# Math 293A: Strong Normalization for $\mathbf{N m}_{\rightarrow}, \lambda_{\rightarrow}$ and Arithmetic 

Ting Zhang (tingz@cs.stanford.edu)
Department of Computer Science
Stanford University
November 12, 2002

## 1 Introduction

In this report we present strong normalization proofs of $\mathbf{N m}_{\rightarrow}$ and arithmetic respectively [TS00] [Lei75]. As we shall see the two proofs bear great similarity.

## 2 Strong Normalization for $\mathrm{Nm}_{\rightarrow}$ and $\lambda_{\rightarrow}$ [TS00]

Definition 2.1. $\mathrm{Nm}_{\rightarrow}$ is the natural deduction system of minimal implicational logic and $\lambda_{\rightarrow}$ is the system of $\lambda$ terms of corresponding deductions.

Definition 2.2 (Strongly Normalizable). $A \lambda_{\rightarrow}$ term $t$ is strongly normalizable (s.n.) if any $\beta$-conversion sequence beginning with $t$ terminates. Let $\succ$ denote 1 -step $\beta$-conversion and $\succ$ multi-step $\beta$-conversion respectively.

Definition 2.3. $A \lambda_{\rightarrow}$ term $t$ is non-introduced if $t$ is not of the form $\lambda$ x.s. In other words $t$ is non-introduced if the final rule of the corresponding derivation is not $\rightarrow I$.

Example 2.1. $\mathbf{k}_{\lambda}^{A, B} \equiv \lambda x^{A} y^{B} . x^{A}$ is introduced while terms of the form st is non-introduced.

Definition 2.4. We define computability predicate $\operatorname{Comp}_{T}(t)$ recursively as follows.

$$
\begin{aligned}
\operatorname{Comp}_{X}(t) & :=\mathbf{S N}(t) \\
\operatorname{Comp}_{A \rightarrow B}(t) & :=\forall s\left(\operatorname{Comp}_{A}(s) \rightarrow \operatorname{Comp}_{B}(t s)\right)
\end{aligned}
$$

Definition 2.5 (Strong Computability). A term $t: B$ is strongly computable if $F V(t) \subseteq\left\{x_{1}: A_{1}, \ldots, x_{n}: A_{n}\right\}$ and $\operatorname{Comp}_{A_{i}}\left(s_{i}\right)$ for $i \geq n$, then $\operatorname{Comp}_{B}\left(t\left[x_{1}, \ldots, x_{n} / s_{1}, \ldots, s_{n}\right]\right)$.

Lemma 2.1. Four properties hold for Comp.
$C 1$ If $\operatorname{Comp}_{A}(t)$, then $\mathbf{S N}(t)$.
C2 If $\operatorname{Comp}_{A}(t)$ and $t \rtimes t^{\prime}$, then $\operatorname{Comp}_{A}\left(t^{\prime}\right)$.
C3 If $t$ is non-introduced and $\forall t^{\prime} \prec t \operatorname{Comp}_{A}\left(t^{\prime}\right)$, then $\operatorname{Comp}_{A}(t)$.
$C_{4}$ If $t$ is non-introduced and normal, then $\operatorname{Comp}_{A}(t)$.
Proof. We show $C 1-C 3$ by induction simultaneously and $C 4$ follows outright from $C 3$ since if $t$ is normal then $\forall t^{\prime} \prec t \operatorname{Comp}_{A}\left(t^{\prime}\right)$ vacuously holds.
Induction Base: $A \equiv X$.
$C 1, C 2$ and $C 3$ follow immediately from the definition.
Induction Step: $A \equiv B \rightarrow C$.
C1 Suppose that $\operatorname{Comp}_{B \rightarrow C}(t)$ and let $x$ be a variable of type $B$. By definition $\operatorname{Comp}_{C}(t x)$ and by IH of C1, $\mathbf{S N}(t x)$. It follows that $\mathbf{S N}(t)$ as any reduction tree of $t$ is embedded in a reduction tree of $t x$.

