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+ Show how to use this theory to represent the transition
relations of the tree operations directly from the program
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+ Provide a decision procedure for automatically checking
validity of the resulting verification conditions

+ Generalizable to model other balanced tree structures,
such as AVL trees and B-trees
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RED-BLACK TREES

DEFINITION (RED-BLACK TREES)

A binary tree with the following coloring properties:
1 Every node is either red or black.
2 Every leaf node is black.
3 The root is black.
4 Every red node has two black children.
5 All paths from the root to leaf nodes contain the same

number of black nodes.
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TERM ALGEBRAS

DEFINITION (TERM ALGEBRAS)

A term algebra TA : 〈T; C,A,S, T 〉 consists of
1 T: The term domain called C-terms
2 C: A set of constructors: α, β, γ, . . .
3 A: A set of constants: a, b, c, . . . We require A 6= ∅ and
A ⊆ C.

4 S: A set of selectors. For a constructor α with arity k > 0,
there are k selectors sα1 , . . . , s

α
k in S.

5 T : A set of testers. For each constructor α there is a
corresponding tester Isα.
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COLORED TREES

RB = 〈 Trb; {red, black, nil}, {nil},
{carred, cdrred, carblack, cdrblack}, {Isred, Isblack, Isnil} 〉 ,

where
+ Trb denotes the domain
+ nil denotes a leaf,
+ red and black are binary constructors
+ car] and cdr] are the left and the right ]-selectors

(] ∈ {red, black}).
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RED-BLACK TREES

RBZ = 〈RB; PA; | · |max, | · |min : Trb → N 〉

with

| · |max : length of maxiaml black path
| · |min : length of mimimal black path
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MAXIMAL BLACK PATH

|x|max =



1 if x is nil

0 if x has two consecutive red
nodes

max(|x1|max, |x2|max) + 1 if x is a well-formed black tree

max(|x1|max, |x2|max) if x is a well-formed red tree
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MINIMAL BLACK PATH

|x|min =



1 if x is nil

0 if x has two consecutive red
nodes

min(|x1|min, |x2|min) + 1 if x is a well-formed black tree

min(|x1|min, |x2|min) if x is a well-formed red tree
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PREDICATES FOR WELL-FORMED TREES

x IS A WELL-FORMED BLACK TREE:

GB(x, x1, x2) def== x = black(x1, x2) ∧ |x1|max 6= 0 ∧ |x2|max 6= 0

x IS A WELL-FORMED RED TREE:

GR(x, x1, x2) def== x = red(x1, x2) ∧ |x1|max 6= 0 ∧ |x2|max 6= 0

x HAS TWO CONSECUTIVE RED NODES:

Vio(x) def== x 6= nil ∧ ∀x1∀x2
(
¬GB(x, x1, x2) ∨ ¬GR(x, x1, x2)

)
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RED-BLACK PROPERTIES

x IS A RED BLACK TREE IF

ϕ1 : |x|max = |x|min
any maximal path of x contains the same
number of black nodes

ϕ2 : |x|max > 0 any red node of x must have two black
children

ϕ3 : Isblack(x) the root of x is black
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RED-BLACK PROPERTIES

SUBDOMAIN PREDICATE:

ϕRB(x) def== ϕ1 ∧ ϕ2 ∧ ϕ3

THEORY OF THE SUBDOMAIN OBTAINED BY RELATIVIZATION:

∀x (ϕRB(x)→ Φ(x)) for universal properties
∃x (ϕRB(x) ∧ Φ(x)) for existential properties
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DECIDABILITY OF RBZ

THEOREM (DECIDABILITY OF RBZ)

1 Th∃(RBZ) is NP-complete.
2 Th(RBZ) is decidable and admits quantifier elimination.

PROOF SKETCH.
1 Reduce term constraints to integer constraints
2 Reduce term quantifiers to integer quantifiers
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TRANSITION RELATION

NOTATION

+ v̄: variables in the current state
+ v̄′: the corresponding variables in the next state.
+ ρq(v̄, v̄′): transition relation of a statement q

+ post(q, ϕ): post-condition of ϕ(v̄) after executing a
statement q

COMPOSITION

The transition relation of the composite statement 〈q; r〉 is

(∃v̄1)
(
ρq(v̄, v̄1) ∧ ρr(v̄1, v̄′)

)
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VERIFICATION CONDITIONS

HOARE TRIPLES

+ {ϕ}q{ψ}: state ψ reached after executing q at state ϕ
+ {ϕ}q{ψ}: equivalent to post(q, ϕ)→ ψ

PROVING HOARE TRIPLES

post(q, ϕ) def== (∃v̄0)
(
ρq(v̄0, v̄) ∧ ϕ(v̄0)

)
{ϕ}q{ψ} def== (∃v̄0)

(
ρq(v̄0, v̄) ∧ ϕ(v̄0)

)
→ ψ(v̄)
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