Math 293A: Strong Normalization for $\mathbf{Nm}_{\rightarrow}$, λ_{\rightarrow} and Arithmetic

Ting Zhang (tingz@cs.stanford.edu) Department of Computer Science Stanford University November 12, 2002

1 Introduction

In this report we present strong normalization proofs of $\mathbf{Nm}_{\rightarrow}$ and arithmetic respectively [TS00] [Lei75]. As we shall see the two proofs bear great similarity.

2 Strong Normalization for Nm_{\rightarrow} and λ_{\rightarrow} [TS00]

Definition 2.1. Nm_{\rightarrow} *is the natural deduction system of minimal implicational logic and* λ_{\rightarrow} *is the system of* λ *terms of corresponding deductions.*

Definition 2.2 (Strongly Normalizable). A λ_{\rightarrow} term t is strongly normalizable (s.n.) if any β -conversion sequence beginning with t terminates. Let \succ denote 1-step β -conversion and \succ multi-step β -conversion respectively.

Definition 2.3. $A \lambda_{\rightarrow}$ term t is **non-introduced** if t is not of the form $\lambda x.s.$ In other words t is non-introduced if the final rule of the corresponding derivation is not $\rightarrow I$.

Example 2.1. $\mathbf{k}_{\lambda}^{A,B} \equiv \lambda x^A y^B . x^A$ is introduced while terms of the form st is non-introduced.

Definition 2.4. We define computability predicate $Comp_T(t)$ recursively as follows.

$$Comp_X(t) := \mathbf{SN}(t)$$
$$Comp_{A \to B}(t) := \forall s(Comp_A(s) \to Comp_B(ts))$$

Definition 2.5 (Strong Computability). A term t : B is strongly computable if $FV(t) \subseteq \{x_1 : A_1, \ldots, x_n : A_n\}$ and $Comp_{A_i}(s_i)$ for $i \ge n$, then $Comp_B(t[x_1, \ldots, x_n/s_1, \ldots, s_n]).$

Lemma 2.1. Four properties hold for Comp.

- C1 If $Comp_A(t)$, then $\mathbf{SN}(t)$.
- C2 If $Comp_A(t)$ and $t \succ t'$, then $Comp_A(t')$.
- C3 If t is non-introduced and $\forall t' \prec t \ Comp_A(t')$, then $Comp_A(t)$.
- C4 If t is non-introduced and normal, then $Comp_A(t)$.

Proof. We show C1-C3 by induction simultaneously and C4 follows outright from C3 since if t is normal then $\forall t' \prec t \ Comp_A(t')$ vacuously holds. Induction Base: $A \equiv X$.

C1, C2 and C3 follow immediately from the definition. Induction Step: $A \equiv B \rightarrow C$.

- C1 Suppose that $Comp_{B\to C}(t)$ and let x be a variable of type B. By definition $Comp_C(tx)$ and by IH of C1, $\mathbf{SN}(tx)$. It follows that $\mathbf{SN}(t)$ as any reduction tree of t is embedded in a reduction tree of tx.
- C2 Let $t' \prec t$ and $s \in Comp_B$. By definition $Comp_C(ts)$ and since $ts \gg t's$, by IH $Comp_C(t's)$. It follows from definition that $Comp_{B\to C}(t')$.
- C3 Let $s \in Comp_B$ and $t'' \prec ts$. As t is non-introduction, either $t'' \equiv t's$ and $t' \prec t$ or $t'' \equiv ts'$ and $s' \prec s$.
 - $-t'' \equiv t's$ and $t' \prec t$. By assumption $Comp_{B\to C}(t')$ and hence $Comp_C(t's)$, that is $Comp_C(t'')$. By IH of C3, $Comp_C(ts)$ and by definition $Comp_{B\to C}(t)$ as s is arbitrary.
 - $-t'' \equiv ts'$ and $s' \prec s$. We use subinduction on the length of reduction of s. The base case is trivial as s can not be normal. As the length of reduction of s' is less than that of s, by sub IH, $Comp_C(ts')$ and by IH, $Comp_C(ts)$ and so $Comp_{B\to C}(t)$.

Lemma 2.2 (Substitution). If $\forall s(Comp_A(s) \to Comp_B(t[x/s]))$, then $Comp_{A\to B}(\lambda x.t)$.

