
'

&

$

%

A Survey of Quantifier

Elimination: Syntactic

and Semantic

Approaches

Ting Zhang

Stanford

June 7, 2002 Alfred Tarski

STeP Presentation 1 1



'

&

$

%

Outline

• Preliminaries

• Basic Theory

• Syntactic Approaches

• Semantic Approaches

STeP Presentation 2 2



'

&

$

%

Notations

• L : a first-order language.

• C: an arbitrarily large set of new constants.

The size of C is arbitrarily large so that we never run out of

constant symbols to name objects under consideration.

• LC : the new language augmented by C.

• A: a L -structure with domain A.

We identify A with a set of constants such that each of objects

in domain A is named by itself in LA. Also write LA for LA

when it is clear from the context.

• (A, A): the expansion structure of A in language LA.
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Diagrams

Definition 0.1 (Diagrams). Let A and LA as defined above. A

digram ∆A is the set of all basic sentences (i.e., atomic sentences

or negated atomic sentences) of LA which are true in A. Similarly

an elementary digram ΘA is the set of all sentences of LA which

are true in A, i.e., the theory Th(A, A) in language LA.

An elementary digram is a complete description of A in language

LA and diagram is a partial description using only quantifier-free

sentences.

Lemma 0.1 (Robinson’s diagram Lemma). Let A and LA as

defined above. Let B be a LA-structure.

1. If B |= ∆A, then A can be embedded into B|L .

2. If B |= ΘA, then A can be elementarily embedded into B|L .
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Quantifier Elimination

Definition 0.2 (Quantifier Elimination). A first-order theory T is

said to have quantifier elimination if for any formula φ(x̄) there is

a quantifier free formula ψ(x̄) such that

T |= ∀x̄(φ(x̄) ↔ ψ(x̄))

Remark 0.1. Assume L contains at least one constant symbol or

φ(x̄) contains at least one free variable.

Remark 0.2. For any first-order theory T there is a conservative

extension T ′ of T such that T ′ has elimination of quantifiers.

Remark 0.3. If T has elimination of quantifiers, then for any

model A of T , Th(A, A) also admits elimination of quantifiers.
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Elimination Set

Definition 0.3 (Elimination Set). Let K be a class of

L -structures. We say a set Φ of formulas is an elimination set for

K if

any formula φ(x̄) is equivalent (in every structure of K) to

a formula ψ(x̄) which is a boolean combination of formulas

in Φ.

We say Φ is an elimination set for theory T if Φ is an elimination

set for Mod(T ).

Hence T admits quantifier elimination if and only if the set of

quantifier-free formulas forms an elimination set of T .

We say a L -structure A has elimination of quantifiers if Th(A)

does.
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Elimination Set (Cont’d)

Theorem 0.1. Let Φ be a set of formulas. Suppose that

• every atomic formula or negated atomic formula of L is in Φ,

and

• for every formula θ(x̄) of L which is of form ∃y
∧

ψi(x̄, y) with

ψ in Φ (called primitive formula with respect to Φ), there is a

formula θ∗(x̄) of L which

– is a boolean combination of formulas in Φ, and

– is equivalent to θ in every structure in K.

Then Φ is an elimination set for K.
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Critirion of Elimination Set

Desired properties of an elimination set Φ of a theory T .

1. Φ is reasonably small and nonredundant.

2. Every formula in Φ has straightforward mathematical meaning.

3. There exists an effective procedure to reduce every formula to a

boolean combination of formulas in Φ.

4. There exists an effective procedure to decide whether a formula

in Φ is provable or refutable from T .

With (1)-(4) T is a complete and decidable theory.
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The Point of Quantifier Elimination

• Classification up to elementary equivalence

• Completeness proofs

• Decidability proofs

• Constructive decision procedures

• Description of definable relations

• Description of elementary embeddings

Slogan: “..., the method [of elimination of quantifiers] is extremely

valuable when we want to beat a particular theory into the

ground.” (Chang & Keisler)
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Schema for syntactic approaches

• Reduce formulas to certain normal forms.

• Guess an elimination set Φ.

• Let Ψ be a set of formulas of the form ∃xφ where φ is a

boolean combination of formulas in Φ. Find a ranking function

rank : Ψ → N.

• For every formula φ in Ψ find a T -equivalent formula φ in Ψ

with rank(ψ) < rank(φ).

