
Math 293A: Strong Normalization for Nm→, λ→

and Arithmetic

Ting Zhang (tingz@cs.stanford.edu)
Department of Computer Science

Stanford University
November 12, 2002

1 Introduction

In this report we present strong normalization proofs of Nm→ and arith-
metic respectively [TS00] [Lei75]. As we shall see the two proofs bear great
similarity.

2 Strong Normalization for Nm→ and λ→ [TS00]

Definition 2.1. Nm→ is the natural deduction system of minimal implica-
tional logic and λ→ is the system of λ terms of corresponding deductions.

Definition 2.2 (Strongly Normalizable). A λ→ term t is strongly nor-

malizable (s.n.) if any β-conversion sequence beginning with t terminates.
Let � denote 1-step β-conversion and �� multi-step β-conversion respec-
tively.

Definition 2.3. A λ→ term t is non-introduced if t is not of the form
λx.s. In other words t is non-introduced if the final rule of the corresponding
derivation is not → I.

Example 2.1. k
A,B
λ ≡ λxAyB .xA is introduced while terms of the form st

is non-introduced.

Definition 2.4. We define computability predicate CompT (t) recursively
as follows.

CompX(t) := SN(t)

CompA→B(t) := ∀s(CompA(s) → CompB(ts))

1



Definition 2.5 (Strong Computability). A term t : B is strongly com-

putable if FV (t) ⊆ {x1 : A1, . . . , xn : An} and CompAi
(si) for i ≥ n, then

CompB(t[x1, . . . , xn/s1, . . . , sn]).

Lemma 2.1. Four properties hold for Comp.

C1 If CompA(t), then SN(t).

C2 If CompA(t) and t �� t′, then CompA(t′).

C3 If t is non-introduced and ∀t′ ≺ t CompA(t′), then CompA(t).

C4 If t is non-introduced and normal, then CompA(t).

Proof. We show C1-C3 by induction simultaneously and C4 follows outright
from C3 since if t is normal then ∀t′ ≺ t CompA(t′) vacuously holds.
Induction Base: A ≡ X.
C1, C2 and C3 follow immediately from the definition.
Induction Step: A ≡ B → C.

C1 Suppose that CompB→C(t) and let x be a variable of type B. By
definition CompC(tx) and by IH of C1, SN(tx). It follows that SN(t)
as any reduction tree of t is embedded in a reduction tree of tx.

C2 Let t′ ≺ t and s ∈ CompB. By defintion CompC(ts) and since ts ��
t′s, by IH CompC(t′s). It follows from definition that CompB→C(t′).

C3 Let s ∈ CompB and t′′ ≺ ts. As t is non-introduction, either t′′ ≡ t′s
and t′ ≺ t or t′′ ≡ ts′ and s′ ≺ s.

– t′′ ≡ t′s and t′ ≺ t. By assumption CompB→C(t′) and hence
CompC(t′s), that is CompC(t′′). By IH of C3, CompC(ts) and
by definition CompB→C(t) as s is arbitrary.

– t′′ ≡ ts′ and s′ ≺ s. We use subinduction on the length of re-
duction of s. The base case is trivial as s can not be normal.
As the length of reduction of s′ is less than that of s, by sub IH,
CompC(ts′) and by IH, CompC(ts) and so CompB→C(t).

Lemma 2.2 (Substitution). If ∀s(CompA(s) → CompB(t[x/s])), then CompA→B(λx.t).

2



Proof. Let s ∈ CompA. We need to show that CompB((λx.t)s). Let if
t′′ ≺ (λx.t)s. By Lemma 2.1.C3 it suffices to show CompB(t′′). We do
induction on the sum hs + ht of reduction heights of s and t.
Base case: hs + ht = 0.
Then t′′ ≡ t[x/s] and by assumption CompB(t′′).
Induction step.

1. t′′ ≡ (λx.t)s′ and s′ ≺ s. So t[x/s′] � t[x/s′]. By Lemma 2.1 C2
CompB(t[x/s′]) and by IH, CompB(t′′).

