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Outline

1. Monadic second-order theory of two successors (S2S)

2. Rabin Automata

3. Game Automata

4. Equivalence of Rabin and Game Automata

5. Forgetful Determinacy

6. Complementation of Game Automata

7. Decidability of S2S
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Monadic Second-Order Logic

Monadic second-order language is formulated by the following rules.

1. All rules of forming first-order languages.

2. For any monadic predicate P , Px is an atomic formula.

3. If ϕ is a formula and P is a monadic predicate, then ∀Pϕ is a

formula.

A universal monadic second-order formula is a formula of the form

∀P1 . . .∀Pnϕ(P1, . . . Pn)

where ϕ(P1, . . . Pn) contains no second-order quantifiers.
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Decidability of Monadic Second-Order Logics I

A decidable class? Universal monadic second-order logic

All flows of time no

Reals yes (Burgess, Gurevich)

Dedekind complete flows yes (Gurevich)

Continuous flows yes (Gurevich)

Circles yes (Reynolds)

Dense Flows yes (Gurevich)

Discrete Flows yes (Gurevich)

All linear flows yes (Gurevich)

Rationals yes

Finite linear flows yes

Natural numbers, integers yes

Well-ordered flows yes (Rabin)
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Decidability of Monadic Second-Order Logics II

A decidable class? Full monadic second-order logic

All flows of time no

Reals no (Shelah, Gurevich)

Dedekind complete flows no

Continuous flows no

Circles no

Dense Flows no

Discrete Flows no

All linear flows no (Shelah, Gurevich)

Rationals yes (Rabin)

Finite linear flows yes (Büchi)

Natural numbers, integers yes (Büchi)

Well-ordered flows no
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Binary Tree and S2S

• Binary tree: T = {0, 1}∗.

• Σ-(valued) tree: F : T 7→ Σ assigning every node of the infinite

binary tree a letter from Σ.

• Monadic second-order theory of 2 successors (S2S): the

monadic theory of the structure

T
def
= (T , S0, S1)

with successor functions S0(u) = u0 and S1(u) = u1.

• Weak Monadic second-order theory of 2 successors (WS2S):

S2S with the restriction that second-order quantifiers range over

finite subsets of {0, 1}∗.
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Examples of S2S

• Prefix relation:

x < y
def
= ∀P ((Pw → P (S0w) ∨ P (S1w)) ∧ Px→ Py)

• The countably infinite dense linear order without endpoints:

x ≺ y
def
= S0y < x ∨ S1x < y ∨ ∃z(S0z < x ∧ S1z < y)

☞ The monadic second-order theory of (Q, <) is decidable.
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Examples of S2S

• Chains.

CHAIN(P )
def
= ∀x∀y(Px ∧ Py → x < y ∨ x = y ∨ y < x)

• Infinite chains.

INFCHAIN(P )
def
= CHAIN(P ) ∧ ∀x(Px→ ∃y(x < y ∧ Py))

☞ S1S can be interpreted in S2S.
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Examples of S2S

• Prefix closure: P is the prefix closure of Q.

PRECL(P,Q)
def
= ∀x(Px↔ ∃y(x ≤ y ∧Qy))

• Finiteness.

FINITE(P )
def
= ¬∃Q∃R(PRECL(Q,P )

∧R ⊆ Q ∧ INFCHAIN(R))

☞ WS2S can be interpreted in S2S.
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Rabin Automata

A Rabin Automata over alphabet Σ is a quadruple A = 〈S, S0, δ,F〉:

• S: a finite set of states,

• S0 ⊆ S: a set of initial states,

• δ : S × Σ 7→ P(S × S): transition table,

• F ⊆ P(S): accepting condition.
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Run and Acceptance

A run G of a Rabin automaton A on a Σ-tree F is a S-valued tree

G : T 7→ S such that

• G(λ) ∈ S0 and

• for all u ∈ T , (G(u0),G(u1)) ∈ δ(G(u), F (u)).

A accepts F if there exists a run G of A such that for every path π in

T ,

{s ∈ S : G(w) = s for infinitely many w ∈ π} ∈ F
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An Example of Rabin Automata

Let A = 〈S, S0, δ,F〉 be such that

• S = {s, t}, S0 = {s},

• δ(s, b) = {(s, t), (t, s)},

δ(t, a) = {(t, t)},

δ(s, a) = false,

δ(t, b) = false,

• F = {{t}, {s}}.