• Reduce φ of rank 0 to a boolean combination of formulas in Φ.
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Logical Theories

• Dense linear orders (DeLO)

• Discrete linear orders (DiLO)

• Presburger arithmetic (PA)

• Atomless boolean algebras (ABA)

• Algebraically closed fields (ACF)

• Real closed fields (RCF)
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Dense Linear Orderings (DeLO)

Dense linear orders with first and last elements.

• Language: L = {<, 0, 1}.

• Axioms:

– Axioms of linear orders.

– Axiom of denseness

∗ ∀x∀y(x < y → ∀z(x < z ∧ z < y))

– Axioms of boundedness.

∗ ∀x(x < 1 ∨ x = 1)

∗ ∀x(0 < x ∨ x = 0)
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QE of DeLO

Primitive formulas of DeLO are of the form

∃x(
∧

i<l

ti < x ∧
∧

j<m

x < uj

∧

k<n

x = vk)

where ti, uj and vk are terms not involving x.

Without loss of generality assume n = 0. It suffices to show how to

eliminate the quantifier in

φ(x) = ∃x(
∧

i<l

ti < x ∧
∧

j<m

x < uj)

Define rank(φ(x)) = l +m.
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QE of DeLO (con’d)

1. l > 1. The formula φ(x) is equivalent to

(

t0 < t1 ∧ ∃x(t1 < x ∧
∧

1<i<l

ti < x ∧
∧

j<m

x < uj)
)

∨

(

¬t0 < t1 ∧ ∃x(t0 < x ∧
∧

1<i<l

ti < x ∧
∧

j<m

x < uj)
)

2. m > 1. Similar to l > 1.

3. l = m = 1. The formula φ(x) is equivalent to t0 < u0.

4. l = 0,m = 1. The formula φ(x) is equivalent to u0 6= 0.

5. l = 1,m = 0. The formula φ(x) is equivalent to t0 6= 1.
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Discrete Linear Orderings (DiLO)

Discrete linear orders with first and last elements.

• Language: L = {<,S}.

• Axioms:

– Axioms of linear orders.

– Axiom of discreteness.

∗ ∀x∀y(x < y ↔ y = Sx ∨ Sx < y))

– Axioms of unboundedness.

∗ ∀x∃y(x = Sy)

∗ ∀x∃y(Sy = x)
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QE of DiLO

Primitive formulas of DiLO are of the form

∃x(
∧

i<l

ti < Spix ∧
∧

j<m

Sqjx < uj

∧

k<n

Srkx = vk)

where ti, uj and vk are terms with no occurrence of x.

Since Six < t↔ Si+j < Sjt, by uniforming all terms Six to Snx

and replacing Snx by a new variable y, the primitive formulas of

DiLO can be written in the same as those of DeLO.

As before it suffices to show how to eliminate the quantifier in

φ(x) = ∃x(
∧

i<k

ti < x ∧
∧

j<l

x < uj)
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QE of DiLO (Cont’d)

• k > 1:

(

t0 < t1 ∧ ∃x(t1 < x ∧
∧

1<i<k

ti < x ∧
∧

j<l

x < uj)
)

∨

(

¬t0 < t1 ∧ ∃x(t0 < x ∧
∧

1<i<k

ti < x ∧
∧

j<l

x < uj)
)

• l > 1. Similar to k > 1.
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QE of DiLO (Cont’d)

• k = l = 1:

φ(x) ↔ t0 < u0 ∧ St0 6= u0

• k = 0 or l = 0:

φ(x) ↔ x = x

Remark 0.4. Similar approaches can apply for DeLO, DiLO with

all following combinations of conditions on existence of first and

last elements.

DeLO/DiLO + w/o “the first element” + w/o “the last element”
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Presburger Arithmetic

• Language: L = {0, 1,+,−, <}.

• Axioms:

– Axioms of commutative group.

– Axioms of linear orders with respect to group structure:

∗ ∀x∀y(x > 0 ∧ y > 0 → x+ y > 0)

∗ ∀x¬(x > 0 ∧ −x > 0)

∗ ∀x(x = 0 ∨ x > 0 ∨ −x > 0)

– Axiom of discrete orders

∗ ∀x(x > 0 ↔ (x = 1 ∨ x− 1 > 0))
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Presburger Arithmetic (Cont’d)

The theory in L doesn’t admit elimination of quantifiers. E.g.,

∃y(y + y = x)

is not equivalent to any quantifier-free formulas.

• Extended language:

L ′ = {0, 1,+,−, <, n |, n - for each n > 1}.