2. t′′ ≡ (λx.t′)s and t′ ≺ t. So t′[x/s] ≺ t[x/s]. By Lemma 2.1 C2
CompB(t′[x/s]) and by IH, CompB(t′′).

3. t′′ ≡ t[x/s] and by assumption CompB(t′′).

Theorem 2.1 (Strong Computability). All terms of λ→ are strongly com-
putable under substitution.

Proof. By induction on t. If t is a variable, then t is strongly computable
by assumption. Let t∗ = t[x1/s1, . . . , xn/sn].

1. tB = tA→B
1

tA
2
. Then t∗,B = t∗,A→B

1
t∗,A
2

. By IH CompA→B(t∗
1
) and

CompA(t∗
2
). By defintion CompB(t∗

1
t∗
2
).

2. tA→B = λxA.tB1 . Let s ∈ CompA. Note that

t∗1[x/s] ≡ t1[x, x1, . . . , xn/s, s1, . . . , sn].

By IH CompB(t∗
1
[x/s]) and by Lemma 2.2 CompA→B(λx.t∗

1
), that is,

CompA→B(t∗).

Corollary 2.1. All terms of λ→ (deductions in Nm→) are strongly nor-
malizable.

2.1 Reduction of strong normalization between systems

In general if we can map one derivation step in system S to finite number of
derivation steps in system S′, then strong normalization of S′ implies strong
normalization for S.

3



Example 2.2. Reduction of strong normalization for λ∀→ to strong nor-
malization for λ→.

Define reduction map ϕ recursively as follows.

ϕ(Rt1 . . . tn) = R∗ (R∗ ∈ PV)

ϕ(A → B) = ϕ(A) → ϕ(B)

ϕ(∀xAx) = (Q → Q) → A (Q ∈ PV distinict from R∗)

Every derivation of λ∀→ is mapped under ϕ to a derivation of λ→. More
precisely,

1.

[A]
Σ
B

A → B
(→ I)

ϕ
7→

[ϕ(A)]
ϕ(Σ)
ϕ(B)

ϕ(A) → ϕ(B)
(→ I)

2.
Σ(a)
A(a)

∀xAx
(∀I)

ϕ
7→

ϕ(Σ(a))
ϕ(A(a))

(Q → Q) → ϕ(A(a))
(∀I)

3.

Σ
∀xAx

At
(∀E)

ϕ
7→

ϕ(Σ)
(Q → Q) → ϕ(A)

Q

Q → Q

ϕ(At)
(→ E)

It is easily seen that this reduction is sound, i.e., one derivation step in
λ∀→ corresponds to one or two derivation steps in λ→. As λ→ is s.n., so
is λ∀→.

3 Strong Normalization for Arithmetic [Lei75]

Definition 3.1 (Complexity Measure). The measure µ on formulas is de-
fined recursively on their structures:

µ(A) := 0 for A atomic,

µ(A & B) := µ(A ∨ B) := max(µ(A), µ(B)),

µ(∀xAx) := µ(∃xAx) = µ(A0̄),

µ(A → B) := max(µ(A) + 1, µ(B)).

We define µ(∆) to be µ(A) where A is derived formula of ∆.

4



Definition 3.2 (Detour Reduction). There are five detour reductions, de-
noted by �� for � ≡ &,∨,→,∀,∃.

�&

Σ0

A0

Σ1

A1

A0 & A1

Ai

�&
Σi

Ai
(i = 0, 1)

�∨

Σ
Ai

A0 ∨ A1

[A0]
∆0

C

[A1]
∆1

C
C

�∨

Σ
[Ai]
∆i

C

(i = 0, 1)

�→

[A]
Σ
B

A → B
∆
A

B

�→

∆
[A]
Σ
B

�∀

Σ(a)
Aa

∀xAx
At

�∀
Σ(t)
At

�∃

Σ
At

∃xAx

[Aa]
∆(a)

B
B

�∃

Σ
[At]
∆(t)
B

Definition 3.3 (Strongly Normalizable). A derivation ∆ is strongly nor-

malizable (s.n.) if it is impossible to have the infinitely desceding chain as
follows:

∆ � ∆1 � . . .