C2 Let $t^{\prime} \prec t$ and $s \in C o m p_{B}$. By defintion $\operatorname{Comp}_{C}(t s)$ and since $t s \succ$ $t^{\prime} s$, by IH $\operatorname{Comp}_{C}\left(t^{\prime} s\right)$. It follows from definition that $\operatorname{Comp}_{B \rightarrow C}\left(t^{\prime}\right)$.

C3 Let $s \in \operatorname{Comp}_{B}$ and $t^{\prime \prime} \prec t s$. As $t$ is non-introduction, either $t^{\prime \prime} \equiv t^{\prime} s$ and $t^{\prime} \prec t$ or $t^{\prime \prime} \equiv t s^{\prime}$ and $s^{\prime} \prec s$.
$-t^{\prime \prime} \equiv t^{\prime} s$ and $t^{\prime} \prec t$. By assumption $\operatorname{Comp}_{B \rightarrow C}\left(t^{\prime}\right)$ and hence $\operatorname{Comp}_{C}\left(t^{\prime} s\right)$, that is $\operatorname{Comp}_{C}\left(t^{\prime \prime}\right)$. By IH of C3, $\operatorname{Comp}_{C}(t s)$ and by definition $\operatorname{Comp}_{B \rightarrow C}(t)$ as $s$ is arbitrary.
$-t^{\prime \prime} \equiv t s^{\prime}$ and $s^{\prime} \prec s$. We use subinduction on the length of reduction of $s$. The base case is trivial as $s$ can not be normal. As the length of reduction of $s^{\prime}$ is less than that of $s$, by sub IH, $\operatorname{Comp}_{C}\left(t s^{\prime}\right)$ and by IH, $\operatorname{Comp}_{C}(t s)$ and so $C o m p p_{B \rightarrow C}(t)$.

Lemma 2.2 (Substitution). If $\forall s\left(\operatorname{Comp}_{A}(s) \rightarrow \operatorname{Comp}_{B}(t[x / s])\right)$, then $\operatorname{Comp}_{A \rightarrow B}(\lambda x . t)$.

Proof. Let $s \in \operatorname{Comp}_{A}$. We need to show that $\operatorname{Comp}_{B}((\lambda x . t) s)$. Let if $t^{\prime \prime} \prec(\lambda x . t) s$. By Lemma 2.1.C3 it suffices to show $\operatorname{Comp}_{B}\left(t^{\prime \prime}\right)$. We do induction on the sum $h_{s}+h_{t}$ of reduction heights of $s$ and $t$.
Base case: $h_{s}+h_{t}=0$.
Then $t^{\prime \prime} \equiv t[x / s]$ and by assumption $\operatorname{Comp}_{B}\left(t^{\prime \prime}\right)$.
Induction step.

1. $t^{\prime \prime} \equiv(\lambda x . t) s^{\prime}$ and $s^{\prime} \prec s$. So $t\left[x / s^{\prime}\right] \succ t\left[x / s^{\prime}\right]$. By Lemma 2.1 C2 $\operatorname{Comp}_{B}\left(t\left[x / s^{\prime}\right]\right)$ and by IH, $\operatorname{Comp}_{B}\left(t^{\prime \prime}\right)$.
2. $t^{\prime \prime} \equiv\left(\lambda x . t^{\prime}\right) s$ and $t^{\prime} \prec t$. So $t^{\prime}[x / s] \prec t[x / s]$. By Lemma 2.1 C2 $\operatorname{Comp}_{B}\left(t^{\prime}[x / s]\right)$ and by IH, $\operatorname{Comp}_{B}\left(t^{\prime \prime}\right)$.
3. $t^{\prime \prime} \equiv t[x / s]$ and by assumption $\operatorname{Comp}_{B}\left(t^{\prime \prime}\right)$.

Theorem 2.1 (Strong Computability). All terms of $\lambda_{\rightarrow}$ are strongly computable under substitution.