Proof. Let $s \in Comp_A$. We need to show that $Comp_B((\lambda x.t)s)$. Let if $t'' \prec (\lambda x.t)s$. By Lemma 2.1.C3 it suffices to show $Comp_B(t'')$. We do induction on the sum $h_s + h_t$ of reduction heights of s and t. Base case: $h_s + h_t = 0$. Then $t'' \equiv t[x/s]$ and by assumption $Comp_B(t'')$. Induction step.

- 1. $t'' \equiv (\lambda x.t)s'$ and $s' \prec s$. So $t[x/s'] \succ t[x/s']$. By Lemma 2.1 C2 $Comp_B(t[x/s'])$ and by IH, $Comp_B(t'')$.
- 2. $t'' \equiv (\lambda x.t')s$ and $t' \prec t$. So $t'[x/s] \prec t[x/s]$. By Lemma 2.1 C2 $Comp_B(t'[x/s])$ and by IH, $Comp_B(t'')$.
- 3. $t'' \equiv t[x/s]$ and by assumption $Comp_B(t'')$.

Theorem 2.1 (Strong Computability). All terms of λ_{\rightarrow} are strongly computable under substitution.

Proof. By induction on t. If t is a variable, then t is strongly computable by assumption. Let $t^* = t[x_1/s_1, \ldots, x_n/s_n]$.

- 1. $t^B = t_1^{A \to B} t_2^A$. Then $t^{*,B} = t_1^{*,A \to B} t_2^{*,A}$. By IH $Comp_{A \to B}(t_1^*)$ and $Comp_A(t_2^*)$. By definition $Comp_B(t_1^*t_2^*)$.
- 2. $t^{A \to B} = \lambda x^A \cdot t_1^B$. Let $s \in Comp_A$. Note that

 $t_1^*[x/s] \equiv t_1[x, x_1, \dots, x_n/s, s_1, \dots, s_n].$

By IH $Comp_B(t_1^*[x/s])$ and by Lemma 2.2 $Comp_{A\to B}(\lambda x.t_1^*)$, that is, $Comp_{A\to B}(t^*)$.

Corollary 2.1. All terms of λ_{\rightarrow} (deductions in $\mathbf{Nm}_{\rightarrow}$) are strongly normalizable.

2.1 Reduction of strong normalization between systems

In general if we can map one derivation step in system \mathbf{S} to finite number of derivation steps in system \mathbf{S}' , then strong normalization of \mathbf{S}' implies strong normalization for \mathbf{S} .

Example 2.2. Reduction of strong normalization for $\lambda_{\forall \rightarrow}$ to strong normalization for λ_{\rightarrow} .

Define reduction map φ recursively as follows.

$$\begin{aligned} \varphi(Rt_1 \dots t_n) &= R^* \quad (R^* \in \mathcal{PV}) \\ \varphi(A \to B) &= \varphi(A) \to \varphi(B) \\ \varphi(\forall xAx) &= (Q \to Q) \to A \quad (Q \in \mathcal{PV} \text{ distinict from } R^*) \end{aligned}$$

Every derivation of $\lambda_{\forall \rightarrow}$ is mapped under φ to a derivation of λ_{\rightarrow} . More precisely,

2.

3.

It is easily seen that this reduction is sound, i.e., one derivation step in $\lambda_{\forall \rightarrow}$ corresponds to one or two derivation steps in λ_{\rightarrow} . As λ_{\rightarrow} is **s.n.**, so is $\lambda_{\forall \rightarrow}$.

3 Strong Normalization for Arithmetic [Lei75]

Definition 3.1 (Complexity Measure). The measure μ on formulas is defined recursively on their structures:

$$\mu(A) := 0 \text{ for } A \text{ atomic},$$

$$\mu(A \& B) := \mu(A \lor B) := max(\mu(A), \mu(B)),$$

$$\mu(\forall xAx) := \mu(\exists xAx) = \mu(A\bar{0}),$$

$$\mu(A \to B) := max(\mu(A) + 1, \mu(B)).$$

We define $\mu(\Delta)$ to be $\mu(A)$ where A is derived formula of Δ .

