Verifying Balanced Trees

Zohar Manna ${ }^{1}$ Henny B. Sipma ${ }^{1}$ Ting Zhang ${ }^{2}$

${ }^{1}$ Department of Computer Science
Stanford University
${ }^{2}$ Theory Group
Microsoft Research Asia
Logical Foundations of Computer Science June 5, 2007

Outline

(1) Introduction

- Motivation
- Our Contributions
- Related Work and Comparison
(2) Main Talk
- Decidable Logic of R-B Trees
- Analyze Algorithms on R-B Trees
(3) Conclusion
- Our Contributions
- Future Work

Outline

(1) Introduction

- Motivation
- Our Contributions
- Related Work and Comparison
(2) MAIN TALK
- Decidable Logic of R-B Trees
- Analyze Algorithms on R-B Trees
(3) CONCLUSION
- Our Contributions
- Future Work

Verifying High-Level Data Structures

What?

- Complex data structure: Trees ...
- High-level properties: Being Balanced ...
- Intricate Operations: Self-balancing ...

Verifying High-Level Data Structures

What?

- Complex data structure: Trees ...
- High-level properties: Being Balanced ...
- Intricate Operations: Self-balancing ...

Why?

- Ubiquitous in advanced programming languages
- But hard to get it right

Verifying High-Level Data Structures

What?

- Complex data structure: Trees ...
- High-level properties: Being Balanced ...
- Intricate Operations: Self-balancing ...

Why?

- Ubiquitous in advanced programming languages
- But hard to get it right

Difficulty?

- Lost in Translation

Verifying High-Level Data Structures

What?

- Complex data structure: Trees ...
- High-level properties: Being Balanced ...
- Intricate Operations: Self-balancing ...

Why?

- Ubiquitous in advanced programming languages
- But hard to get it right

Difficulty?

- Lost in Translation

Approach?

- Develop decidable logics to model them directly

Verifying High-Level Data Structures

What?

- Complex data structure: Trees ...
- High-level properties: Being Balanced ...
- Intricate Operations: Self-balancing ...

Why?

- Ubiquitous in advanced programming languages
- But hard to get it right

Difficulty?

- Lost in Translation

Approach?

- Develop decidable logics to model them directly

LOUR CONTRIBUTIONS

Outline

(1) Introduction

- Motivation
- Our Contributions
- Related Work and Comparison
(2) MAIN TALK
- Decidable Logic of R-B Trees
- Analyze Algorithms on R-B Trees
(3) CONCLUSION
- Our Contributions
- Future Work

Our Contributions

Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic

Our Contributions

Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic
Show how to use this theory to represent the transition relations of the tree operations directly from the program statements, and how to use them to construct Hoare triples

Our Contributions

Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic
Show how to use this theory to represent the transition relations of the tree operations directly from the program statements, and how to use them to construct Hoare triples
Provide a decision procedure for automatically checking validity of the resulting verification conditions

Our Contributions

Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic
Show how to use this theory to represent the transition relations of the tree operations directly from the program statements, and how to use them to construct Hoare triples
Provide a decision procedure for automatically checking validity of the resulting verification conditions
Generalizable to model other balanced tree structures, such as AVL trees and B-trees

Outline

(1) Introduction

- Motivation
- Our Contributions
- Related Work and Comparison
(2) MAIN TALK
- Decidable Lo gic of R-B Trees
- Analyze Algorithms on R-B Trees
(3) CONCLUSION
- Our Contributions
- Future Work

L Related Work and Comparison

Related Work

Quantitative Shape Analysis [Rugina 04] Abstract Interpretation Performs forward propagation in an abstract heap

Related Work

Quantitative Shape Analysis [Rugina 04] Abstract Interpretation Performs forward propagation in an abstract heap
Tree Automata with Size Constraints [Habermehl et al 06] Automata Transformation Encodes transition relations, pre- and post-conditions as tree languages

