
VERIFYING BALANCED TREES

VERIFYING BALANCED TREES

Zohar Manna1 Henny B. Sipma1 Ting Zhang2

1Department of Computer Science
Stanford University

2Theory Group
Microsoft Research Asia

Logical Foundations of Computer Science
June 5, 2007

VERIFYING BALANCED TREES

OUTLINE

OUTLINE

1 INTRODUCTION
Motivation
Our Contributions
Related Work and Comparison

2 MAIN TALK
Decidable Logic of R-B Trees
Analyze Algorithms on R-B Trees

3 CONCLUSION
Our Contributions
Future Work

VERIFYING BALANCED TREES

INTRODUCTION

MOTIVATION

OUTLINE

1 INTRODUCTION
Motivation
Our Contributions
Related Work and Comparison

2 MAIN TALK
Decidable Logic of R-B Trees
Analyze Algorithms on R-B Trees

3 CONCLUSION
Our Contributions
Future Work

VERIFYING BALANCED TREES

INTRODUCTION

MOTIVATION

VERIFYING HIGH-LEVEL DATA STRUCTURES

+ What?
Complex data structure: Trees . . .
High-level properties: Being Balanced . . .
Intricate Operations: Self-balancing . . .

+ Why?
Ubiquitous in advanced programming languages
But hard to get it right

+ Difficulty?
Lost in Translation

+ Approach?
Develop decidable logics to model them directly

Get High, Stay High ,

VERIFYING BALANCED TREES

INTRODUCTION

MOTIVATION

VERIFYING HIGH-LEVEL DATA STRUCTURES

+ What?
Complex data structure: Trees . . .
High-level properties: Being Balanced . . .
Intricate Operations: Self-balancing . . .

+ Why?
Ubiquitous in advanced programming languages
But hard to get it right

+ Difficulty?
Lost in Translation

+ Approach?
Develop decidable logics to model them directly

Get High, Stay High ,

VERIFYING BALANCED TREES

INTRODUCTION

MOTIVATION

VERIFYING HIGH-LEVEL DATA STRUCTURES

+ What?
Complex data structure: Trees . . .
High-level properties: Being Balanced . . .
Intricate Operations: Self-balancing . . .

+ Why?
Ubiquitous in advanced programming languages
But hard to get it right

+ Difficulty?
Lost in Translation

+ Approach?
Develop decidable logics to model them directly

Get High, Stay High ,

VERIFYING BALANCED TREES

INTRODUCTION

MOTIVATION

VERIFYING HIGH-LEVEL DATA STRUCTURES

+ What?
Complex data structure: Trees . . .
High-level properties: Being Balanced . . .
Intricate Operations: Self-balancing . . .

+ Why?
Ubiquitous in advanced programming languages
But hard to get it right

+ Difficulty?
Lost in Translation

+ Approach?
Develop decidable logics to model them directly

Get High, Stay High ,

VERIFYING BALANCED TREES

INTRODUCTION

MOTIVATION

VERIFYING HIGH-LEVEL DATA STRUCTURES

+ What?
Complex data structure: Trees . . .
High-level properties: Being Balanced . . .
Intricate Operations: Self-balancing . . .

+ Why?
Ubiquitous in advanced programming languages
But hard to get it right

+ Difficulty?
Lost in Translation

+ Approach?
Develop decidable logics to model them directly

Get High, Stay High ,

VERIFYING BALANCED TREES

INTRODUCTION

OUR CONTRIBUTIONS

OUTLINE

1 INTRODUCTION
Motivation
Our Contributions
Related Work and Comparison

2 MAIN TALK
Decidable Logic of R-B Trees
Analyze Algorithms on R-B Trees

3 CONCLUSION
Our Contributions
Future Work

VERIFYING BALANCED TREES

INTRODUCTION

OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

+ Develop a first-order theory of red-black trees using the
theory of term algebras augmented with Presburger
arithmetic

+ Show how to use this theory to represent the transition
relations of the tree operations directly from the program
statements, and how to use them to construct Hoare triples

+ Provide a decision procedure for automatically checking
validity of the resulting verification conditions