Definition 3.2 (Detour Reduction). There are five detour reductions, denoted by \succ_{\odot} for $\odot \equiv \&, \lor, \rightarrow, \forall, \exists$.

$$\frac{\sum_{0} \sum_{1} \sum_{i}}{\frac{A_{0} \& A_{1}}{A_{i}}} \succ_{\&} \frac{\sum_{i}}{A_{i}} \qquad (i = 0, 1)$$

 \succ_{\lor}

 $\succ_{\&}$

 \succ_{\rightarrow}

$$\frac{\begin{bmatrix} A \\ \Sigma \\ B \\ A \to B \\ B \end{bmatrix}}{\begin{bmatrix} A \\ B \\ A \end{bmatrix}} \xrightarrow{\succ} \begin{bmatrix} \Delta \\ [A] \\ \Sigma \\ B \end{bmatrix}$$

 \succ_\forall

$$\begin{array}{c} \Sigma(a) \\ \underline{Aa} \\ \underline{\forall xAx} \\ At \end{array} \succ_{\forall} \qquad \begin{array}{c} \Sigma(t) \\ At \end{array}$$

 \succ_\exists

$$\begin{array}{ccc} \sum & [Aa] & & \Sigma \\ \underline{At} & \Delta(a) & \\ \underline{\exists xAx} & \underline{B} & \\ B & & B \end{array} \xrightarrow{\Sigma} \begin{array}{c} [At] \\ \Delta(t) \\ B & \\ B \end{array}$$

Definition 3.3 (Strongly Normalizable). A derivation Δ is strongly normalizable (s.n.) if it is impossible to have the infinitely desceding chain as follows:

$$\Delta \succ \Delta_1 \succ \dots$$

If Δ is **s.n.**, we write $\nu(\Delta)$ for the maximum n such that

$$\Delta \succ \Delta_1 \succ \ldots \Delta_n$$

 $\nu(\Delta)$ is well-defined by König's Lemma and the fact that every derivation has only finite number of reducts.

Definition 3.4 (Improper Reduction). There are five corresponding improper reductions (written \succeq_{\odot} for $\odot \equiv \&, \lor, \rightarrow, \forall, \exists$) which are only used in the proof.

 $\gtrsim_{\&}$

 \succeq_{\lor}

$$\frac{\sum_{0} \quad \sum_{1}}{A_{0} \quad A_{1}} \qquad \succeq_{\&} \qquad \frac{\sum_{i}}{A_{i}} \qquad (i=0,1)$$

$$\frac{\sum_{A_i}}{A_0 \vee A_1} \qquad \succsim_{\vee} \qquad \sum_{A_i} \qquad (i = 0, 1)$$

 $\succeq \rightarrow$

$\frac{\begin{bmatrix} A \end{bmatrix}}{B}$	\succsim_{\rightarrow}	$egin{array}{c} \Delta & \ [A] & \ \Sigma & \ B & \ \end{array}$	$\begin{pmatrix} \Delta \\ A \ is \ stable \end{pmatrix}$
$A \to B$		B	

 \succsim_\forall

$$\begin{array}{c} \Sigma(a) \\ \underline{Aa} \\ \forall xAx \end{array} \qquad \succsim \forall \qquad \begin{array}{c} \Sigma(t) \\ At \end{array}$$

≿∃

$$\frac{\sum_{At}}{\exists x A x} \qquad \approx \exists \qquad \sum_{At}$$

Definition 3.5 (Stability). We write $\Delta > \Delta'$ if $\Delta \succ \Delta'$ or $\Delta \succeq \Delta'$ and $\Delta \gg \Delta'$ if for some $n \ge 0$ we have as a sequence

$$\Delta \equiv \Delta_0 > \Delta_1 > \ldots > \Delta_n \equiv \Delta'$$

 $\Delta < \Delta'$ and $\Delta \ll \Delta'$ are defined similarly.

We say Δ is stable if for any $\Delta' \Delta \gg \Delta'$ implies Δ' is s.n..

Definition 3.6 (Substitution Stability). We write $\Delta \mapsto \Delta^*$ if Δ^* is obtained by substituting any terms for parameters in Δ and then substituting stable derivations for some open assumptions in Δ . We say Δ is **stable under substitution** (s.s.) if for any $\Delta^* \Delta \mapsto \Delta^*$ implies Δ^* is stable.

3.1 Easy Lemmas

Lemma 3.1. Δ is stable if and only if $\Delta > \Delta'$ implies Δ' is stable.

