Math 293A: Strong Normalization for Nm_,, A_,
and Arithmetic

Ting Zhang (tingz@Qcs.stanford.edu)
Department of Computer Science
Stanford University
November 12, 2002

1 Introduction

In this report we present strong normalization proofs of Nm_, and arith-
metic respectively [TS00] [Lei75]. As we shall see the two proofs bear great
similarity.

2 Strong Normalization for Nm_, and A_, [TS00]

Definition 2.1. Nm_, is the natural deduction system of minimal implica-
tional logic and A_, is the system of \ terms of corresponding deductions.

Definition 2.2 (Strongly Normalizable). A A_, term t is strongly nor-
malizable (s.n.) if any B-conversion sequence beginning with t terminates.
Let > denote 1-step B-conversion and >~ multi-step (3-conversion respec-
tively.

Definition 2.3. A A_, term t is non-introduced if t is not of the form
Ax.s. In other words t is non-introduced if the final rule of the corresponding
derivation is not — 1.

Example 2.1. kf’B = \zdyB .2t is introduced while terms of the form st
s mon-introduced.

Definition 2.4. We define computability predicate Compr(t) recursively
as follows.

Compx(t) = SN(t)
Compa_p(t) = Vs(Compa(s) — Compp(ts))

Definition 2.5 (Strong Computability). A term t : B is strongly com-
putable if FV (t) C {x1: A1,...,zn : Ap} and Compa,(s;) for i > n, then
Compp(t[z1,...,xn/81,...,5n]).

Lemma 2.1. Four properties hold for Comp.
C1 If Compy(t), then SN(t).
C2 If Compa(t) and t = t', then Compa(t').
C3 If t is non-introduced and Yt' <t Compa(t'), then Compa(t).
C4 If t is non-introduced and normal, then Comp s(t).

Proof. We show C'1-C'3 by induction simultaneously and C4 follows outright
from C3 since if ¢ is normal then V¢’ < ¢t Compa(t') vacuously holds.
Induction Base: A = X.

C1, C2 and C3 follow immediately from the definition.

Induction Step: A =B — C.

C1 Suppose that Compp_.c(t) and let = be a variable of type B. By
definition Compc(tz) and by IH of C1, SN(tz). It follows that SN(¢)
as any reduction tree of ¢ is embedded in a reduction tree of tx.

C2 Let t' <t and s € Compp. By defintion Compc(ts) and since ts >~
t's, by IH Compc(t's). Tt follows from definition that Compp_.c(t').

C3 Let s € Compp and t” < ts. As t is non-introduction, either t” = t's
and t/ <tort’'=ts and s’ < s.

—t" = t's and ' < t. By assumption Compp_c(t') and hence
Compc(t's), that is Compe(t”). By IH of C3, Compc(ts) and
by definition Compp_.c(t) as s is arbitrary.

— t" = ts’ and s’ < s. We use subinduction on the length of re-
duction of s. The base case is trivial as s can not be normal.
As the length of reduction of s’ is less than that of s, by sub IH,
Compc(ts') and by IH, Compc(ts) and so Compp_.c(t).

O

Lemma 2.2 (Substitution). IfVs(Compa(s) — Compp(t(z/s])), then Compa_p(Ax.t).

Proof. Let s € Compa. We need to show that Compp((Ax.t)s). Let if
t" < (Ax.t)s. By Lemma 2.1.C3 it suffices to show Compp(t”). We do
induction on the sum hg + h; of reduction heights of s and t.

Base case: hg + hy = 0.

Then t” = t[z/s] and by assumption Compp(t”).

Induction step.

1. ¢ = (Az.t)s’ and s’ < s. So t[z/s] = t[z/s']. By Lemma 2.1 C2
Compp(t[z/s']) and by TH, Compp(t").

2. t" = (Axt')s and t' < t. So t'[x/s] < t[x/s]. By Lemma 2.1 C2
Compp(t'[z/s]) and by TH, Compp(t").

3. t” =t[x/s] and by assumption Comppg(t").
U

Theorem 2.1 (Strong Computability). All terms of A_, are strongly com-
putable under substitution.

Proof. By induction on t. If ¢ is a variable, then ¢ is strongly computable
by assumption. Let t* = t[z1/s1,...,%n/Sn).

