2.

Theorem 2.2. Let ϕ1, ϕ2 as above. There is no interpolant between ϕ1 and ϕ2.

Proof. Let N, O be the set of natural numbers and the set of odd natural numbers respectively.
We say a permutation τ on N is essentially finite if the set {a : τ(a) 6= a} is finite. Let I denote
the identity permutation. Define a S5-structure A = 〈W,A, Ā, p, q, P 〉 as follows.

(1) A = N.

(2) W = {w〈k,τ〉 : k = 0, 1; τ is a essentially finite permutation }

(3) For any w〈k,τ〉 ∈W , let

PA

w〈k,τ〉
=

{

τ [N] if k = 0

τ [O] if k = 1

(4) V (w, p) = 1 iff w = w0 and V (w, q) = 1 iff w = w1, where w0 and w1 abbreviates w〈0,I〉 and
w〈1,I〉 respectively.

6



Since p is only true at w0 and PA
w1

= N = A,

(A, w0) |= p ∧ 2∀x2(p→ P (x))

Similarly since q is only true at w1 yet PA
w1

= O 6= N = A,

(A, w1) 6|= q → 2∀x3(q ∧ P (x))

Let A′ be the reduct of A with only the unary predicate P . Let ρ : N → N be a permutation
such that P [N] = O. Then clearly ρ : A′

w0

∼= A′
w1

. Since any finite ρ′ ⊆ ρ is an essentially finite
permutation, there always exists an essentially finite permutation σ such that ρ′ ⊆ σ. It is easily
to verify that

σ : A
′
〈k,τ〉

∼= A
′
〈k,σ◦τ〉 and σ : A

′
〈k,σ−1◦τ〉

∼= A
′
〈k,τ〉

Hence two conditions in the premise of Lemma 2.2 are satisfied. It follows that

(A′, w0) |= θ[i1, . . . , in] iff (A′, w1) |= θ[ρ(i1), . . . , ρ(in)]

where θ(x1, . . . , xn) is a formula with P as the only nonlogical parameters. The rest of the proof
remains unchanged. As before propositional letters can be replaced by predicate symbols.
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