+ Generalizable to model other balanced tree structures,
such as AVL trees and B-trees

VERIFYING BALANCED TREES

INTRODUCTION

OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

+ Develop a first-order theory of red-black trees using the
theory of term algebras augmented with Presburger
arithmetic

+ Show how to use this theory to represent the transition
relations of the tree operations directly from the program
statements, and how to use them to construct Hoare triples

+ Provide a decision procedure for automatically checking
validity of the resulting verification conditions

+ Generalizable to model other balanced tree structures,
such as AVL trees and B-trees

VERIFYING BALANCED TREES

INTRODUCTION

OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

+ Develop a first-order theory of red-black trees using the
theory of term algebras augmented with Presburger
arithmetic

+ Show how to use this theory to represent the transition
relations of the tree operations directly from the program
statements, and how to use them to construct Hoare triples

+ Provide a decision procedure for automatically checking
validity of the resulting verification conditions

+ Generalizable to model other balanced tree structures,
such as AVL trees and B-trees

VERIFYING BALANCED TREES

INTRODUCTION

OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

+ Develop a first-order theory of red-black trees using the
theory of term algebras augmented with Presburger
arithmetic

+ Show how to use this theory to represent the transition
relations of the tree operations directly from the program
statements, and how to use them to construct Hoare triples

+ Provide a decision procedure for automatically checking
validity of the resulting verification conditions

+ Generalizable to model other balanced tree structures,
such as AVL trees and B-trees

VERIFYING BALANCED TREES

INTRODUCTION

RELATED WORK AND COMPARISON

OUTLINE

1 INTRODUCTION
Motivation
Our Contributions
Related Work and Comparison

2 MAIN TALK
Decidable Logic of R-B Trees
Analyze Algorithms on R-B Trees

3 CONCLUSION
Our Contributions
Future Work

VERIFYING BALANCED TREES

INTRODUCTION

RELATED WORK AND COMPARISON

RELATED WORK

+ Quantitative Shape Analysis [Rugina 04]
ABSTRACT INTERPRETATION Performs forward propagation
in an abstract heap

+ Tree Automata with Size Constraints [Habermehl et al 06]
AUTOMATA TRANSFORMATION Encodes transition relations,
pre- and post-conditions as tree languages

+ Hypergraph Rewriting [Baldan et al 05]
REWRITING TECHNIQUES Uses approximate unfolding to
compute the reachable states of a graph rewriting system

+ Context Logic [Calcagno et al 05]
DEDUCTIVE SYSTEM Proved sound and complete

VERIFYING BALANCED TREES

INTRODUCTION

RELATED WORK AND COMPARISON

RELATED WORK

+ Quantitative Shape Analysis [Rugina 04]
ABSTRACT INTERPRETATION Performs forward propagation
in an abstract heap

+ Tree Automata with Size Constraints [Habermehl et al 06]
AUTOMATA TRANSFORMATION Encodes transition relations,
pre- and post-conditions as tree languages

+ Hypergraph Rewriting [Baldan et al 05]
REWRITING TECHNIQUES Uses approximate unfolding to
compute the reachable states of a graph rewriting system

+ Context Logic [Calcagno et al 05]
DEDUCTIVE SYSTEM Proved sound and complete

VERIFYING BALANCED TREES

INTRODUCTION

RELATED WORK AND COMPARISON

RELATED WORK

+ Quantitative Shape Analysis [Rugina 04]
ABSTRACT INTERPRETATION Performs forward propagation
in an abstract heap

+ Tree Automata with Size Constraints [Habermehl et al 06]
AUTOMATA TRANSFORMATION Encodes transition relations,
pre- and post-conditions as tree languages

+ Hypergraph Rewriting [Baldan et al 05]
REWRITING TECHNIQUES Uses approximate unfolding to
compute the reachable states of a graph rewriting system

+ Context Logic [Calcagno et al 05]
DEDUCTIVE SYSTEM Proved sound and complete

VERIFYING BALANCED TREES

INTRODUCTION

RELATED WORK AND COMPARISON

RELATED WORK

+ Quantitative Shape Analysis [Rugina 04]
ABSTRACT INTERPRETATION Performs forward propagation
in an abstract heap