• Definitional axioms: ∀x(¬n | x↔ n - x) for each n > 1.

• Axioms of divisibility

– ∀x(n | x↔ ∃y(x = ny)) for each n > 1

– ∀x(n | x ∨ n | x+ 1 ∨ · · · ∨ n | x+ n− 1) for each n > 1
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QE of PA

• Eliminate negations. Replace ¬t1 = t2 by t2 < t1 ∨ t1 < t2.

Replace ¬(t1 < t2) by t2 < t1 ∨ t1 = t2. And replace ¬n | x by

n - x and ¬n - x by n | x.

Atomic formulas are in the following forms

ax < t, u < bx, e | cx+ v, f - dx+ w

where t, u, v and w are terms not involving x and a, b, c, d, e, f

are positive integers. It suffices to show to how to eliminate

quantifiers of ∃xϕ(x) with ϕ(x) be a positive boolean

combination of atomic formulas of the above form.

∃xϕ(x) = ∃xB+(aix < ti, uj < bjx, ek | ckx+ vk, fl - dlx+wl)
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QE of PA (Cont’d)

• Unify the coefficient of x. Let n be the LCM of all coefficients

of x in φ(x). Raise the coefficient of x to n by multiplying

appropriate factors. Observe that

∃xφ(x) ↔ ∃xφ′(nx)

where φ′ is obtained from φ by multiplying appropriate factors

to terms.

• Eliminate the coefficient of x. Use the fact that

∃xφ(nx) ↔ ∃x(φ(x) ∧ n | x)
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QE of PA (Cont’d)

• Instantiate x with all combinations.

δ: the L.C.M. of all e, f in φ(x).

ϕ−∞(x): the formula obtained from ϕ(x) with formulas of form

x < t replaced by true and formulas of form u < x replaced by

false.

The formula ∃xφ(x) is equivalent to

δ
∨

i=1

ϕ−∞(i) ∨
δ

∨

i=1

∨

uj

ϕ(uj + i)
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QE of PA (Cont’d)

• Example

∃xϕ(x) = ∃xF (3x < y + 2, 2y + 1 < 5x, z < 2x, 2 - 3x)

where F is a positive boolean function.

• Normalization

∃xϕ(x)

↔ ∃xF (30x < 10y + 20, 12y + 6 < 30x,

15z < 30x, 20 - 30x)

↔ ∃x
(

F ′(x < 10y + 20, 12y + 6 < x,

15z < x, 20 - x) ∧ 30 | x
)
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QE of PA (Cont’d)

• Instantiation

30
∨

i=1

F ′ (true, false, false, 20 - i, 30 | i) ∨

30
∨

i=1

(

F ′(12y + 6 + i < 10y + 20, 12y + 6 < 12y + 6 + i,

15z < 12y + 6 + i, 20 - 12y + 6 + i, 30 | 12y + 6 + i)

∧ F ′(15z + i < 10y + 20, 12y + 6 < 15z + i,

15z < 15z + i, 20 - 15z + i, 30 | 15z + i)
)
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Atomless Boolean Algebra

• Language: L = {0, 1,+, ·,−, <}.

• Axioms:

– Axioms of boolean algebra.

– Axioms of dense partial ordering:

∗ ∀x∀y(x < y → ∃z(x < z ∧ z < y)), or equivalently

∀x(0 < x→ ∃z(0 < z ∧ z < x))

• Example

A = 〈 Q∗, ∪, ∩, \, ∅, Q+ 〉

where Q+ are non-negative rational numbers and Q∗ is the set

of finite unions of intervals of the form [a, b) with a, b ∈ Q+.
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QE of ABA

• Eliminate symbol <.

x < y ↔ x · y = y ∧ x 6= y

• Normalize equalities and inequalities.

t1 = t2 ↔ t1 · (−t2) = 0 ∧ (−t1) · t2 = 0

t1 6= t2 ↔ t1 · (−t2) 6= 0 ∨ (−t1) · t2 6= 0

t1 + t2 = 0 ↔ t1 = 0 ∧ t2 = 0

t1 + t2 6= 0 ↔ t1 6= 0 ∨ t2 6= 0
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QE of ABA (Cont’d)

• Primitive formulas are in the following form:

∃xϕ(x) = ∃x(f(x) = 0 ∧
∧

i

gi(x) 6= 0)

Theorem 0.2. Let fx(a) denote the formula obtained by replacing

all occurrence of x in f by a.