Proof. By induction on $t$. If $t$ is a variable, then $t$ is strongly computable by assumption. Let $t^{*}=t\left[x_{1} / s_{1}, \ldots, x_{n} / s_{n}\right]$.

1. $t^{B}=t_{1}^{A \rightarrow B} t_{2}^{A}$. Then $t^{*, B}=t_{1}^{*, A \rightarrow B} t_{2}^{*, A}$. By IH $\operatorname{Comp}_{A \rightarrow B}\left(t_{1}^{*}\right)$ and $\operatorname{Comp}_{A}\left(t_{2}^{*}\right)$. By defintion $\operatorname{Comp}_{B}\left(t_{1}^{*} t_{2}^{*}\right)$.
2. $t^{A \rightarrow B}=\lambda x^{A} . t_{1}^{B}$. Let $s \in \operatorname{Comp}_{A}$. Note that

$$
t_{1}^{*}[x / s] \equiv t_{1}\left[x, x_{1}, \ldots, x_{n} / s, s_{1}, \ldots, s_{n}\right]
$$

By IH $\operatorname{Comp}_{B}\left(t_{1}^{*}[x / s]\right)$ and by Lemma $2.2 \operatorname{Comp}_{A \rightarrow B}\left(\lambda x . t_{1}^{*}\right)$, that is, $\operatorname{Comp}_{A \rightarrow B}\left(t^{*}\right)$.

Corollary 2.1. All terms of $\lambda_{\rightarrow}$ (deductions in $\mathbf{N m}_{\rightarrow}$ ) are strongly normalizable.

### 2.1 Reduction of strong normalization between systems

In general if we can map one derivation step in system $\mathbf{S}$ to finite number of derivation steps in system $\mathbf{S}^{\prime}$, then strong normalization of $\mathbf{S}^{\prime}$ implies strong normalization for $\mathbf{S}$.

Example 2.2. Reduction of strong normalization for $\lambda_{\forall \rightarrow \text { to }}$ strong normalization for $\lambda_{\rightarrow}$.

Define reduction map $\varphi$ recursively as follows.

$$
\begin{aligned}
\varphi\left(R t_{1} \ldots t_{n}\right) & =R^{*} \quad\left(R^{*} \in \mathcal{P} \mathcal{V}\right) \\
\varphi(A \rightarrow B) & =\varphi(A) \rightarrow \varphi(B) \\
\varphi(\forall x A x) & =(Q \rightarrow Q) \rightarrow A \quad\left(Q \in \mathcal{P} \mathcal{V} \text { distinict from } R^{*}\right)
\end{aligned}
$$

Every derivation of $\lambda_{\forall \rightarrow}$ is mapped under $\varphi$ to a derivation of $\lambda_{\rightarrow}$. More precisely,
1.

$$
\begin{array}{ccc}
{[A]} & {[\varphi(A)]} \\
\frac{\sum_{B}}{A \rightarrow B} & (\rightarrow I) & \stackrel{\varphi}{\mapsto}
\end{array}
$$

2. 

$$
\begin{array}{lcc}
\Sigma(a) & & \varphi(\Sigma(a)) \\
\frac{A(a)}{\forall x A x}(\forall I) & \stackrel{\varphi}{\mapsto} & \frac{\varphi(A(a))}{(Q \rightarrow Q) \rightarrow \varphi(A(a))}(\forall I)
\end{array}
$$

3. 

$$
\frac{\stackrel{\Sigma}{\forall x A x}}{A t}(\forall E) \quad \stackrel{\varphi}{\mapsto} \quad \frac{(Q \rightarrow Q) \rightarrow \varphi(A)}{} \quad \frac{Q}{Q \rightarrow Q}(\rightarrow E)
$$

It is easily seen that this reduction is sound, i.e., one derivation step in $\lambda_{\forall \rightarrow}$ corresponds to one or two derivation steps in $\lambda_{\rightarrow \text {. }}$. As $\lambda_{\rightarrow}$ is s.n., so is $\lambda_{\forall \rightarrow}$.