If ∆ is s.n., we write ν(∆) for the maximum n such that

∆ � ∆1 � . . . ∆n

ν(∆) is well-defined by König’s Lemma and the fact that every derivation
has only finite number of reducts.

Definition 3.4 (Improper Reduction). There are five corresponding im-
proper reductions (written %� for � ≡ &,∨,→,∀,∃) which are only used in
the proof.

5



%&

Σ0

A0

Σ1

A1

A0 & A1

%&
Σi

Ai
(i = 0, 1)

%∨

Σ
Ai

A0 ∨ A1

%∨
Σ
Ai

(i = 0, 1)

%→

[A]
Σ
B

A → B

%→

∆
[A]
Σ
B

(

∆
A

is stable
)

%∀

Σ(a)
Aa

∀xAx
%∀

Σ(t)
At

%∃

Σ
At

∃xAx
%∃

Σ
At

Definition 3.5 (Stability). We write ∆ > ∆′ if ∆ � ∆′ or ∆ % ∆′ and
∆ � ∆′ if for some n ≥ 0 we have as a sequence

∆ ≡ ∆0 > ∆1 > . . . > ∆n ≡ ∆′

∆ < ∆′ and ∆ � ∆′ are defined similarly.
We say ∆ is stable if for any ∆′ ∆ � ∆′ implies ∆′ is s.n..

Definition 3.6 (Substitution Stability). We write ∆ 7→ ∆∗ if ∆∗ is obtained
by substituting any terms for parameters in ∆ and then substituting stable
derivations for some open assumptions in ∆. We say ∆ is stable under

substitution (s.s.) if for any ∆∗ ∆ 7→ ∆∗ implies ∆∗ is stable.

3.1 Easy Lemmas

Lemma 3.1. ∆ is stable if and only if ∆ > ∆′ implies ∆′ is stable.

Lemma 3.2. ∆ is s.s.implies ∆ is stable and ∆ is stable implies ∆ is s.n..

6



Lemma 3.3. Let

∆ ≡
∆0 (∆1)

A
(ρ)

where ρ is an introduction rule other than ∨I or ∀I. If ∆0 (and ∆1) are
stable, then ∆ is stable.

Lemma 3.4. If a is free in
∆0(a)
Aa

and ∆0(t) is stable for every t, then

∆ ≡
∆(a)
Aa

∀xAx

is stable.

Proof. We show the result by induction on ν(∆0). Suppose that

∆ � ∆′ ≡
∆′

0(a)
Aa

∀xAx

Then ν(∆′
0
) < ν(∆0). By IH ∆′ is stable. Suppose

∆ % ∆′ ≡ ∆0(t)
At

Then ∆′ is stable by assumption. So By Lemma 3.1 ∆ is stable.

Lemma 3.5. If
∆0

At

is stable, then

∆ ≡
∆0

At
∃xAx

is stable.

Proof. We show the result by induction on ν(∆0). Suppose

∆ � ∆′ ≡
∆′

0

At
∃xAx

Then ν(∆′
0
) < ν(∆0). By IH ∆′ is stable. Suppose

∆ % ∆′ ≡ ∆0

At

Then ∆′ is stable by assumption. So By Lemma 3.1 ∆ is stable.

7



Lemma 3.6. Let
Π ≡

Π0 Π1

A
(ρ)

where ρ is an elimination rule other than ∃E or ∨E. If Π0 and Π1 are
stable, then Π is stable.

Proof. 1. Inner Reduction.
By induction on ν(Π0) + ν(Π1). Note that < is exactly � for all
derivation ending with elimination rules. Let

Π � Π′ ≡
Π′

0
Π′

1

A

where Π0 � Π′
0 and Π1 � Π′

1. By assumption Π′
0 and Π′

1 are stable
and since ν(Π′

0) + ν(Π′
1) < ν(Π0) + ν(Π1), by IH Π′ is stable. By

Lemma 3.1 Π is stable.