1. tB — t’l“_)Bté“. Then 8 = t’f’A“Bt;’A. By IH Compa_.p(t}) and
Compa(t3). By defintion Compp(tits).

2. t47B = \zAtP. Let s € Compy. Note that
tilz/s] = 1z, z1, .., X0 /S, 81, -, Sn).

By IH Compp(tijz/s]) and by Lemma 2.2 Compa_ p(Az.t7), that is,
Compa—,p(t*).

O

Corollary 2.1. All terms of A_, (deductions in Nm_,) are strongly nor-
malizable.

2.1 Reduction of strong normalization between systems

In general if we can map one derivation step in system S to finite number of
derivation steps in system S’, then strong normalization of S’ implies strong
normalization for S.

Example 2.2. Reduction of strong normalization for Ay_. to strong nor-
malization for _,
Define reduction map ¢ recursively as follows.

o(Rty...t,) = R* (R*e€PV)
p(A—B) = ¢(A) — ¢(B)
o(VzAz) = (Q - Q) — A (Q € PV distinict from R")

FEvery derivation of Av_, is mapped under ¢ to a derivation of A_,. More
precisely,

1.
(o(A)
B R ® .
s 0 EIEE
2.
P
A(a) plAala
vods VD @ = Q) — o) "V
3.
y @bl) 7o
Ve Az (Rt — — © —
LAz () e (— B)

It is easily seen that this reduction is sound, i.e., one derivation step in
Av—, corresponds to one or two derivation steps in A_.. As A_ is s.n., so
18)\V—w

3 Strong Normalization for Arithmetic [Lei75]

Definition 3.1 (Complexity Measure). The measure u on formulas is de-
fined recursively on their structures:

w(A) =0 for A atomic,

WA & B) = ju(AV B) := maz(u(A), u(B)),
p(VrAz) = p(JzAz) = u(A0),

pu(A — B) = mazx(u(A) + 1, u(B)).

We define u(A) to be u(A) where A is derived formula of A.

Definition 3.2 (Detour Reduction). There are five detour reductions, de-
noted by »q for © = &,V,—,V, 3.

~&

Yo X1
Ao A P o
A&A T A4 (0=0,1)
A;
Vi
)Y [io] [iﬂ [i?]
(J 0 1 7 _
VA, C oA, (i=0.1)
C C
-
4] R
5 [A]
B
v
¥(a)
Aa (1)
VrAx a At
At
” [Ad] S
E a
At A(a) - [At]
dzAx B A(t)
B B

Definition 3.3 (Strongly Normalizable). A derivation A is strongly nor-
malizable (s.n.) if it is impossible to have the infinitely desceding chain as
follows:

A=Ay - ...

If A is s.n., we write v(A) for the mazimum n such that
A=A =.. A,

v(A) is well-defined by Konig’s Lemma and the fact that every derivation
has only finite number of reducts.

Definition 3.4 (Improper Reduction). There are five corresponding im-
proper reductions (written 7 for © = &,V,—,V,3) which are only used in
the proof.

Yo Xy 5.
A A e I =01
Ag & Aq !
v
3
A; v 1 (i =0,1)
AgV Ay !
g
[A] A
% . [é] (ﬁ is stable)
A— B B
v
=(a) - X(t)
Aa v At
VrAx
23
3
At = f?t
JxAx

Definition 3.5 (Stability). We write A > A’ if A = A" or A = A" and
A > A if for some n > 0 we have as a sequence

A=ANg>A1>...>A, =A

A < A" and A < A’ are defined similarly.
We say A is stable if for any A" A > A’ implies A’ is s.n..

Definition 3.6 (Substitution Stability). We write A — A* if A* is obtained
by substituting any terms for parameters in A and then substituting stable
derivations for some open assumptions in A. We say A is stable under
substitution (s.s.) if for any A* A — A* implies A* is stable.

3.1 Easy Lemmas

Lemma 3.1. A is stable if and only if A > A’ implies A is stable.

Lemma 3.2. A is s.s.implies A is stable and A is stable implies A is s.n..

Lemma 3.3. Let Ao (A))
_ 0 1
A = T (10)

where p is an introduction rule other than VI or YI. If Ag (and A1) are
stable, then A is stable.