## 3 Strong Normalization for Arithmetic [Lei75]

Definition 3.1 (Complexity Measure). The measure $\mu$ on formulas is defined recursively on their structures:

$$
\begin{aligned}
\mu(A) & :=0 \text { for } A \text { atomic } \\
\mu(A \& B) & :=\mu(A \vee B):=\max (\mu(A), \mu(B)) \\
\mu(\forall x A x) & :=\mu(\exists x A x)=\mu(A \overline{0}) \\
\mu(A \rightarrow B) & :=\max (\mu(A)+1, \mu(B))
\end{aligned}
$$

We define $\mu(\Delta)$ to be $\mu(A)$ where $A$ is derived formula of $\Delta$.

Definition 3.2 (Detour Reduction). There are five detour reductions, denoted by $\succ_{\odot}$ for $\odot \equiv \&, \vee, \rightarrow, \forall, \exists$.

$$
\begin{aligned}
& \succ_{\&} \\
& \begin{array}{lll}
\begin{array}{ll}
\Sigma_{0} & \Sigma_{1} \\
A_{0} & A_{1} \\
A_{0} \& A_{1} \\
A_{i}
\end{array} & \succ_{\&} \quad \Sigma_{i} \\
A_{i}
\end{array} \quad(i=0,1) \\
& \succ_{V}
\end{aligned}
$$

$$
\begin{aligned}
& \succ \forall \\
& \begin{array}{ccc}
\Sigma(a) \\
\frac{A a}{\forall x A x} & \succ \forall & \Sigma(t) \\
\frac{A t}{A t}
\end{array} \\
& \succ_{\exists} \\
& \begin{array}{cc}
\begin{array}{cc}
\Sigma & {[A a]} \\
\frac{A t}{} & \Delta(a) \\
\exists x A x & B
\end{array} & \succ_{\exists} \\
\hline B & \\
\hline
\end{array}
\end{aligned}
$$

Definition 3.3 (Strongly Normalizable). A derivation $\Delta$ is strongly normalizable (s.n.) if it is impossible to have the infinitely desceding chain as follows:

$$
\Delta \succ \Delta_{1} \succ \ldots
$$

If $\Delta$ is s.n., we write $\nu(\Delta)$ for the maximum $n$ such that

$$
\Delta \succ \Delta_{1} \succ \ldots \Delta_{n}
$$

$\nu(\Delta)$ is well-defined by König's Lemma and the fact that every derivation has only finite number of reducts.
Definition 3.4 (Improper Reduction). There are five corresponding improper reductions (written $\succsim \odot$ for $\odot \equiv \&, \vee, \rightarrow, \forall, \exists$ ) which are only used in the proof.

$$
\begin{aligned}
& \text { え\& } \\
& \begin{array}{lll}
\Sigma_{0} & \Sigma_{1} \\
A_{0} & A_{1} \\
\hline A_{0} \& & A_{1}
\end{array} \quad \succsim \& \quad \begin{array}{l}
\Sigma_{i} \\
A_{i}
\end{array} \quad(i=0,1) \\
& \succsim v \\
& \frac{{ }_{A_{i}}}{A_{0} \vee A_{1}} \quad \succsim \vee \quad \stackrel{\Sigma}{A}_{i} \quad(i=0,1) \\
& \succsim \rightarrow \\
& \begin{array}{ccc}
{[A]} \\
\stackrel{\rightharpoonup}{B} \\
\hline A \rightarrow B
\end{array} \quad \succsim \rightarrow \begin{array}{c}
\Delta \\
{[A]} \\
\Sigma
\end{array} \quad\left(\begin{array}{l}
\Delta \\
A
\end{array} \text { is stable }\right) \\
& \succsim \forall \\
& \begin{array}{c}
\frac{\Sigma(a)}{A a} \\
\frac{A x A x}{}
\end{array} \quad \succsim \forall \quad \begin{array}{c}
\Sigma(t) \\
A t
\end{array} \\
& \text { えヨ } \\
& \frac{\stackrel{\Sigma}{A t}}{\exists x A x} \quad \succsim \exists \quad \stackrel{\Sigma}{A t}
\end{aligned}
$$