Lemma 3.2. Δ is s.s. implies Δ is stable and Δ is stable implies Δ is s.n..

Lemma 3.3. Let

$$\Delta \equiv \frac{\Delta_0 \quad (\Delta_1)}{A} \ (\rho)$$

where ρ is an introduction rule other than $\forall I$ or $\forall I$. If Δ_0 (and Δ_1) are stable, then Δ is stable.

Lemma 3.4. If a is free in

$$\Delta_0(a)$$

Aa

and $\Delta_0(t)$ is stable for every t, then

$$\Delta \equiv \frac{\Delta(a)}{\frac{Aa}{\forall xAx}}$$

is stable.

Proof. We show the result by induction on $\nu(\Delta_0)$. Suppose that

$$\Delta \qquad \succ \qquad \Delta' \qquad \equiv \qquad \frac{\Delta'_0(a)}{\frac{Aa}{\forall xAx}}$$

Then $\nu(\Delta'_0) < \nu(\Delta_0)$. By IH Δ' is stable. Suppose

$$\Delta \qquad \succeq \qquad \Delta' \equiv \qquad \frac{\Delta_0(t)}{At}$$

Then Δ' is stable by assumption. So By Lemma 3.1 Δ is stable.

Lemma 3.5. If

is stable, then

$$\Delta \equiv \frac{\Delta_0}{At} = \frac{At}{\exists x A x}$$

 $\Delta_0 \\ At$

is stable.

Proof. We show the result by induction on $\nu(\Delta_0)$. Suppose

$$\Delta \qquad \succ \qquad \Delta' \qquad \equiv \qquad \frac{\Delta'_0}{\exists x A x}$$

Then $\nu(\Delta'_0) < \nu(\Delta_0)$. By IH Δ' is stable. Suppose

$$\Delta$$
 \gtrsim Δ' \equiv $\Delta_0 \\ At$

Then Δ' is stable by assumption. So By Lemma 3.1 Δ is stable.

Lemma 3.6. Let

$$\Pi \qquad \equiv \qquad \frac{\Pi_0 \quad \Pi_1}{A} \ (\rho)$$

where ρ is an elimination rule other than $\exists E \text{ or } \forall E$. If Π_0 and Π_1 are stable, then Π is stable.

Proof. 1. Inner Reduction.

By induction on $\nu(\Pi_0) + \nu(\Pi_1)$. Note that \langle is exactly \succ for all derivation ending with elimination rules. Let

$$\Pi \qquad \succ \qquad \Pi' \qquad \equiv \qquad \frac{\Pi'_0 \quad \Pi'_1}{A}$$

where $\Pi_0 \succ \Pi'_0$ and $\Pi_1 \succ \Pi'_1$. By assumption Π'_0 and Π'_1 are stable and since $\nu(\Pi'_0) + \nu(\Pi'_1) < \nu(\Pi_0) + \nu(\Pi_1)$, by IH Π' is stable. By Lemma 3.1 Π is stable.

2. Detour Reduction. Take the case $\rho = \forall E$. Let

$$\Pi \equiv \frac{\sum(a)}{\frac{\forall xAx}{At}} \succ \frac{\sum(t)}{At}$$

Since

$$\frac{\Sigma(a)}{\frac{Aa}{\forall xAx}} \quad \stackrel{\Sigma}{\sim} \quad \frac{\Sigma(t)}{At}$$

and

$$\frac{\Sigma(a)}{\frac{Aa}{\forall xAx}}$$

is stable by assumption, $\Sigma(t)$ is stable by Lemma 3.1. By Lemma 3.1 again Π is stable.

Lemma 3.7. Let

$$\Pi \qquad \equiv \qquad \frac{\Pi_0 \quad \Pi_1 \quad \Pi_2}{A} \ (\forall E)$$

If Π_0 , Π_1 and Π_2 are stable, then Π is stable.

Proof. Analogous to Lemma 3.6.

Lemma 3.8. Let

$$\Pi \equiv \frac{ \begin{bmatrix} A(a) \end{bmatrix}}{ \begin{bmatrix} \Pi_0 & \Pi_1(a) \\ \exists x A x & B \\ B \end{bmatrix} (\exists E)}$$

If Π_0 is stable and for every $t \Pi_1(t)$ is stable under Π_0 at [At], then Π is stable.