Lemma 3.4. If a is free in

Ao(a)
Aa
and Ag(t) is stable for every t, then
A(a)
A = Aa
VrAx

is stable.

Proof. We show the result by induction on v(Ag). Suppose that

Ay(a)
A - A/ = Aa
VrAx
Then v(A}) < v(Ap). By IH A’ is stable. Suppose
- / — Ao(t)
A ~ A o At
Then A’ is stable by assumption. So By Lemma 3.1 A is stable. O
Lemma 3.5. If
Ay
At
1s stable, then
Ay
A = At
JxAx

is stable.

Proof. We show the result by induction on v(Ag). Suppose

Ag
A - A’ = At
JxAx
Then v(A}) < v(Ap). By IH A’ is stable. Suppose
Azooa = A
Then A’ is stable by assumption. So By Lemma 3.1 A is stable. O

Lemma 3.6. Let o 1
n = 1)

where p is an elimination rule other than AE or VE. If Il and 111 are
stable, then II is stable.

Proof. 1. Inner Reduction.
By induction on v(Ilp) + v(II;). Note that < is exactly > for all
derivation ending with elimination rules. Let

I I
A

I1 — T =

where Iy >~ IIf and II; > IIj. By assumption IIj and II} are stable
and since v(II))) + v(II}) < v(Ilp) + v(IIy), by IH II' is stable. By
Lemma 3.1 II is stable.

2. Detour Reduction.
Take the case p =VE. Let

¥(a)
Ve Az At
At

Since
¥(a)
Aa z
Ve Az

and
¥(a)
Aa
VrAzx

is stable by assumption, Y(t) is stable by Lemma 3.1. By Lemma 3.1
again II is stable.

O
Lemma 3.7. Let
_ Iy II; Il
H = _—
2 (vE)
If Iy, I1; and Iy are stable, then 11 is stable.
Proof. Analogous to Lemma 3.6. O

Lemma 3.8. Let

%4((60)]
II = Iy 1la
dzAx B (3E)

B

If Ty is stable and for every t II;(t) is stable under Iy at [At], then II is
stable.

Proof. c.f. [Lei75] O

3.2 Main Theorems

Theorem 3.1. Let

Lo (84) A(Al) (p)

where p is an introduction rule. If Ay (and Aq) are s.s., then A is s.s..

A

Proof. For pis VI, &I or — I it is an outright application of defintion. We
show that case where p is d1. In this case A1 is empty. Let

Ao
A = At
drAx (31)
where
Ao
At
is s.s., and
0
A — A* = A*t
drxA*z (30)
Since A A
0 0
At T A%
it follows that
Ap
A*t
is stable and then by Lemma 3.5 A* is stable and so A is s.s.. O
Theorem 3.2. Let
_ M 1, Iy
1I = -0 -1 =
1 ()

where p is an elimination rule. If g, Iy and Iy are s.s., then 11 is s.s..

Proof. We show the case where p is F. Let

w [Bla)]
mo= 7 Hlf(la)
Bz
A @)
Bz
A @)
where
)y
11 = Bt — II
dxBx
[B(a)]
L 1(a)
A
Since a appears free in any assumptions of I, we have
[%)]
B(t
S ()
A
for any term ¢ and stable derivation
)y
Bt
Without loss assume that
. O
115 - - Bt Z
drxBx

By assumption Il is s.s., so IIjj is stable and then

)
Bt

is stable. It follows that

10

is stable. So IIj () is stable under I at [Bt] for any term ¢. By Lemma 3.8

by
* i0)
I = My IIi(¢)
JzBx A
dabs A (3p)
is stable and hence II is s.s.. O

Theorem 3.3. FEvery derivation 11 is s.s..

Proof. By induction on derivation length A(II). If A(II) = 1 the theorem
follows from the definition of s.s.. If II ends with an introduction rule, it

follows from Theorem 3.1 and if II ends with an elimination rule, it follows
from Theorem 3.2. O

Corollary 3.1 (Strong Normalization). Every derivation is s.m..

Proof. By Theorem 3.3 and Lemma 3.2 U

References

[Lei75] Daniel Leivant. Strong normalization for arithmetic (variations on
a theme of prawitz). Lecture Notes in Mathematics, 500, 1975.

[TS00] A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cam-
bridge University Press, 2000.

11