Definition 3.5 （Stability）．We write $\Delta>\Delta^{\prime}$ if $\Delta \succ \Delta^{\prime}$ or $\Delta \succsim \Delta^{\prime}$ and $\Delta \gg \Delta^{\prime}$ if for some $n \geq 0$ we have as a sequence

$$
\Delta \equiv \Delta_{0}>\Delta_{1}>\ldots>\Delta_{n} \equiv \Delta^{\prime}
$$

$\Delta<\Delta^{\prime}$ and $\Delta \ll \Delta^{\prime}$ are defined similarly．
We say $\Delta$ is stable if for any $\Delta^{\prime} \Delta \gg \Delta^{\prime}$ implies $\Delta^{\prime}$ is s．n．
Definition 3.6 （Substitution Stability）．We write $\Delta \mapsto \Delta^{*}$ if $\Delta^{*}$ is obtained by substituting any terms for parameters in $\Delta$ and then substituting stable derivations for some open assumptions in $\Delta$ ．We say $\Delta$ is stable under substitution（s．s．）if for any $\Delta^{*} \Delta \mapsto \Delta^{*}$ implies $\Delta^{*}$ is stable．

## 3．1 Easy Lemmas

Lemma 3．1．$\Delta$ is stable if and only if $\Delta>\Delta^{\prime}$ implies $\Delta^{\prime}$ is stable．
Lemma 3．2．$\Delta$ is s．s．implies $\Delta$ is stable and $\Delta$ is stable implies $\Delta$ is s．n．．

Lemma 3.3. Let

$$
\Delta \equiv \frac{\Delta_{0}\left(\Delta_{1}\right)}{A}(\rho)
$$

where $\rho$ is an introduction rule other than $\vee I$ or $\forall I$. If $\Delta_{0}$ (and $\Delta_{1}$ ) are stable, then $\Delta$ is stable.

Lemma 3.4. If a is free in

$$
\begin{gathered}
\Delta_{0}(a) \\
A a
\end{gathered}
$$

and $\Delta_{0}(t)$ is stable for every $t$, then

$$
\Delta \equiv \frac{\Delta(a)}{\forall x A x}
$$

is stable.
Proof. We show the result by induction on $\nu\left(\Delta_{0}\right)$. Suppose that

$$
\Delta \quad \succ \quad \Delta^{\prime} \quad \equiv \begin{gathered}
\Delta_{0}^{\prime}(a) \\
\frac{A a}{\forall x A x}
\end{gathered}
$$

Then $\nu\left(\Delta_{0}^{\prime}\right)<\nu\left(\Delta_{0}\right)$. By IH $\Delta^{\prime}$ is stable. Suppose

$$
\Delta \quad \succsim \quad \Delta^{\prime} \quad \equiv \begin{gathered}
\Delta_{0}(t) \\
A t
\end{gathered}
$$

Then $\Delta^{\prime}$ is stable by assumption. So By Lemma $3.1 \Delta$ is stable.
Lemma 3.5. If

$$
\begin{aligned}
& \Delta_{0} \\
& A t
\end{aligned}
$$

is stable, then

$$
\Delta \equiv \begin{gathered}
\Delta_{0} \\
\exists x A x
\end{gathered}
$$

is stable.
Proof. We show the result by induction on $\nu\left(\Delta_{0}\right)$. Suppose

$$
\Delta \quad \succ \quad \Delta^{\prime} \equiv \begin{gathered}
\Delta_{0}^{\prime} \\
\frac{A t}{} \\
\exists x A x
\end{gathered}
$$

Then $\nu\left(\Delta_{0}^{\prime}\right)<\nu\left(\Delta_{0}\right)$. By IH $\Delta^{\prime}$ is stable. Suppose

$$
\Delta \quad \succsim \quad \Delta^{\prime} \quad \equiv \begin{aligned}
& \Delta_{0} \\
& A t
\end{aligned}
$$

Then $\Delta^{\prime}$ is stable by assumption. So By Lemma $3.1 \Delta$ is stable.

