Zohar Manna¹ Henny B. Sipma¹ Ting Zhang²

¹Department of Computer Science Stanford University

> ²Theory Group Microsoft Research Asia

Logical Foundations of Computer Science June 5, 2007

OUTLINE

- Motivation
- Our Contributions
- Related Work and Comparison

2 MAIN TALK

- Decidable Logic of R-B Trees
- Analyze Algorithms on R-B Trees

3 CONCLUSION

- Our Contributions
- Future Work

OUTLINE

Motivation

- Our Contributions
- Related Work and Comparison

2 MAIN TALK

- Decidable Logic of R-B Trees
- Analyze Algorithms on R-B Trees

3 CONCLUSION

- Our Contributions
- Future Work

VERIFYING HIGH-LEVEL DATA STRUCTURES

IN What?

- Complex data structure: Trees ...
- High-level properties: Being Balanced ...
- Intricate Operations: Self-balancing ...

-MOTIVATION

VERIFYING HIGH-LEVEL DATA STRUCTURES

INST What?

- Complex data structure: Trees ...
- High-level properties: Being Balanced ...
- Intricate Operations: Self-balancing ...
- IS Why?
 - Ubiquitous in advanced programming languages
 - But hard to get it right

-MOTIVATION

VERIFYING HIGH-LEVEL DATA STRUCTURES

IN What?

- Complex data structure: Trees ...
- High-level properties: Being Balanced ...
- Intricate Operations: Self-balancing ...
- IS Why?
 - Ubiquitous in advanced programming languages
 - But hard to get it right
- Difficulty?
 - Lost in Translation

-MOTIVATION

VERIFYING HIGH-LEVEL DATA STRUCTURES

IN What?

- Complex data structure: Trees ...
- High-level properties: Being Balanced ...
- Intricate Operations: Self-balancing ...
- IS Why?
 - Ubiquitous in advanced programming languages
 - But hard to get it right
- Difficulty?
 - Lost in Translation
- Approach?
 - Develop decidable logics to model them directly

MOTIVATION

VERIFYING HIGH-LEVEL DATA STRUCTURES

INST What?

- Complex data structure: Trees ...
- High-level properties: Being Balanced ...
- Intricate Operations: Self-balancing ...
- IS Why?
 - Ubiquitous in advanced programming languages
 - But hard to get it right
- Difficulty?
 - Lost in Translation
- Approach?
 - Develop decidable logics to model them directly

Get High, Stay High ©

・ ロ ト ・ 雪 ト ・ 国 ト ・ 日 ト

-INTRODUCTION

└─ OUR CONTRIBUTIONS

OUTLINE

1 INTRODUCTION

- Motivation
- Our Contributions
- Related Work and Comparison

- Decidable Logic of R-B Trees
- Analyze Algorithms on R-B Trees

- Our Contributions
- Future Work

OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic

OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

- Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic
- Show how to use this theory to represent the transition relations of the tree operations directly from the program statements, and how to use them to construct Hoare triples

└─ OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

- Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic
- Show how to use this theory to represent the transition relations of the tree operations directly from the program statements, and how to use them to construct Hoare triples
- Provide a decision procedure for automatically checking validity of the resulting verification conditions

└─ OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

- Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic
- Show how to use this theory to represent the transition relations of the tree operations directly from the program statements, and how to use them to construct Hoare triples
- Provide a decision procedure for automatically checking validity of the resulting verification conditions
- Generalizable to model other balanced tree structures, such as AVL trees and B-trees

INTRODUCTION

RELATED WORK AND COMPARISON

OUTLINE

- Motivation
- Our Contributions
- Related Work and Comparison

2 MAIN TALK

- Decidable Logic of R-B Trees
- Analyze Algorithms on R-B Trees

3 CONCLUSION

- Our Contributions
- Future Work

INTRODUCTION

RELATED WORK AND COMPARISON

RELATED WORK

 Quantitative Shape Analysis [Rugina 04]
 ABSTRACT INTERPRETATION Performs forward propagation in an abstract heap

-INTRODUCTION

RELATED WORK AND COMPARISON

- Quantitative Shape Analysis [Rugina 04]
 ABSTRACT INTERPRETATION Performs forward propagation in an abstract heap
- Tree Automata with Size Constraints [Habermehl et al 06] AUTOMATA TRANSFORMATION Encodes transition relations, pre- and post-conditions as tree languages