• for boolean algebra

∃x(f(x) = 0 ∧ g(x) 6= 0) ↔

fx(0) · fx(1) = 0 ∧ (−fx(1)) · gx(1) + (−fx(0)) · gx(0) 6= 0

• for atomless boolean algebra

∃x(f(x) = 0 ∧
∧

i

gi(x) 6= 0) ↔
∧

∃x(f(x) = 0 ∧ gi(x) 6= 0)
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Algebraically Closed Fields

• Language: L = {0, 1,+,−, ·}.

• Axioms:

– Axioms of fields.

– Axioms of algebraic closure.

for all n ≥ 0,

∀x0 · · · ∀xn∃y(xn · yn + · · · + x1 · y + x0 = 0)
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QE of ACF

The primitive formulas of ACF are of the form

∃x(
∧

i<m

ti = 0 ∧
∧

j<n

uj 6= 0)

Note that u 6= 0 is equivalent to

∃z(z · u− 1 = 0)

So it suffices to show how to eliminate the quantifier in

ϕ(x) = ∃x(
∧

i<m

ti = 0)
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QE of ACF (Cont’d)

• m = 1. ϕ(x) is equivalent to 0 = 0.

• m > 1. Let the term of the highest degree in ti be aix
ni .

Define rank(φ(x)) = Σm
i=0ni. Assume that n0 ≥ n1. Let

t′0 = a1t0 − a0x
n0−n1t1 and t′1 = t1 − a1x

n1

The formula ϕ(x) is equivalent to (by Euclidean algorithm)

(

a1 = 0 ∧ ∃x(t0 = 0 ∧ t′1 = 0 ∧
∧

1<i<m

ti = 0)
)

∨

(

a1 6= 0 ∧ ∃x(t′0 = 0 ∧ t1 = 0 ∧
∧

1<i<m

ti = 0)
)

Note that deg(t′0) < deg(t0) and deg(t′1) < deg(t1), i.e., the

rank is decreasing.
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QE of ACF (Cont’d)

• Example

ϕ(x) = ∃x(6x2 + 3x+ 10 = 0 ∧ 3x+ 1 = 0)

↔
(

3 = 0 ∧ ∃x(6x2 + 3x+ 10 = 0 ∧ 1 = 0)
)

∨

(

3 6= 0 ∧ ∃x(x+ 10 = 0 ∧ 3x+ 1 = 0)
)

↔ 3 6= 0 ∧
(

(

3 = 0 ∧ ∃x(x+ 10 = 0 ∧ 1 = 0)
)

∨

(

3 6= 0 ∧ ∃x(29 = 0 ∧ 3x+ 1 = 0)
)

)

↔ 3 6= 0 ∧ 29 = 0 ∧ ∃x(3x+ 1 = 0)

↔ 29 = 0
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Real Closed Fields

• Language: L = {0, 1,+,−, ·, <}.

• Axioms:

– Axioms of ordered fields.

∗ Axioms of fields.

∗ Axioms of linear orders.

∗ ∀x∀y∀z(x < y → x+ z < y + z)

∗ ∀x∀y∀z(x < y ∧ 0 < z → x · z < y · z)

– Axioms of real closure.

∗ ∀x(0 < x→ ∃y(y2 = x))

∗ for all odd n > 0

∀x0 · · · ∀xn∃y(xn · yn + · · · + x1 · y + x0 = 0)
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QE of RCF

• Normalization.

Let ϕ(y1, . . . , ym) be a formula with y1, . . . , ym free. The

formula ϕ can be written in the following prenex form

Q1x1, . . . , Qnxnψ(y1, . . . , ym, x1, . . . , xn)

where Qi ∈ {∃, ∀} and ψ is a boolean combination of

polynomial equalities and inequalities of the following two

forms:

fi(y1, . . . , ym, x1, . . . , xn) = 0

fi(y1, . . . , ym, x1, . . . , xn) > 0

Let F denote all polynomials which occur in ψ.
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QE of RCF (Cont’d)

• Cylindrical algebraic decomposition. Construct a sequence of

finite partitions Π1, . . . ,Πm+n with the following properties.

– Each Πi is a finite partition of Ri. The elements in Πi are

called i-dimensional “cells”.

– Πi+1 is a refinement of Πi × R in the sense that the cells of

Πi are exactly projections of cells of Πi+1 and for each cell

C of Πi we can effectively construct the stack of cells Ci+1

of Πi+1 which partition C × R.
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QE of RCF (Cont’d)

• Cylindrical algebraic decomposition (Cont’d).