Lemma 3.6. Let

$$
\Pi \equiv \frac{\Pi_{0} \Pi_{1}}{A}(\rho)
$$

where $\rho$ is an elimination rule other than $\exists E$ or $\vee E$. If $\Pi_{0}$ and $\Pi_{1}$ are stable, then $\Pi$ is stable.

Proof. 1. Inner Reduction.
By induction on $\nu\left(\Pi_{0}\right)+\nu\left(\Pi_{1}\right)$. Note that $<$ is exactly $\succ$ for all derivation ending with elimination rules. Let

$$
\Pi \quad \succ \Pi^{\prime} \equiv \frac{\Pi_{0}^{\prime} \Pi_{1}^{\prime}}{A}
$$

where $\Pi_{0} \succ \Pi_{0}^{\prime}$ and $\Pi_{1} \succ \Pi_{1}^{\prime}$. By assumption $\Pi_{0}^{\prime}$ and $\Pi_{1}^{\prime}$ are stable and since $\nu\left(\Pi_{0}^{\prime}\right)+\nu\left(\Pi_{1}^{\prime}\right)<\nu\left(\Pi_{0}\right)+\nu\left(\Pi_{1}\right)$, by IH $\Pi^{\prime}$ is stable. By Lemma $3.1 \Pi$ is stable.
2. Detour Reduction.

Take the case $\rho=\forall E$. Let

$$
\Pi \equiv \begin{gathered}
\Sigma(a) \\
\frac{A a}{\forall x A x} \\
\\
\\
\\
\\
A t
\end{gathered}
$$

Since

$$
\begin{gathered}
\frac{\Sigma(a)}{} \frac{A a}{\forall x A x} \\
\\
\\
\\
\\
A t
\end{gathered}
$$

and

$$
\begin{gathered}
\Sigma(a) \\
\frac{A a}{\forall x A x}
\end{gathered}
$$

is stable by assumption, $\Sigma(t)$ is stable by Lemma 3.1. By Lemma 3.1 again $\Pi$ is stable.

Lemma 3.7. Let

$$
\Pi \quad \equiv \frac{\Pi_{0} \quad \Pi_{1} \Pi_{2}}{A}(\vee E)
$$

If $\Pi_{0}, \Pi_{1}$ and $\Pi_{2}$ are stable, then $\Pi$ is stable.
Proof. Analogous to Lemma 3.6.

Lemma 3.8. Let

$$
\Pi \quad \equiv \begin{gathered}
\\
\\
\\
\\
\frac{\Pi_{0} \quad[A(a)]}{} \Pi_{1}(a) \\
\exists x A x \quad B \\
B
\end{gathered}(\exists E)
$$

If $\Pi_{0}$ is stable and for every $t \Pi_{1}(t)$ is stable under $\Pi_{0}$ at $[A t]$, then $\Pi$ is stable.

Proof. c.f. [Lei75]

### 3.2 Main Theorems

Theorem 3.1. Let

$$
\Delta \equiv \frac{\Delta_{0}\left(\Delta_{1}\right)}{A}(\rho)
$$

where $\rho$ is an introduction rule. If $\Delta_{0}$ (and $\Delta_{1}$ ) are s.s., then $\Delta$ is s.s..
Proof. For $\rho$ is $\vee I$, \& $I$ or $\rightarrow I$ it is an outright application of defintion. We show that case where $\rho$ is $\exists I$. In this case $\Delta_{1}$ is empty. Let

$$
\Delta \quad \equiv \frac{\Delta_{0}}{A t}(\exists I)
$$

where

$$
\begin{aligned}
& \Delta_{0} \\
& A t
\end{aligned}
$$

is s.s., and

$$
\Delta \quad \mapsto \quad \Delta^{*} \quad \equiv \quad \frac{\Delta_{0}^{*}}{\exists x A^{*} x}(\exists I)
$$