Related Work

Quantitative Shape Analysis [Rugina 04] abstract Interpretation Performs forward propagation in an abstract heap
Tree Automata with Size Constraints [Habermehl et al 06] Automata Transformation Encodes transition relations, pre- and post-conditions as tree languages
Hypergraph Rewriting [Baldan et al 05] Rewriting TechniQues Uses approximate unfolding to compute the reachable states of a graph rewriting system

Related Work

Quantitative Shape Analysis [Rugina 04] abstract Interpretation Performs forward propagation in an abstract heap
(Tree Automata with Size Constraints [Habermehl et al 06] Automata Transformation Encodes transition relations, pre- and post-conditions as tree languages
Hypergraph Rewriting [Baldan et al 05] Rewriting Techniques Uses approximate unfolding to compute the reachable states of a graph rewriting system
Context Logic [Calcagno et al 05]
Deductive System Proved sound and complete

COMPARISON

Related Work

\checkmark Express updates at an arbitrary pointed location
\boldsymbol{x} Verification of Hoare triples is not fully automatic
\boldsymbol{x} Lack of intuitive connections between low level program statements and the high level formalism

COMPARISON

Related Work

\checkmark Express updates at an arbitrary pointed location
\boldsymbol{x} Verification of Hoare triples is not fully automatic
\boldsymbol{x} Lack of intuitive connections between low level program statements and the high level formalism

OUR Work

x Cannot express updates at an arbitrary pointed location Resort to induction
\checkmark Verification of Hoare triples is fully automatic
\checkmark Clear connections between low level program statements and the high level formalism

Outline

（1）INTRODUCTION
－Motivation
－Our Contributions
－Related Work and Comparison
（2）Main Talk
－Decidable Logic of R－B Trees
－Analyze Algorithms on R－B Trees
（3）CONCLUSION
－Our Contributions
－Future Work

Red-Black Trees

Definition (RED-BLACK Trees)

A binary tree with the following coloring properties:
(1) Every node is either red or black.
(2) Every leaf node is black.
(3) The root is black.
(4) Every red node has two black children.
(5) All paths from the root to leaf nodes contain the same number of black nodes.

- Decidable Logic of R-B Trees

Example: Red-Black Trees

$\left\llcorner_{\text {Decidable Logic of } R \text { - } B \text { Trees }}\right.$

Color Flipping

$\left\llcorner_{\text {Decidable Logic of } R \text { - } B \text { Trees }}\right.$

Color Flipping

$\left\llcorner_{\text {Decidable Logic of } R-B \text { Trees }}\right.$

Color Flipping

Left Rotation

Left Rotation

$\left\llcorner_{\text {Decidable Logic of R-B Trees }}\right.$

Left Rotation

$\left\llcorner_{\text {Decidable Logic of R-B Trees }}\right.$

Right Rotation

$\left\llcorner_{\text {Decidable Logic of R-B Trees }}\right.$

Right Rotation

$\left\llcorner_{\text {Decidable Logic of R-B Trees }}\right.$

Right Rotation

Term Algebras

Definition (Term Algebras)

A term algebra TA : $\langle\mathbb{T} ; \mathcal{C}, \mathcal{A}, \mathcal{S}, \mathcal{T}\rangle$ consists of
(1) \mathbb{T} : The term domain called \mathcal{C}-terms
(2) \mathcal{C} : A set of constructors: $\alpha, \beta, \gamma, \ldots$
(3) \mathcal{A} : A set of constants: a, b, c, \ldots We require $\mathcal{A} \neq \emptyset$ and $\mathcal{A} \subseteq \mathcal{C}$.
(4) \mathcal{S} : A set of selectors. For a constructor α with arity $k>0$, there are k selectors $\mathrm{s}_{1}^{\alpha}, \ldots, \mathrm{s}_{k}^{\alpha}$ in \mathcal{S}.
(5) \mathcal{T} : A set of testers. For each constructor α there is a corresponding tester Is_{α}.