-INTRODUCTION

RELATED WORK AND COMPARISON

- Quantitative Shape Analysis [Rugina 04]
 ABSTRACT INTERPRETATION Performs forward propagation in an abstract heap
- Tree Automata with Size Constraints [Habermehl et al 06] AUTOMATA TRANSFORMATION Encodes transition relations, pre- and post-conditions as tree languages
- Hypergraph Rewriting [Baldan et al 05] REWRITING TECHNIQUES Uses approximate unfolding to compute the reachable states of a graph rewriting system

-INTRODUCTION

RELATED WORK AND COMPARISON

- Quantitative Shape Analysis [Rugina 04]
 ABSTRACT INTERPRETATION Performs forward propagation in an abstract heap
- Tree Automata with Size Constraints [Habermehl et al 06] AUTOMATA TRANSFORMATION Encodes transition relations, pre- and post-conditions as tree languages
- Hypergraph Rewriting [Baldan et al 05]
 REWRITING TECHNIQUES Uses approximate unfolding to compute the reachable states of a graph rewriting system
- Context Logic [Calcagno et al 05]
 DEDUCTIVE SYSTEM Proved sound and complete

-INTRODUCTION

RELATED WORK AND COMPARISON

COMPARISON

- Express updates at an arbitrary pointed location
- X Verification of Hoare triples is not fully automatic
- Lack of intuitive connections between low level program statements and the high level formalism

-INTRODUCTION

RELATED WORK AND COMPARISON

COMPARISON

RELATED WORK

- Express updates at an arbitrary pointed location
- X Verification of Hoare triples is not fully automatic
- Lack of intuitive connections between low level program statements and the high level formalism

OUR WORK

- Cannot express updates at an arbitrary pointed location Resort to induction
- ✓ Verification of Hoare triples is fully automatic
- Clear connections between low level program statements and the high level formalism

ъ

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 目 ト

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

OUTLINE

INTRODUCTION

- Motivation
- Our Contributions
- Related Work and Comparison

2 MAIN TALK

- Decidable Logic of R-B Trees
- Analyze Algorithms on R-B Trees

3 CONCLUSION

- Our Contributions
- Future Work

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

RED-BLACK TREES

DEFINITION (RED-BLACK TREES)

A binary tree with the following coloring properties:

- Every node is either red or black.
- Every leaf node is black.
- The root is black.
- Every red node has two black children.
- All paths from the root to leaf nodes contain the same number of black nodes.

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

EXAMPLE: RED-BLACK TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

COLOR FLIPPING

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

COLOR FLIPPING

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

COLOR FLIPPING

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

LEFT ROTATION

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

LEFT ROTATION

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

LEFT ROTATION

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

RIGHT ROTATION

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

RIGHT ROTATION

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

RIGHT ROTATION

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

TERM ALGEBRAS

DEFINITION (TERM ALGEBRAS)

A term algebra TA : $\langle \mathbb{T}; C, A, S, T \rangle$ consists of

- T: The term domain called C-terms
- **2** C: A set of constructors: α , β , γ , ...
- \mathcal{A} : A set of constants: a, b, c, \dots We require $\mathcal{A} \neq \emptyset$ and $\mathcal{A} \subseteq \mathcal{C}$.
- S: A set of selectors. For a constructor α with arity k > 0, there are k selectors s^α₁,..., s^α_k in S.
- *T*: A set of testers. For each constructor *α* there is a corresponding tester Is_{*α*}.

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

COLORED TREES

$$\begin{split} RB &= \langle \; \mathbb{T}_{rb}; \, \{red, black, nil\}, \; \{nil\}, \\ & \{car^{red}, cdr^{red}, car^{black}, cdr^{black}\}, \; \{Is_{red}, Is_{black}, Is_{nil}\} \; \rangle \; \; , \end{split}$$

where

- ${\tt I}{\tt S}^{\ast}$ \mathbb{T}_{rb} denotes the domain
- nil denotes a leaf,
- red and black are binary constructors
- so $\operatorname{car}^{\sharp}$ and $\operatorname{cdr}^{\sharp}$ are the left and the right \sharp -selectors ($\sharp \in \{ \text{red}, \text{black} \}$).