– Each cell C in Πm is described by a quantifier free formula

δC(y1, . . . , ym).

– For each cell C in Πm+n, F is sign invariant and there is a

sample point αC which is described by a quantifier free

formula.

• Complexity
(

|F| · deg(F)
)2O(m+n)

where |F| is the number of polynomials in F and deg(F) is the

maximum degree of any polynomial in F .
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QE of RCF (Cont’d)

• Construct decision trees from partitions Πm+1, . . . ,Πm+n.

For each cell C in Rm build a decision tree TC as follows.

– The tree is of depth n with the root C at depth 0.

– If C is a node at depth i, its children are all cells of Πm+i+1

which are cylindrical over C.

– If Qi is ∀ (resp. ∃) then all nodes at depth i− 1 is

conjunctive (resp. disjunctive).

– Let the valuation of TC be θC(y1, . . . , ym). Then formula

ϕ(y1, . . . , ym, x1, . . . , xn) is equivalent to

∨

C∈Πm

δC(y1, . . . , ym) ∧ θC(y1, . . . , ym)
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QE of RCF (Cont’d)

Example

(∃x)(∀y)(y2 − x > 0)

CAD of {y2 − x}:
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QE of RCF (Cont’d)

Sample points for the CAD of {y2 − x} are as follows:

{ (−1, 0) } ,















(0, 1)

(0, 0)

(0,−1)















,



























































(1, 2)

(1, 1)

(1, 1/2)

(1, 0)

(1,−1/2)

(1,−1)

(1,−2)


























































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QE of RCF (Cont’d)

The equivalent quantifier-free sentence is

(0 − (−1) > 0)
∨

(

(1 − 0 > 0) ∧ (0 − 0 > 0) ∧ (1 − 0 > 0)
)

∨
(

(4 − 1 > 0) ∧ (1 − 1 > 0) ∧ (1/4 − 1 > 0)

(0 − 1 > 0) ∧ (1/4 − 1 > 0) ∧ (1 − 1 > 0) ∧ (4 − 1 > 0)
)

which is true.
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A Bit of History on RCF

• Artin & Schreier [1927]

• Tarski [1948, 1951], Seidenberg [1954]

• Lojasiewicz [1964, 1965]

• Fischer & Rabin [1974]

• Collins [1975], Monk & Solovay [1972]

• Grigor’ev [1988], Renegar [1992]

• Basu, Pollack & Roy [1996], Basu [1999]
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Model Completeness

Definition 0.4. A first-order theory T is said to be model complete

if for every model A of T , T ∪ ∆A is a complete theory in language

LA.

Theorem 0.3 (Robinson). A first-order theory T is model

complete if and only if every formula is equivalent (modulo T ) to

an existential formula.

Remark 0.5. Completeness and model completeness are two

different properties of a theory. Generally neither one implies the

other. The theory Th(N) of Peano arithmetic is a complete theory,

but obviously it is not model complete. The theory of algebraically

closed field is model complete, but not complete.
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Amalgamation Property

Definition 0.5. Let K be a class of L -structures. We say that K

has amalgamation property if the following property holds:

If A, B, C are in K and e : A 7→ B and f : A 7→ C are

embeddings, then there exists D in K and embeddings

g : B 7→ D and h : C 7→ D such that e ◦ g = f ◦ h, i.e., the

following diagram commutes.

A

e

__????? f

??�����

B

g
??

C

h
__D

Theorem 0.4. If K is closed under direct product, then K has

amalgamation property.
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Existentially Closed Structures

Definition 0.6. Let K be a class of L -structures. We say that a

structure A in K is existentially closed (e.c.) if

for every existential formula φ(x̄) of L and every tuple ā

in A, if there exists a structure B such that A ⊆ B and

B |= φ(ā), then A |= φ(ā).

Theorem 0.5 (Hilbert’s Nullstellensatz). If A is a algebraically

closed field, then a finite system of equalities and inequalities is

solvable in an extension field B of A if and only if it is already

solvable in A.

Corollary 0.1. Existentially closed fields are exactly algebraically

closed fields.
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Eklof-Sabbagh’s Test

Theorem 0.6. Let K be a class of L -structures. If the class of all

substructures of structures in K has amalgamation property, then

the class of all existentially closed structures in K admits quantifier

elimination.