Colored Trees

$$
\begin{aligned}
& \mathrm{RB}=\left\langle\mathbb{T}_{\mathrm{rb}} ;\{\text { red, black, nil }\},\{\text { nil }\},\right. \\
& \left.\left\{\operatorname{car}^{\text {red }}, \operatorname{cdr}^{\text {red }}, \operatorname{car}^{\text {black }}, \operatorname{cdr}^{\text {black }}\right\},\left\{\mathrm{I}_{\text {red }}, \mathrm{Is}_{\text {black }}, \mathrm{Is}_{\text {nil }}\right\}\right\rangle,
\end{aligned}
$$

where
\mathbb{T}_{rb} denotes the domain
nil denotes a leaf,
red and black are binary constructors
$\operatorname{car}^{\sharp}$ and cdr ${ }^{\sharp}$ are the left and the right $\#$-selectors ($\# \in\{$ red, black $\}$).

Red-Black Trees

$$
\left.\mathrm{RB}_{\mathbb{Z}}=\left.\langle\mathrm{RB} ; \mathrm{PA} ;| \cdot\right|_{\text {max }},\left.|\cdot|\right|_{\min }: \mathbb{T}_{\mathrm{rb}} \rightarrow \mathbb{N}\right\rangle
$$

with
$|\cdot|_{\text {max }}$: length of maxiaml black path
$|\cdot|_{\text {min }}$: length of mimimal black path

Maximal Black Path

$$
|x|_{\max }= \begin{cases}1 & \text { if } x \text { is nil } \\ 0 & \text { if } x \text { has two consecutive red } \\ & \text { nodes } \\ \max \left(\left|x_{1}\right|_{\max },\left|x_{2}\right|_{\max }\right)+1 & \text { if } x \text { is a well-formed black tree } \\ \max \left(\left|x_{1}\right|_{\max },\left|x_{2}\right|_{\max }\right) & \text { if } x \text { is a well-formed red tree }\end{cases}
$$

Minimal Black Path

$|x|_{\min }= \begin{cases}1 & \text { if } x \text { is nil } \\ 0 & \text { if } x \text { has two consecutive red } \\ \text { nodes } \\ \min \left(\left|x_{1}\right|_{\min },\left|x_{2}\right|_{\min }\right)+1 & \text { if } x \text { is a well-formed black tree } \\ \min \left(\left|x_{1}\right|_{\text {min }},\left|x_{2}\right|_{\text {min }}\right) & \text { if } x \text { is a well-formed red tree }\end{cases}$

Predicates for Well-formed Trees

x IS A WELL-FORMED BLACK TREE:

$\mathrm{GB}\left(x, x_{1}, x_{2}\right) \stackrel{\text { def }}{=} x=\operatorname{black}\left(x_{1}, x_{2}\right) \wedge\left|x_{1}\right|_{\max } \neq 0 \wedge\left|x_{2}\right|_{\max } \neq 0$

x IS A WELL-FORMED RED TREE:

$$
\operatorname{GR}\left(x, x_{1}, x_{2}\right) \stackrel{\text { def }}{=} x=\operatorname{red}\left(x_{1}, x_{2}\right) \wedge\left|x_{1}\right|_{\max } \neq 0 \wedge\left|x_{2}\right|_{\max } \neq 0
$$

x HAS TWO CONSECUTIVE RED NODES:

$\operatorname{Vio}(x) \stackrel{\text { def }}{=} x \neq \operatorname{nil} \wedge \forall x_{1} \forall x_{2}\left(\neg \operatorname{GB}\left(x, x_{1}, x_{2}\right) \vee \neg \operatorname{GR}\left(x, x_{1}, x_{2}\right)\right)$

Red-black Properties

x IS A RED BLACK TREE IF

$$
\varphi_{1}:|x|_{\max }=|x|_{\min }
$$

$$
\varphi_{2}: \quad|x|_{\max }>0
$$

$\varphi_{3}: \mathrm{I}_{\text {black }}(x)$
any maximal path of x contains the same number of black nodes
any red node of x must have two black children
the root of x is black

Red-black Properties

SUBDOMAIN PREDICATE:

$$
\varphi_{\mathrm{RB}}(x) \stackrel{\text { def }}{=} \varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}
$$