+ Tree Automata with Size Constraints [Habermehl et al 06]
AUTOMATA TRANSFORMATION Encodes transition relations,
pre- and post-conditions as tree languages

+ Hypergraph Rewriting [Baldan et al 05]
REWRITING TECHNIQUES Uses approximate unfolding to
compute the reachable states of a graph rewriting system

+ Context Logic [Calcagno et al 05]
DEDUCTIVE SYSTEM Proved sound and complete

VERIFYING BALANCED TREES

INTRODUCTION

RELATED WORK AND COMPARISON

COMPARISON

RELATED WORK

4 Express updates at an arbitrary pointed location
8 Verification of Hoare triples is not fully automatic
8 Lack of intuitive connections between low level program

statements and the high level formalism

OUR WORK

8 Cannot express updates at an arbitrary pointed location
Resort to induction

4 Verification of Hoare triples is fully automatic
4 Clear connections between low level program statements

and the high level formalism

VERIFYING BALANCED TREES

INTRODUCTION

RELATED WORK AND COMPARISON

COMPARISON

RELATED WORK

4 Express updates at an arbitrary pointed location
8 Verification of Hoare triples is not fully automatic
8 Lack of intuitive connections between low level program

statements and the high level formalism

OUR WORK

8 Cannot express updates at an arbitrary pointed location
Resort to induction

4 Verification of Hoare triples is fully automatic
4 Clear connections between low level program statements

and the high level formalism

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

OUTLINE

1 INTRODUCTION
Motivation
Our Contributions
Related Work and Comparison

2 MAIN TALK
Decidable Logic of R-B Trees
Analyze Algorithms on R-B Trees

3 CONCLUSION
Our Contributions
Future Work

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

RED-BLACK TREES

DEFINITION (RED-BLACK TREES)

A binary tree with the following coloring properties:
1 Every node is either red or black.
2 Every leaf node is black.
3 The root is black.
4 Every red node has two black children.
5 All paths from the root to leaf nodes contain the same

number of black nodes.

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

EXAMPLE: RED-BLACK TREES

7

2

1 5

4 nil

11

8 14

nil 15

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

COLOR FLIPPING

11

2

1 7

5

4 nil

8

14

nil 15

w

11

2

1 7

5

4 nil

8

14

nil 15

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

COLOR FLIPPING

11

2

1 7

5

4 nil

8

14

nil 15 w

11

2

1 7

5

4 nil

8

14

nil 15

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

COLOR FLIPPING

11

2

1 7

5

4 nil

8

14

nil 15 w

11

2

1 7

5

4 nil

8

14

nil 15

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

LEFT ROTATION

11

2

1 7

5

4 nil

8

14

nil 15

w

11

7

2

1 5

4 nil

8

14

nil 15

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

LEFT ROTATION

11

2

1 7

5

4 nil

8

14

nil 15 w

11

7

2

1 5

4 nil

8

14

nil 15

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

LEFT ROTATION

11

2

1 7

5

4 nil

8

14

nil 15 w

11

7

2

1 5

4 nil

8

14

nil 15

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

RIGHT ROTATION

11

7

2

1 5

4 nil

8

14

nil 15

w

7

2

1 5

4 nil

11

8 14

nil 15

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

RIGHT ROTATION

11

7

2

1 5

4 nil

8

14

nil 15 w

7

2

1 5

4 nil

11

8 14

nil 15

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

RIGHT ROTATION

11

7

2

1 5

4 nil

8

14

nil 15 w

7

2

1 5

4 nil

11

8 14

nil 15

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

TERM ALGEBRAS

DEFINITION (TERM ALGEBRAS)

A term algebra TA : 〈T; C,A,S, T 〉 consists of
1 T: The term domain called C-terms
2 C: A set of constructors: α, β, γ, . . .
3 A: A set of constants: a, b, c, . . . We require A 6= ∅ and
A ⊆ C.