☞ The automaton A accepts all {a, b}-valued trees with a path

whose nodes all are labeled by b while all other nodes not in the

path are labeled by a.

Logic Seminar 12 12



'

&

$

%

Game Automata

A Game Automata over alphabet Σ is a quadruple A = 〈S, δ0, δ,F〉:

• S: a finite set of states,

• δ0 : Σ 7→ P(S): initial transition table,

• δ : S × {0, 1} × Σ 7→ P(S): transition table,

• F ⊆ P(S): accepting condition.
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Game-theoretic View of Run

Game Γ(A, F ) between A and Pathfinder P on Σ-tree F :

• At the root A chooses a state s0 ∈ δ0(F (λ)).

• At odd step, P chooses a direction d ∈ {0, 1}.

• At even step, A chooses state sn+1 such that

sn+1 ∈ δ(sn, dn+1, F (d1 . . . dn+1)).

• Play: an infinite sequence π = s0d1s1d2s2 . . ..

• Position: a prefix of a play.
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Game-theoretic View of Acceptance

• Win: A wins a play π if the set of states occurring infinitely often

in π is contained in F . Otherwise P wins.

• Strategy: a function f assigning each position a set of legal

moves to the corresponding player.

• Winning strategy: a strategy by which a player wins all plays no

matter what the opponent does.

• Acceptance: A accepts F iff A has a winning strategy for game

Γ(A, F ).
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An Example of Game Automata

Let A = 〈S, δ0, δ,F〉 be such that

• S = {s, t},

• δ0(a) = ∅, δ0(b) = {s},

• δ(s, d, a) = {t},

δ(s, d, b) = {s},

δ(t, d, b) = false,

δ(t, d, a) = {t},

(d ∈ {0, 1})

• F = {{t}, {s}}.

☞ The automaton A accepts all {a, b}-valued trees whose paths are

in the form bnaω for n > 0.
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Rabin Automata “≺” Game Automata

A = 〈S, S0, δ,F〉: a Rabin automaton.

A′ = 〈S′, δ′0, δ
′,F ′〉: the corresponding game automaton such that

• S′ = S × S × S,

• δ′0(σ) = {(t0, t1, t2) : (t0, t1) ∈ δ(t2, σ), t2 ∈ S0},

• δ((t0, t1, t2), d, σ) = {(t′0, t
′
1, td) : (t′0, t

′
1) ∈ δ(td, σ)}, (d ∈ {0, 1})

• F ′ = {X ⊆ S × S × S : Proj3X ∈ F}.

☞ Every successful run of A on a Σ-tree F corresponds to a winning

strategy of A′ on the game Γ(A′, F ) and vice versa.
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Game Automata “≺” Rabin Automata

A = 〈S, δ0, δ,F〉: a game automaton.

A′ = 〈S′, S′
0δ

′,F ′〉: the corresponding Rabin automaton such that

• S′ = S × {0, 1} ∪ {s0}, S
′
0 = {s0}, (s0 is a new state)

• δ′(s0, σ) = {((s, 0), (s, 1) : s ∈ δ0(σ)}, (s ∈ S, d ∈ {0, 1})

δ′((s, d), σ) = {((s′, 0), (s′, 1)) : s′ ∈ δ(s, d, σ)},

• F ′ = {X ⊆ S × {0, 1} : Proj1X ∈ F}.

☞ Every winning strategy of A on game Γ(A, F ) corresponds to a

successful run of A′ on Σ-tree F and vice versa.
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Game Automata “=” Rabin Automata

• Given a Rabin automaton A, one can effectively construct a game

automaton A′ such that A and A′ accept the same set of Σ-trees.

• Given a game automaton A, one can effectively construct a Rabin

automaton A′ such that A and A′ accept the same set of Σ-trees.

☞ Rabin automata and game automata are equally expressive.
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Latest Appearance Record

• LAR(p): the list of states of position p (without repitition) in the order

of their latest appearance.

– If q = pd is an odd position (d ∈ {0, 1}),

LAR(q)
def
= LAR(p).