Theorem 0.7. A first-order theory T has elimination of

quantifiers if and only if T is model complete and T∀ has

amalgamation property.
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Eklof-Sabbagh’s Test (Cont’d)

Example 0.1. Algebraically closed fields have elimination of

quantifiers. Justification:

• The class of existentially closed fields is exactly the class of

algebraically closed fields.

• The class of substructures of fields is exactly the class of

integral domains.

• The class of integral domains has amalgamation property since

it is closed under direct product.
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Shoenfield’s Test I (Submodel Completeness)

Definition 0.7. A first-order theory T is said to be submodel

complete if for every substructure A of a model of T , T ∪ ∆A is a

complete theory in language LA.

Equivalently the following diagram commutes where A is a common

substructure of models B, C and D of T , and e is an elementary

embedding of C over A into D.

A

⊆

__????? ⊆

??�����

B

4
??

C

e
__D

Theorem 0.8 (Shoenfield). A theory T admits elimination of

quantifiers if and only if T is submodel complete.
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Type

Definition 0.8. Let A be a structure and X a subset of domain of

A. A set Φ(x) of formulas with parameters of X is called to be a

1-type over X with respect to A if there exists an elementary

extension B of A such that B |= Φ(b) for some b ∈ B. Φ(x) is

called a complete 1-type if it is maximal w.r.t. the above property.

A complete 1-type over X w.r.t. A is all that we can say about a

possible element using parameters in X. Such an element may

already exist in A or only exists in an elementary extension of A.

Example 0.2. Consider the structure A = 〈Q, <〉. Since A admits

elimination of quantifiers, all 1-types are quantifier-free 1-types.

The subset of Q defined by a 1-type over X (X ⊆ A) is a finite

union of open intervals or points.
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Saturation

Definition 0.9. A L -structure A is said to be λ-saturated if

For any X ⊆ A with |X| < λ, A realizes all types over X

with respect to A.

We say that A is saturated if A is |A|-saturated.

Example 0.3. Consider again the structure A = 〈Q, <〉. By the

property of denseness, A realizes all 1-types over any X of finite

cardinality. Hence A is saturated.
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Shoenfield’s Test II

Theorem 0.9. A theory T admits elimination of quantifiers if and

only if the following condition is satisfied.

For any models A, B of T such that |A| ≤ λ and B is

λ+-saturated, any embedding f of a substructure A0 of A

into B can be extended to an embedding e of A into B.

I.e., the following diagram commutes.

B

A0

f

OO

⊆

// A

e

``
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Shoenfield’s Test II (Cont’d)

Example 0.4. ACF admits elimination of quantifier.

Let f be an embedding of a substructure A0 of A into B. Suppose

A0 6= A and let a ∈ A \A0. Find corresponding a′ in B as follows.

1. The element a is algebraic over A.

Let g be minimal polynomial defining a with coefficients from

A0. Choose solution a′ in B such that g(a′) = 0.

2. The element a is transcendental over A. Let Φ(x) be

{g(x) 6= 0 : g(x) is a polynomial with coefficients from A0.}

Choose a′ ∈ B such that B |= Φ(a′).
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Almost Universal Theories

Theorem 0.10. A theory T is said to be almost universal

if A, B, C are L -structures such that B, C are models of

T , A ⊆ C and B ⊆ C, then there exists models D, E of T

such that A ⊆ D ⊆ B, A ⊆ E ⊆ C and (D, A) ∼= (E, A).

(D,A)

⊆

��

∼= (E,A)

⊆

��
B A

⊆oo ⊆ //

⊆
bb

⊆
<<

C

Lemma 0.2. Universal theories are almost universal.

Theorem 0.11. LOR, FEI, ORF are almost universal theories.
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Model Completion

Definition 0.10. Let T , T ∗ be two theories with T ⊆ T ∗. T ∗ is

said to be model-completion of T if

For any three L -structures A, B, C such that B, C are

models of T ∗, A is a model of T and A ⊆ B, A ⊆ C, there

exists an elementary extension D of B such that C can be

elementarily embedded into D over A. I.e, the following

diagram commutes.

A

⊆

__????? ⊆

??�����

B

4
??

C

e
__D
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Robinson’s Test

Theorem 0.12. If T is almost universal theory and T ∗ is the

model completion of T , then T ∗ admits quantifier elimination.

Lemma 0.3. Each of the following pairs of theories have the model

completion relation.