4 S: A set of selectors. For a constructor α with arity k > 0,
there are k selectors sα1 , . . . , s

α
k in S.

5 T : A set of testers. For each constructor α there is a
corresponding tester Isα.

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

COLORED TREES

RB = 〈 Trb; {red, black, nil}, {nil},
{carred, cdrred, carblack, cdrblack}, {Isred, Isblack, Isnil} 〉 ,

where
+ Trb denotes the domain
+ nil denotes a leaf,
+ red and black are binary constructors
+ car] and cdr] are the left and the right]-selectors

(] ∈ {red, black}).

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

RED-BLACK TREES

RBZ = 〈RB; PA; | · |max, | · |min : Trb → N 〉

with

| · |max : length of maxiaml black path
| · |min : length of mimimal black path

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

MAXIMAL BLACK PATH

|x|max =

1 if x is nil

0 if x has two consecutive red
nodes

max(|x1|max, |x2|max) + 1 if x is a well-formed black tree

max(|x1|max, |x2|max) if x is a well-formed red tree

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

MINIMAL BLACK PATH

|x|min =

1 if x is nil

0 if x has two consecutive red
nodes

min(|x1|min, |x2|min) + 1 if x is a well-formed black tree

min(|x1|min, |x2|min) if x is a well-formed red tree

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

PREDICATES FOR WELL-FORMED TREES

x IS A WELL-FORMED BLACK TREE:

GB(x, x1, x2) def== x = black(x1, x2) ∧ |x1|max 6= 0 ∧ |x2|max 6= 0

x IS A WELL-FORMED RED TREE:

GR(x, x1, x2) def== x = red(x1, x2) ∧ |x1|max 6= 0 ∧ |x2|max 6= 0

x HAS TWO CONSECUTIVE RED NODES:

Vio(x) def== x 6= nil ∧ ∀x1∀x2
(
¬GB(x, x1, x2) ∨ ¬GR(x, x1, x2)

)

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

RED-BLACK PROPERTIES

x IS A RED BLACK TREE IF

ϕ1 : |x|max = |x|min
any maximal path of x contains the same
number of black nodes

ϕ2 : |x|max > 0 any red node of x must have two black
children

ϕ3 : Isblack(x) the root of x is black

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

RED-BLACK PROPERTIES

SUBDOMAIN PREDICATE:

ϕRB(x) def== ϕ1 ∧ ϕ2 ∧ ϕ3

THEORY OF THE SUBDOMAIN OBTAINED BY RELATIVIZATION:

∀x (ϕRB(x)→ Φ(x)) for universal properties
∃x (ϕRB(x) ∧ Φ(x)) for existential properties

VERIFYING BALANCED TREES

MAIN TALK

DECIDABLE LOGIC OF R-B TREES

DECIDABILITY OF RBZ

THEOREM (DECIDABILITY OF RBZ)

1 Th∃(RBZ) is NP-complete.
2 Th(RBZ) is decidable and admits quantifier elimination.

PROOF SKETCH.
1 Reduce term constraints to integer constraints
2 Reduce term quantifiers to integer quantifiers

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

OUTLINE

1 INTRODUCTION
Motivation
Our Contributions
Related Work and Comparison

2 MAIN TALK
Decidable Logic of R-B Trees
Analyze Algorithms on R-B Trees

3 CONCLUSION
Our Contributions
Future Work

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

TRANSITION RELATION

NOTATION

+ v̄: variables in the current state
+ v̄′: the corresponding variables in the next state.
+ ρq(v̄, v̄′): transition relation of a statement q

+ post(q, ϕ): post-condition of ϕ(v̄) after executing a
statement q

COMPOSITION

The transition relation of the composite statement 〈q; r〉 is

(∃v̄1)
(
ρq(v̄, v̄1) ∧ ρr(v̄1, v̄′)

)

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

VERIFICATION CONDITIONS

HOARE TRIPLES

+ {ϕ}q{ψ}: state ψ reached after executing q at state ϕ
+ {ϕ}q{ψ}: equivalent to post(q, ϕ)→ ψ