THEORY OF THE SUBDOMAIN OBTAINED BY RELATIVIZATION:

$$
\begin{array}{ll}
\forall x\left(\varphi_{\mathrm{RB}}(x) \rightarrow \Phi(x)\right) & \text { for universal properties } \\
\exists x\left(\varphi_{\mathrm{RB}}(x) \wedge \Phi(x)\right) & \text { for existential properties }
\end{array}
$$

DECIDABILITY OF $\mathrm{RB}_{\mathbb{Z}}$

THEOREM (DECIDABILITY OF $\mathrm{RB}_{\mathbb{Z}}$)

(1) $\mathrm{Th}^{\exists}\left(\mathrm{RB}_{\mathbb{Z}}\right)$ is NP-complete.
(2) $\mathrm{Th}\left(\mathrm{RB}_{\mathbb{Z}}\right)$ is decidable and admits quantifier elimination.

Proof Sketch.

(1) Reduce term constraints to integer constraints
(2) Reduce term quantifiers to integer quantifiers

Outline

(1) INTRODUCTION

- Motivation
- Our Contributions
- Related Work and Comparison
(2) Main Talk
- Decidable Logic of R-B Trees
- Analyze Algorithms on R-B Trees
(3) CONCLUSION
- Our Contributions
- Future Work

Transition Relation

NOTATION

\bar{v} : variables in the current state
\bar{v}^{\prime} : the corresponding variables in the next state.
$\rho_{q}\left(\bar{v}, \bar{v}^{\prime}\right)$: transition relation of a statement q
$\operatorname{post}(q, \varphi)$: post-condition of $\varphi(\bar{v})$ after executing a statement q

Composition
The transition relation of the composite statement $\langle q ; r\rangle$ is

$$
\left(\exists \bar{v}^{1}\right)\left(\rho_{q}\left(\bar{v}, \bar{v}^{1}\right) \wedge \rho_{r}\left(\bar{v}^{1}, \bar{v}^{\prime}\right)\right)
$$

VERIFICATION Conditions

Hoare Triples

$\{\varphi\} q\{\psi\}$: state ψ reached after executing q at state φ
$\{\varphi\} q\{\psi\}$: equivalent to $\operatorname{post}(q, \varphi) \rightarrow \psi$

Proving Hoare Triples

$$
\begin{aligned}
& \operatorname{post}(q, \varphi) \stackrel{\text { def }}{=}\left(\exists \bar{v}^{0}\right)\left(\rho_{q}\left(\bar{v}^{0}, \bar{v}\right) \wedge \varphi\left(\bar{v}^{0}\right)\right) \\
& \{\varphi\} q\{\psi\} \stackrel{\text { def }}{=}\left(\exists \bar{v}^{0}\right)\left(\rho_{q}\left(\bar{v}^{0}, \bar{v}\right) \wedge \varphi\left(\bar{v}^{0}\right)\right) \rightarrow \psi(\bar{v})
\end{aligned}
$$

Color Flipping: Step 1

Color Flipping: Step 1

-Analyze Algorithms on R-B Trees

Color Flipping: Step 1

IIII

LAnalyze Algorithms on R-B Trees

Color Flipping: Step 1

$$
\begin{aligned}
T^{\prime}[x-1] . \text { tree } & =\operatorname{cdr}\left(T^{\prime}[x-2]\right) \\
& =\operatorname{black}(\operatorname{car}(T[x-1] \cdot \operatorname{tree}), \operatorname{cdr}(T[x-1] . \operatorname{tree}))
\end{aligned}
$$

-Analyze Algorithms on R-B Trees

Color Flipping: Step 2

-Analyze Algorithms on R-B Trees

Color Flipping: Step 2

-Analyze Algorithms on R-B Trees

Color Flipping: Step 2

IIII

—Analyze Algorithms on R-B Trees

Color Flipping: Step 2

$$
\operatorname{car}\left(T^{\prime}[x-2]\right)=T^{\prime}[x-1]=\operatorname{black}(\operatorname{car}(T[x-1]), \operatorname{cdr}(T[x-1]))
$$