• ACF is the model completion of FEI.

• RCF is the model completion of ORF.

• DeLO is the model completion of LOR.

Corollary 0.2. ACF, RCF and DeLO all admit quantifier

elimination.
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Existence of T -Closure

Definition 0.11. Let T be a theory in L and A be a substructure

of a model of T . A structure C is said to be a T -closure of A if

C is a model of T and C can be embedded over A into any

model B of T which extends A. In other words, the

following diagram commutes.

A

⊆

��

⊆ // B

C

e

>>

A theory T is said to have T -closure property if every substructure

of a model of T has a T -closure.
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Specializability of Selected Elements

Definition 0.12. A theory T is said to have the property of

specializability of selected elements if it satisfies the following

condition:

If A is a model of T and B is a proper substructure of A,

then there are an element b ∈ B \A and a set Φ(x) of

quantifier-free formulas such that B |=
∧

Φ(b), Φ(x)

determines quantifier-free type of b over A and for any

finite subset Ψ(x) of Φ(x), A |= ∃
∧

Ψ(x).
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Dries-Hodges’ Test

Definition 0.13. A theory T is said to be 1-model-complete if

For any two models A and B of T with A ⊆ B, any

quantifier-free formula ϕ(x̄, y) of L and any tuple ā ⊆ A,

B |= ∃yϕ(ā, y) implies A |= ∃yϕ(ā, y)

Theorem 0.13. A theory T admits quantifier elimination if it

satisfies either of the following two conditions:

• T has properties of existence of T -closure and specializability of

selected elements. (Dries)

• T has T -closure property and is 1-model-completeness.

(Hodges)
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Dries-Hodges’ Test (Cont’d)

Example 0.5. Real closed fields have quantifier elimination.

Justification:

Theorem 0.14 (Artin-Schreier). The following properties hold for

a real closed field A.

• If f(X) ∈ A[X], and a, b ∈ A such that a < b and f(a) < f(b),

then there exists c ∈ A such that a < b < c and f(c) = 0.

• If B is an ordered subfield of A, then there exists a smallest

real closed field C such that B ⊆ C ⊆ A. Moreover, if A′ is any

real closed field extension of B, then C is embeddable into A′

over B. (C is called the real closure of B in A.)
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Feferman’s Test

Theorem 0.15. Let T be a first-order thoery of L . Let A, B be

models of T and ā, b̄ tuples from A, B respectively. The following

are equivalent.

1. T has elimination of quantifiers.

2. If (A, ā) ≡0 (B, b̄), then (A, ā) V1 (B, b̄).

3. If (A, ā) ≡0 (B, b̄), then (A, ā) ≡ (B, b̄).

4. If (A, ā) ≡0 (B, b̄), then (ā, b̄) is a winning position for player ∃

in the game EFn[(A, ā), (B, b̄)] for each n < ω.
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Feferman’s Test (Cont’d)

Example 0.6. The theory of atomless boolean algebra admits

quantifier elimination. Justification:

Let A, B be two models of atomless boolean algebra and ā ⊆ A,

b̄ ⊆ B. Let A0 = 〈ā〉A, B0 = 〈b̄〉B.

• (A, ā) ≡0 (B, b̄) implies A0 is isomorphic to B0.

• Assume fn : An 7→ Bn is an isomorphism. For any a ∈ A \An,

find b ∈ B \Bn such that for every atom x ∈ A

(a · x) = 0 ↔ (b · f(x)) = 0

((−a) · x) = 0 ↔ ((−b) · f(x)) = 0

Such b can always be found since B is atomless.
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Feferman’s Test (Cont’d)

• Extend fn to fn+1 with a being mapped to b.

Note that atoms of An+1 are of forms a · x or (−a) · x where x

is an atom of An. Moreover, fn+1 is a 1-1 mappings from

atoms of An+1 to atoms of Bn+1.

• Let An+1 = 〈An ∪ {a}〉A and Bn+1 = 〈Bn ∪ {b}〉B.

Clearly, fn+1 is an isomorphism between An+1 and Bn+1 since

any element of An+1 (resp. Bn+1) is a unique sum of disjoint

atoms of An+1 (resp. Bn+1).

• (ā, b̄) is a winning position for player ∃.
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More ...

• Term algebras

• Separable boolean rings

• Vector spaces

• Finite fields

• p-adic fields

• Differentially closed fields

• Real fields with exponentiation

• Generic algebraic curves

• ...
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