PROVING HOARE TRIPLES

post(q, ϕ) def== (∃v̄0)
(
ρq(v̄0, v̄) ∧ ϕ(v̄0)

)
{ϕ}q{ψ} def== (∃v̄0)

(
ρq(v̄0, v̄) ∧ ϕ(v̄0)

)
→ ψ(v̄)

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

COLOR FLIPPING: STEP 1

11

2

1 7x2

5x1

4x nil

8

14

nil 15

w

11

2

1 7x2

5x1

4x nil

8

14

nil 15

T ′[x− 1].tree = cdr(T ′[x− 2])
= black(car(T[x− 1].tree), cdr(T[x− 1].tree))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

COLOR FLIPPING: STEP 1

11

2

1 7x2

5x1

4x nil

8

14

nil 15 w

11

2

1 7x2

5x1

4x nil

8

14

nil 15

T ′[x− 1].tree = cdr(T ′[x− 2])
= black(car(T[x− 1].tree), cdr(T[x− 1].tree))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

COLOR FLIPPING: STEP 1

11

2

1 7x2

5x1

4x nil

8

14

nil 15 w

11

2

1 7x2

5x1

4x nil

8

14

nil 15

T ′[x− 1].tree = cdr(T ′[x− 2])
= black(car(T[x− 1].tree), cdr(T[x− 1].tree))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

COLOR FLIPPING: STEP 1

11

2

1 7x2

5x1

4x nil

8

14

nil 15 w

11

2

1 7x2

5x1

4x nil

8

14

nil 15

T ′[x− 1].tree = cdr(T ′[x− 2])
= black(car(T[x− 1].tree), cdr(T[x− 1].tree))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

COLOR FLIPPING: STEP 2

11

2

1 7x2

5x1

4x nil

8

14

nil 15

w

11

2

1 7x2

5x1

4x nil

8

14

nil 15

car(T ′[x− 2]) = T ′[x− 1] = black(car(T[x− 1]), cdr(T[x− 1]))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

COLOR FLIPPING: STEP 2

11

2

1 7x2

5x1

4x nil

8

14

nil 15 w

11

2

1 7x2

5x1

4x nil

8

14

nil 15

car(T ′[x− 2]) = T ′[x− 1] = black(car(T[x− 1]), cdr(T[x− 1]))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

COLOR FLIPPING: STEP 2

11

2

1 7x2

5x1

4x nil

8

14

nil 15 w

11

2

1 7x2

5x1

4x nil

8

14

nil 15

car(T ′[x− 2]) = T ′[x− 1] = black(car(T[x− 1]), cdr(T[x− 1]))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

COLOR FLIPPING: STEP 2

11

2

1 7x2

5x1

4x nil

8

14

nil 15 w

11

2

1 7x2

5x1

4x nil

8

14

nil 15

car(T ′[x− 2]) = T ′[x− 1] = black(car(T[x− 1]), cdr(T[x− 1]))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

COLOR FLIPPING: STEP 3

11

2

1 7x2

5x1

4x nil

8

14

nil 15

w

11

2

1 7x2

5x1

4x nil

8

14

nil 15

T ′[x− 2] = red(car(T[x− 2]), cdr(T[x− 2]))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

COLOR FLIPPING: STEP 3

11

2

1 7x2

5x1

4x nil

8

14

nil 15 w

11

2

1 7x2

5x1

4x nil

8

14

nil 15

T ′[x− 2] = red(car(T[x− 2]), cdr(T[x− 2]))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

COLOR FLIPPING: STEP 3

11

2

1 7x2

5x1

4x nil

8

14

nil 15 w

11

2

1 7x2

5x1

4x nil

8

14

nil 15

T ′[x− 2] = red(car(T[x− 2]), cdr(T[x− 2]))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

COLOR FLIPPING: STEP 3

11

2

1 7x2

5x1

4x nil

8

14

nil 15 w

11

2

1 7x2

5x1

4x nil

8

14

nil 15

T ′[x− 2] = red(car(T[x− 2]), cdr(T[x− 2]))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