- Analyze Algorithms on R-B Trees

Color Flipping: Step 3

-Analyze Algorithms on R-B Trees

Color Flipping: Step 3

-Analyze Algorithms on R-B Trees

Color Flipping: Step 3

IIII

LAnalyze Algorithms on R-B Trees

Color Flipping: Step 3

$$
T^{\prime}[x-2]=\operatorname{red}(\operatorname{car}(T[x-2]), \operatorname{cdr}(T[x-2]))
$$

Left Rotation: Step 1

\equiv ミดดく

Left Rotation: Step 1

- Analyze Algorithms on R-B Trees

Left Rotation: Step 1

L Main Talk

- Analyze Algorithms on R-B Trees

Left Rotation: Step 1

$$
\begin{aligned}
& \operatorname{cdr}\left(T^{\prime}[x-1]\right)=T^{\prime}[x] \\
\wedge & \left(T^{\prime}[x+1] \cdot \text { tree }=\operatorname{cdr}\left(T^{\prime}[x]\right)=T[x] . \text { tree }\right) \\
\wedge & \left(T^{\prime}[x] . \text { tree }=\operatorname{car}\left(T^{\prime}[x-1]\right)=T[x+1] \text {.tree }\right)
\end{aligned}
$$

Left Rotation: Step 2

三 \quad の

Left Rotation: Step 2

Lanalyze Algorithms on R-B Trees

Left Rotation: Step 2

Lanalyze Algorithms on R-B Trees

Left Rotation: Step 2

$$
T^{\prime}[x] \cdot \text { dir }=\text { right } \wedge T^{\prime}[x-1]=\operatorname{red}(\operatorname{cdr}(T[x-1]), \operatorname{car}(T[x-1]))
$$

Left Rotation: Step 3

Left Rotation: Step 3

Lanalyze Algorithms on R-B Trees

Left Rotation: Step 3

IIII

\equiv ミด®

Lanalyze Algorithms on R-B Trees

Left Rotation: Step 3

$$
\begin{aligned}
T^{\prime}[x+1] . \text { dir }=\text { left } & \wedge \operatorname{car}\left(T^{\prime}[x-1]\right)=T^{\prime}[x] \\
& \wedge T^{\prime}[x]=\operatorname{red}(\operatorname{cdr}(T[x]), \operatorname{car}(T[x]))
\end{aligned}
$$

LOur Contributions

Outline

(3) CONCLUSION

- Our Contributions
- Future Work

Our Contributions

Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic

Our Contributions

Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic
Show how to use this theory to represent the transition relations of the tree operations directly from the program statements, and how to use them to construct Hoare triples

Our Contributions

Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic
Show how to use this theory to represent the transition relations of the tree operations directly from the program statements, and how to use them to construct Hoare triples
Provide a decision procedure for automatically checking validity of the resulting verification conditions

Our Contributions

Develop a first-order theory of red-black trees using the theory of term algebras augmented with Presburger arithmetic
Show how to use this theory to represent the transition relations of the tree operations directly from the program statements, and how to use them to construct Hoare triples
Provide a decision procedure for automatically checking validity of the resulting verification conditions
Generalizable to model other balanced tree structures, such as AVL trees and B-trees

LFuture Work

Outline

(1) InTRODUCTION

- Motivation
- Our Contributions
- Related Work and Comparison
(2) MAIN TALK
- Decidable Logic of R-B Trees
- Analyze Algorithms on R-B Trees

(3) CONCLUSION

- Our Contributions
- Future Work
-Future Work

Future Work

Express more properties: Tree Orderings

Future Work

Express more properties: Tree Orderings
ne Model Destructive Updates:
Decidable Logic with Extraction and Assignment
$T[p] \xlongequal{\text { def }}$ the subtree of T at position p
$T \oplus_{p} T^{\prime} \xlongequal{\text { def }}=$ the tree obtained from T by substituting T^{\prime} for the subtree of T at position p

Thank You!