Since

$$
\begin{array}{lll}
\Delta_{0} \\
A t & \mapsto & \Delta_{0}^{*} \\
A^{*} t
\end{array}
$$

it follows that

$$
\begin{aligned}
& \Delta_{0}^{*} \\
& A^{*} t
\end{aligned}
$$

is stable and then by Lemma $3.5 \Delta^{*}$ is stable and so $\Delta$ is s.s.
Theorem 3.2. Let

$$
\Pi \equiv \frac{\Pi_{0} \quad \Pi_{1} \Pi_{2}}{A}(\rho)
$$

where $\rho$ is an elimination rule. If $\Pi_{0}, \Pi_{1}$ and $\Pi_{2}$ are s.s., then $\Pi$ is s.s..

Proof. We show the case where $\rho$ is $\exists E$. Let

$$
\begin{aligned}
& \Pi \equiv \begin{array}{l}
\frac{\Sigma}{} \begin{array}{l}
{[B(a)]} \\
B t \\
\exists x B x \\
A \\
\Pi_{1}(a) \\
A
\end{array}(\exists E)
\end{array} \\
& \Pi \quad \mapsto \quad \Pi^{*} \quad \equiv \quad \begin{array}{c}
\left.\Pi_{0}^{*} \begin{array}{c}
{[B(a)]} \\
\Pi_{1}^{*}(a) \\
\exists x B x
\end{array}\right)
\end{array}
\end{aligned}
$$

where

$$
\begin{array}{ccccc}
\Pi_{0} & & \equiv & \frac{\sum}{B t} & \mapsto \\
& & \Pi_{0}^{*} \\
& & & {[B(a)]} & \\
& \Pi_{1} & \mapsto & \Pi_{1}^{*}(a) & \\
& & A
\end{array}
$$

Since $a$ appears free in any assumptions of $\Pi$, we have

$$
\begin{array}{ccc} 
& & \Sigma \\
\Pi_{1} & \mapsto & {[B(t)]} \\
& & \Pi_{1}^{*}(t) \\
& A
\end{array}
$$

for any term $t$ and stable derivation

$$
\stackrel{\Sigma}{B t}
$$

Without loss assume that

$$
\Pi_{0}^{*} \quad \succ \quad \cdots \quad \succ \begin{array}{|c}
\stackrel{\ominus}{B t} \\
\exists x B x
\end{array} \quad \succsim \quad \stackrel{\Theta}{B t}
$$

By assumption $\Pi_{0}$ is s.s., so $\Pi_{0}^{*}$ is stable and then

$$
\stackrel{\Theta}{B t}
$$

is stable. It follows that

$$
\begin{gathered}
\stackrel{\Theta}{[B t]} \\
\Pi_{1}^{*}(t) \\
A
\end{gathered}
$$

is stable. So $\Pi_{1}^{*}(t)$ is stable under $\Pi_{0}^{*}$ at $[B t]$ for any term $t$. By Lemma 3.8

$$
\Pi^{*} \equiv \begin{array}{cc} 
& \begin{array}{c}
c \\
{[B(t)]}
\end{array} \\
\begin{array}{cc}
\Pi_{0} & \Pi_{1}(t) \\
\exists x B x & A \\
A & \exists E)
\end{array}
\end{array}
$$

is stable and hence $\Pi$ is s.s..
Theorem 3.3. Every derivation $\Pi$ is s.s..
Proof. By induction on derivation length $\lambda(\Pi)$. If $\lambda(\Pi)=1$ the theorem follows from the definition of s.s.. If $\Pi$ ends with an introduction rule, it follows from Theorem 3.1 and if $\Pi$ ends with an elimination rule, it follows from Theorem 3.2.

Corollary 3.1 (Strong Normalization). Every derivation is s.n..
Proof. By Theorem 3.3 and Lemma 3.2

## References

[Lei75] Daniel Leivant. Strong normalization for arithmetic (variations on a theme of prawitz). Lecture Notes in Mathematics, 500, 1975.
[TS00] A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University Press, 2000.