LEFT ROTATION: STEP 1

11

2x1

1 7x

5x1

4 nil

8

14

nil 15

w

11

7x1

8 2x

5x1

4 nil

1

14

nil 15

cdr(T ′[x− 1]) = T ′[x]
∧ (T ′[x + 1].tree = cdr(T ′[x]) = T[x].tree)
∧ (T ′[x].tree = car(T ′[x− 1]) = T[x + 1].tree)

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

LEFT ROTATION: STEP 1

11

2x1

1 7x

5x1

4 nil

8

14

nil 15 w

11

7x1

8 2x

5x1

4 nil

1

14

nil 15

cdr(T ′[x− 1]) = T ′[x]
∧ (T ′[x + 1].tree = cdr(T ′[x]) = T[x].tree)
∧ (T ′[x].tree = car(T ′[x− 1]) = T[x + 1].tree)

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

LEFT ROTATION: STEP 1

11

2x1

1 7x

5x1

4 nil

8

14

nil 15 w

11

7x1

8 2x

5x1

4 nil

1

14

nil 15

cdr(T ′[x− 1]) = T ′[x]
∧ (T ′[x + 1].tree = cdr(T ′[x]) = T[x].tree)
∧ (T ′[x].tree = car(T ′[x− 1]) = T[x + 1].tree)

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

LEFT ROTATION: STEP 1

11

2x1

1 7x

5x1

4 nil

8

14

nil 15 w

11

7x1

8 2x

5x1

4 nil

1

14

nil 15

cdr(T ′[x− 1]) = T ′[x]
∧ (T ′[x + 1].tree = cdr(T ′[x]) = T[x].tree)
∧ (T ′[x].tree = car(T ′[x− 1]) = T[x + 1].tree)

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

LEFT ROTATION: STEP 2

11

7x1

8 2x

5x1

4 nil

1

14

nil 15

w

11

7x1

2x

5x1

4 nil

1

8

14

nil 15

T ′[x].dir = right ∧ T ′[x− 1] = red(cdr(T[x− 1]), car(T[x− 1]))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

LEFT ROTATION: STEP 2

11

7x1

8 2x

5x1

4 nil

1

14

nil 15 w

11

7x1

2x

5x1

4 nil

1

8

14

nil 15

T ′[x].dir = right ∧ T ′[x− 1] = red(cdr(T[x− 1]), car(T[x− 1]))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

LEFT ROTATION: STEP 2

11

7x1

8 2x

5x1

4 nil

1

14

nil 15 w

11

7x1

2x

5x1

4 nil

1

8

14

nil 15

T ′[x].dir = right ∧ T ′[x− 1] = red(cdr(T[x− 1]), car(T[x− 1]))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

LEFT ROTATION: STEP 2

11

7x1

8 2x

5x1

4 nil

1

14

nil 15 w

11

7x1

2x

5x1

4 nil

1

8

14

nil 15

T ′[x].dir = right ∧ T ′[x− 1] = red(cdr(T[x− 1]), car(T[x− 1]))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

LEFT ROTATION: STEP 3

11

7x1

2x

5x1

4 nil

1

8

14

nil 15

w

11

7x1

2x

1 5 x1

4 nil

8

14

nil 15

T ′[x + 1].dir = left ∧ car(T ′[x− 1]) = T ′[x]
∧ T ′[x] = red(cdr(T[x]), car(T[x]))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

LEFT ROTATION: STEP 3

11

7x1

2x

5x1

4 nil

1

8

14

nil 15 w

11

7x1

2x

1 5 x1

4 nil

8

14

nil 15

T ′[x + 1].dir = left ∧ car(T ′[x− 1]) = T ′[x]
∧ T ′[x] = red(cdr(T[x]), car(T[x]))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

LEFT ROTATION: STEP 3

11

7x1

2x

5x1

4 nil

1

8

14

nil 15 w

11

7x1

2x

1 5 x1

4 nil

8

14

nil 15

T ′[x + 1].dir = left ∧ car(T ′[x− 1]) = T ′[x]
∧ T ′[x] = red(cdr(T[x]), car(T[x]))