MAIN TALK

L DECIDABLE LOGIC OF R-B TREES

RED-BLACK TREES

$$\mathsf{RB}_{\mathbb{Z}} = \langle \mathsf{RB}; \mathsf{PA}; |\cdot|_{\mathsf{max}}, |\cdot|_{\mathsf{min}} : \mathbb{T}_{\mathsf{rb}} \to \mathbb{N} \rangle$$

with

- $|\cdot|_{max}$: length of maxiaml black path
- $|\cdot|_{min}$: length of mimimal black path

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

MAXIMAL BLACK PATH

 $|x|_{\max} = \begin{cases} 1 & & \\ 0 & & \\ \max(|x_1|_{\max}, |x_2|_{\max}) + 1 & \text{if } x \text{ is a well-formed black tree} \\ \max(|x_1|_{\max}, |x_2|_{\max}) & & \\ \max(|x_1|_{\max}, |x_2|_{\max}) & & \\ \end{array}$ if x is nil

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

MINIMAL BLACK PATH

 $|x|_{\min} = \begin{cases} 1 & & \\ 0 & & \\ nodes \\ min(|x_1|_{\min}, |x_2|_{\min}) + 1 & \text{if } x \text{ is a well-formed black tree} \\ min(|x_1|_{\min}, |x_2|_{\min}) & & \\ if x \text{ is a well-formed red tree} \end{cases}$ if x is nil

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

PREDICATES FOR WELL-FORMED TREES

x IS A WELL-FORMED BLACK TREE:

$$GB(x, x_1, x_2) \stackrel{\text{def}}{=} x = \text{black}(x_1, x_2) \land |x_1|_{\max} \neq 0 \land |x_2|_{\max} \neq 0$$

x IS A WELL-FORMED RED TREE:

$$\operatorname{GR}(x, x_1, x_2) \stackrel{\text{def}}{=} x = \operatorname{red}(x_1, x_2) \land |x_1|_{\max} \neq 0 \land |x_2|_{\max} \neq 0$$

x HAS TWO CONSECUTIVE RED NODES:

$$\operatorname{Vio}(x) \stackrel{\text{def}}{=} x \neq \operatorname{nil} \land \forall x_1 \forall x_2 \left(\neg \operatorname{GB}(x, x_1, x_2) \lor \neg \operatorname{GR}(x, x_1, x_2) \right)$$

MAIN TALK

L DECIDABLE LOGIC OF R-B TREES

RED-BLACK PROPERTIES

x IS A RED BLACK TREE IF

$arphi_1$:	$ x _{\max} = x _{\min}$	any maximal path of <i>x</i> contains the same number of black nodes
φ_2 :	$ x _{\max} > 0$	any red node of <i>x</i> must have two black children
$arphi_3$:	$Is_{black}(x)$	the root of x is black

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

RED-BLACK PROPERTIES

SUBDOMAIN PREDICATE:

$$\varphi_{\rm RB}(x) \stackrel{\rm def}{=} \varphi_1 \wedge \varphi_2 \wedge \varphi_3$$

THEORY OF THE SUBDOMAIN OBTAINED BY RELATIVIZATION:

 $\forall x \; (\varphi_{\mathsf{RB}}(x) \to \Phi(x)) \\ \exists x \; (\varphi_{\mathsf{RB}}(x) \land \Phi(x))$

for universal properties for existential properties

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

Decidability of $RB_{\mathbb{Z}}$

Theorem (Decidability of $RB_{\mathbb{Z}}$)

- Th^{\exists}(RB_{\mathbb{Z}}) is NP-complete.
- **2** $Th(RB_{\mathbb{Z}})$ is decidable and admits quantifier elimination.

PROOF SKETCH.

- Reduce term constraints to integer constraints
- Reduce term quantifiers to integer quantifiers

MAIN TALK

- ANALYZE ALGORITHMS ON R-B TREES

OUTLINE

- Motivation
- Our Contributions
- Related Work and Comparison

2 MAIN TALK

- Decidable Logic of R-B Trees
- Analyze Algorithms on R-B Trees

- Our Contributions
- Future Work

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

TRANSITION RELATION

NOTATION

- \overline{v} : variables in the current state
- $rac{v}{\bar{v}}$: the corresponding variables in the next state.
- $\bowtie \rho_q(\bar{v}, \bar{v}')$: transition relation of a statement q
- ${}^{\it \mbox{\tiny ISS}}\ post(q,\varphi) :$ post-condition of $\varphi(\bar{v})$ after executing a statement q