2. Detour Reduction.
Take the case ρ = ∀E. Let

Π ≡

Σ(a)
Aa

∀xAx
At

� Σ(t)
At

Since
Σ(a)
Aa

∀xAx
% Σ(t)

At

and
Σ(a)
Aa

∀xAx

is stable by assumption, Σ(t) is stable by Lemma 3.1. By Lemma 3.1
again Π is stable.

Lemma 3.7. Let

Π ≡
Π0 Π1 Π2

A
(∨E)

If Π0, Π1 and Π2 are stable, then Π is stable.

Proof. Analogous to Lemma 3.6.

8



Lemma 3.8. Let

Π ≡ Π0

∃xAx

[A(a)]
Π1(a)

B
B

(∃E)

If Π0 is stable and for every t Π1(t) is stable under Π0 at [At], then Π is
stable.

Proof. c.f. [Lei75]

3.2 Main Theorems

Theorem 3.1. Let

∆ ≡
∆0 (∆1)

A
(ρ)

where ρ is an introduction rule. If ∆0 (and ∆1) are s.s., then ∆ is s.s..

Proof. For ρ is ∨I, &I or → I it is an outright application of defintion. We
show that case where ρ is ∃I. In this case ∆1 is empty. Let

∆ ≡
∆0

At
∃xAx

(∃I)

where
∆0

At

is s.s., and

∆ 7→ ∆∗ ≡
∆∗

0

A∗t
∃xA∗x

(∃I)

Since
∆0

At
7→ ∆∗

0

A∗t

it follows that
∆∗

0

A∗t

is stable and then by Lemma 3.5 ∆∗ is stable and so ∆ is s.s..

Theorem 3.2. Let

Π ≡
Π0 Π1 Π2

A
(ρ)

where ρ is an elimination rule. If Π0, Π1 and Π2 are s.s., then Π is s.s..

9



Proof. We show the case where ρ is ∃E. Let

Π ≡
Σ
Bt

∃xBx

[B(a)]
Π1(a)

A
A

(∃E)

Π 7→ Π∗ ≡ Π∗
0

∃xBx

[B(a)]
Π∗

1
(a)
A

A
(∃E)

where

Π0 ≡
Σ
Bt

∃xBx
7→ Π∗

0

Π1 7→
[B(a)]
Π∗

1
(a)
A

Since a appears free in any assumptions of Π, we have

Π1 7→

Σ
[B(t)]
Π∗

1
(t)

A

for any term t and stable derivation

Σ
Bt

Without loss assume that

Π∗
0 � . . . �

Θ
Bt

∃xBx
% Θ

Bt

By assumption Π0 is s.s., so Π∗
0

is stable and then

Θ
Bt

is stable. It follows that
Θ

[Bt]
Π∗

1(t)
A

10



is stable. So Π∗
1(t) is stable under Π∗

0 at [Bt] for any term t. By Lemma 3.8

Π∗ ≡ Π0

∃xBx

Σ
[B(t)]
Π1(t)

A
A

(∃E)

is stable and hence Π is s.s..

Theorem 3.3. Every derivation Π is s.s..

Proof. By induction on derivation length λ(Π). If λ(Π) = 1 the theorem
follows from the definition of s.s.. If Π ends with an introduction rule, it
follows from Theorem 3.1 and if Π ends with an elimination rule, it follows
from Theorem 3.2.

Corollary 3.1 (Strong Normalization). Every derivation is s.n..

Proof. By Theorem 3.3 and Lemma 3.2

References

[Lei75] Daniel Leivant. Strong normalization for arithmetic (variations on
a theme of prawitz). Lecture Notes in Mathematics, 500, 1975.

[TS00] A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cam-
bridge University Press, 2000.

11