Proof. c.f. [Lei75]

3.2 Main Theorems

Theorem 3.1. Let

$$\Delta \equiv \frac{\Delta_0 (\Delta_1)}{A} (\rho)$$

where ρ is an introduction rule. If Δ_0 (and Δ_1) are s.s., then Δ is s.s..

Proof. For ρ is $\forall I$, &I or $\rightarrow I$ it is an outright application of definition. We show that case where ρ is $\exists I$. In this case Δ_1 is empty. Let

$$\Delta \equiv \frac{\Delta_0}{\frac{At}{\exists x A x}} (\exists I)$$

where

$$\Delta_0 \\ At$$

is $\mathbf{s.s.}$, and

$$\Delta \quad \mapsto \quad \Delta^* \quad \equiv \quad \frac{\Delta_0^*}{\exists x A^* r} \ (\exists I)$$

Since

$$\begin{array}{ccc} \Delta_0 & & \mapsto & \Delta_0^* \\ At & & & A^*t \end{array}$$

it follows that

$$\begin{array}{c} \Delta_0^* \\ A^* t \end{array}$$

is stable and then by Lemma 3.5 Δ^* is stable and so Δ is **s.s.**.

Theorem 3.2. Let

$$\Pi \equiv \frac{\Pi_0 \quad \Pi_1 \quad \Pi_2}{A} \ (\rho)$$

where ρ is an elimination rule. If Π_0 , Π_1 and Π_2 are s.s., then Π is s.s..

Proof. We show the case where ρ is $\exists E$. Let

$$\Pi \equiv \frac{\sum_{\substack{Bt \\ \exists xBx \\ A}} \begin{bmatrix} B(a) \end{bmatrix}}{\prod_{\substack{a \in A \\ A}} (\exists E)}$$
$$\Pi \mapsto \Pi^* \equiv \frac{\prod_{\substack{a \in A \\ \exists xBx \\ A}} \begin{bmatrix} B(a) \end{bmatrix}}{\prod_{\substack{a \in A \\ a \in A}} (\exists E)}$$

where

$$\Pi_{0} \equiv \frac{\sum Bt}{\exists x B x} \mapsto \Pi_{0}^{*}$$
$$\Pi_{1} \mapsto \Pi_{1}^{*}(a)$$
$$A$$

Since a appears free in any assumptions of Π , we have

$$\Pi_1 \qquad \mapsto \qquad \begin{array}{c} \Sigma\\ [B(t)]\\ \Pi_1^*(t)\\ A \end{array}$$

for any term t and stable derivation

$$\sum_{Bt}$$

Without loss assume that

$$\Pi_0^* \qquad \succ \qquad \dots \qquad \succ \qquad \begin{array}{c} \Theta \\ Bt \\ \exists xBx \end{array} \qquad \succsim \qquad \begin{array}{c} \Theta \\ Bt \\ Bt \end{array}$$

By assumption Π_0 is **s.s.**, so Π_0^* is stable and then

${\displaystyle \mathop{Bt}\limits^{\Theta}}$

is stable. It follows that

$$\begin{array}{c} \Theta \\ [Bt] \\ \Pi_1^*(t) \\ A \end{array}$$

is stable. So $\Pi_1^*(t)$ is stable under Π_0^* at [Bt] for any term t. By Lemma 3.8

$$\Pi^* \equiv \frac{ \begin{array}{c} \Sigma \\ [B(t)] \\ \Pi_0 \\ \exists x B x \\ A \end{array} (\exists E) \end{array}$$

is stable and hence Π is **s.s.**.

Theorem 3.3. Every derivation Π is s.s..

Proof. By induction on derivation length $\lambda(\Pi)$. If $\lambda(\Pi) = 1$ the theorem follows from the definition of **s.s.**. If Π ends with an introduction rule, it follows from Theorem 3.1 and if Π ends with an elimination rule, it follows from Theorem 3.2.

Corollary 3.1 (Strong Normalization). Every derivation is s.n..

 $\it Proof.$ By Theorem 3.3 and Lemma 3.2

References

- [Lei75] Daniel Leivant. Strong normalization for arithmetic (variations on a theme of prawitz). Lecture Notes in Mathematics, 500, 1975.
- [TS00] A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University Press, 2000.