COMPOSITION

The transition relation of the composite statement $\langle q; r \rangle$ is

$$(\exists \bar{v}^1) \left(\rho_q(\bar{v}, \bar{v}^1) \land \rho_r(\bar{v}^1, \bar{v}') \right)$$

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

VERIFICATION CONDITIONS

HOARE TRIPLES

- **W** $\{\varphi\}q\{\psi\}$: state ψ reached after executing q at state φ
- $\texttt{ISF} \ \{\varphi\}q\{\psi\} \texttt{: equivalent to } post(q,\varphi) \to \psi$

PROVING HOARE TRIPLES

$$post(q,\varphi) \stackrel{\text{def}}{=} (\exists \bar{\nu}^0) \left(\rho_q(\bar{\nu}^0,\bar{\nu}) \land \varphi(\bar{\nu}^0) \right) \\ \{\varphi\}q\{\psi\} \stackrel{\text{def}}{=} (\exists \bar{\nu}^0) \left(\rho_q(\bar{\nu}^0,\bar{\nu}) \land \varphi(\bar{\nu}^0) \right) \to \psi(\bar{\nu})$$

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

$$T'[x-1].tree = cdr(T'[x-2])$$

= black(car(T[x-1].tree), cdr(T[x-1].tree))

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

LANALYZE ALGORITHMS ON R-B TREES

COLOR FLIPPING: STEP 2

car(T'[x-2]) = T'[x-1] = black(car(T[x-1]), cdr(T[x-1]))

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

$$T'[x-2] = \operatorname{red}(\operatorname{car}(T[x-2]), \operatorname{cdr}(T[x-2]))$$

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

LEFT ROTATION: STEP 1

$$cdr(T'[x-1]) = T'[x]$$

 $\land (T'[x+1].tree = cdr(T'[x]) = T[x].tree)$
 $\land (T'[x].tree = car(T'[x-1]) = T[x+1].tree)$

イロト イロト イヨト イヨト 三日

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

LEFT ROTATION: STEP 2

 $T'[x].dir = right \land T'[x-1] = red(cdr(T[x-1]), car(T[x-1]))$

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

LEFT ROTATION: STEP 3

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

$$T'[x+1].dir = left \land \operatorname{car}(T'[x-1]) = T'[x]$$

$$\land T'[x] = \operatorname{red}(\operatorname{cdr}(T[x]), \operatorname{car}(T[x]))$$

CONCLUSION

OUR CONTRIBUTIONS

OUTLINE

1 INTRODUCTION

- Motivation
- Our Contributions
- Related Work and Comparison

2 MAIN TALK

- Decidable Logic of R-B Trees
- Analyze Algorithms on R-B Trees

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 目 ト

æ

3 CONCLUSION

- Our Contributions
- Future Work

OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic

OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

- Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic
- Show how to use this theory to represent the transition relations of the tree operations directly from the program statements, and how to use them to construct Hoare triples

└─ OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

- Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic
- Show how to use this theory to represent the transition relations of the tree operations directly from the program statements, and how to use them to construct Hoare triples
- Provide a decision procedure for automatically checking validity of the resulting verification conditions

-CONCLUSION

└─OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

- Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic
- Show how to use this theory to represent the transition relations of the tree operations directly from the program statements, and how to use them to construct Hoare triples
- Provide a decision procedure for automatically checking validity of the resulting verification conditions
- Generalizable to model other balanced tree structures, such as AVL trees and B-trees

CONCLUSION

FUTURE WORK

OUTLINE

1 INTRODUCTION

- Motivation
- Our Contributions
- Related Work and Comparison

2 MAIN TALK

- Decidable Logic of R-B Trees
- Analyze Algorithms on R-B Trees

3 CONCLUSION

- Our Contributions
- Future Work

FUTURE WORK

FUTURE WORK

Express more properties: Tree Orderings

FUTURE WORK

- Express more properties: Tree Orderings
- Model Destructive Updates: Decidable Logic with Extraction and Assignment

$$T[p] \stackrel{\text{def}}{=}$$
 the subtree of T at position p

 $T \oplus_p T' \stackrel{\text{def}}{=}$ the tree obtained from T by substituting T' for the subtree of T at position p

VERIFYING BALANC	ed Trees		
CONCLUSION			
FUTURE WORK	ĸ		

Thank You!