VERIFYING BALANCED TREES

MAIN TALK

ANALYZE ALGORITHMS ON R-B TREES

LEFT ROTATION: STEP 3

11

7x1

2x

5x1

4 nil

1

8

14

nil 15 w

11

7x1

2x

1 5 x1

4 nil

8

14

nil 15

T ′[x + 1].dir = left ∧ car(T ′[x− 1]) = T ′[x]
∧ T ′[x] = red(cdr(T[x]), car(T[x]))

VERIFYING BALANCED TREES

CONCLUSION

OUR CONTRIBUTIONS

OUTLINE

1 INTRODUCTION
Motivation
Our Contributions
Related Work and Comparison

2 MAIN TALK
Decidable Logic of R-B Trees
Analyze Algorithms on R-B Trees

3 CONCLUSION
Our Contributions
Future Work

VERIFYING BALANCED TREES

CONCLUSION

OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

+ Develop a first-order theory of red-black trees using the
theory of term algebras augmented with Presburger
arithmetic

+ Show how to use this theory to represent the transition
relations of the tree operations directly from the program
statements, and how to use them to construct Hoare triples

+ Provide a decision procedure for automatically checking
validity of the resulting verification conditions

+ Generalizable to model other balanced tree structures,
such as AVL trees and B-trees

VERIFYING BALANCED TREES

CONCLUSION

OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

+ Develop a first-order theory of red-black trees using the
theory of term algebras augmented with Presburger
arithmetic

+ Show how to use this theory to represent the transition
relations of the tree operations directly from the program
statements, and how to use them to construct Hoare triples

+ Provide a decision procedure for automatically checking
validity of the resulting verification conditions

+ Generalizable to model other balanced tree structures,
such as AVL trees and B-trees

VERIFYING BALANCED TREES

CONCLUSION

OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

+ Develop a first-order theory of red-black trees using the
theory of term algebras augmented with Presburger
arithmetic

+ Show how to use this theory to represent the transition
relations of the tree operations directly from the program
statements, and how to use them to construct Hoare triples

+ Provide a decision procedure for automatically checking
validity of the resulting verification conditions

+ Generalizable to model other balanced tree structures,
such as AVL trees and B-trees

VERIFYING BALANCED TREES

CONCLUSION

OUR CONTRIBUTIONS

OUR CONTRIBUTIONS

+ Develop a first-order theory of red-black trees using the
theory of term algebras augmented with Presburger
arithmetic

+ Show how to use this theory to represent the transition
relations of the tree operations directly from the program
statements, and how to use them to construct Hoare triples

+ Provide a decision procedure for automatically checking
validity of the resulting verification conditions

+ Generalizable to model other balanced tree structures,
such as AVL trees and B-trees

VERIFYING BALANCED TREES

CONCLUSION

FUTURE WORK

OUTLINE

1 INTRODUCTION
Motivation
Our Contributions
Related Work and Comparison

2 MAIN TALK
Decidable Logic of R-B Trees
Analyze Algorithms on R-B Trees

3 CONCLUSION
Our Contributions
Future Work

VERIFYING BALANCED TREES

CONCLUSION

FUTURE WORK

FUTURE WORK

+ Express more properties:
Tree Orderings

+ Model Destructive Updates:
Decidable Logic with Extraction and Assignment

T[p] def== the subtree of T at position p

T ⊕p T ′ def== the tree obtained from T by substituting T ′

for the subtree of T at position p

VERIFYING BALANCED TREES

CONCLUSION

FUTURE WORK

FUTURE WORK

+ Express more properties:
Tree Orderings

+ Model Destructive Updates:
Decidable Logic with Extraction and Assignment

T[p] def== the subtree of T at position p

T ⊕p T ′ def== the tree obtained from T by substituting T ′

for the subtree of T at position p

VERIFYING BALANCED TREES

CONCLUSION

FUTURE WORK

Thank You!

	Outline
	Introduction
	Motivation
	Our Contributions
	Related Work and Comparison

	Main Talk
	Decidable Logic of R-B Trees
	Analyze Algorithms on R-B Trees

	Conclusion
	Our Contributions
	Future Work