– If q = ps is an even position (s ∈ S),

LAR(q)
def
= rs

where r is obtained by removing s from LAR(p).
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Forgetful Determinacy

• Node(p): the subsequence of all letters at odd indices of position

p, i.e., the node currently being visited at p.

• Residue(p): the subtree rooted at Node(p).

☞ One of the players has a winning strategy f for game Γ(A, F )

that satisfies the following condition:

If p and q are positions from which the winner makes

moves, and

LAR(p) = LAR(q), Residue(p) = Residue(q)

then f(p) = f(q).
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Encode Pathfinder’s Strategy

Automaton A = 〈Sa, δa0 , δ
a,Fa〉.

• R: the set of all possible LARs.

• g : {0, 1}∗ ×R 7→ {0, 1}: P’s (deterministic) strategy.

• ∆: the set of all functions h : R 7→ {0, 1}.

• ∆-tree G:

G(w) = λr.g(w, r) (w ∈ {0, 1}∗, r ∈ R)

• (Σ × ∆)-tree (F,G): the product of F and G.
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Recognize Pathfinder’s Strategy

• L(r): the rightmost (last) member of r ∈ R.

• U(r,s): the new LAR obtained from r by removing s (if it occurs

there) and appending it to the end of r.

• Automaton B = 〈Sb, δb0, δ
b,Fb〉:

– Sb = R ∪ {win}, δb0((σ, h)) = δa0 (σ),

– δb(win, d, (σ, h)) = {win}, (σ ∈ Σ, h ∈ ∆, d ∈ {0, 1})

δb(r, d, (σ, h)) =







{win} if h(r) 6= d,

{U(r, s) : s ∈ δ(L(r), d, σ)} if h(r) = d.

– Fb = {win}
⋃

{R0 ⊂ R : {Last(r) : r ∈ R0} 6∈ Fa}.
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Recognize Pathfinder’s Strategy

☞ Given an automaton A and a Σ-tree F , one can effectively

construct an automaton B such that Pathfinder wins Γ(A, F ) via

a forgetful strategy encoded by ∆-tree G if and only B wins all

plays of the game Γ(B, (F,G)).

⇒ – P plays according to strategy G: B wins the corresponding

play of Γ(B, (F,G)) as Fb encodes the “complement” of Fa.

– P doesn’t plays according to strategy G: B wins outright.

⇐ If A wins a play with a strategy f against P’s strategy G, B loses

the corresponding play of Γ(B, (F,G)) as the final state set of the

play is in Fa.
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Encode B’s Behavior via Büchi Automata

An automaton B = 〈Sb, δb0, δ
b,Fb〉 wins all plays of Γ(B, H) iff

each path d0d1 . . . and the corresponding Σ-path H(d0)H(d0d1) . . .

satisfy the following condition: (d0 ≡ λ)

(*) For all infinite sequences s0s1 . . . if s0 ∈ δ(H(λ)) and

sn+1 ∈ δ(sn, dn+1, H(d0 . . . dn+1)), n ≥ 0, then the collection of

states that occur infinitely often in s0s1 . . . belongs to F .

☞ There exists a Büchi automaton C = 〈Sc, Sc0, δ
c,Fc〉 over alphabet

{0, 1}×Σ such that C accepts (d0, H(d0))(d1, H(d0d1)) . . . if and

only if d0d1 . . . and H(d0)H(d0d1) . . . satisfy (*).
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Encode B’s Behavior via Game Automata

Automaton D = 〈Sd, δd0 , δ
d,Fd〉 on Σ-tree:

• Sd = Sc,

• δd0(σ) =
⋃

s∈Sc

0

⋃

d∈{0,1} δ
c(s, (d, σ))

• δd(s, d, σ) = δc(s, (d, σ))

• Fd = {X ⊆ Sc : X ∩ Fc 6= ∅}.

☞ D accepts a Σ-tree H if and only if B wins all plays of Γ(B, H).
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Simulate D

Automaton E = 〈Se, δe0, δ
e,Fe〉 simulate D on Σ-tree:

• Se = Sd,

• δe0(σ) =
⋃

h∈∆
δd0((σ, h)),

• δe(s, d, σ) =
⋃

h∈∆
δd(s, d, (σ, h)),

• Fe = {X ⊆ Proj1(S
d) : ∃Y X = Proj1Y ∧ Y ∈ Fd}.

☞ For every Σ-tree F E guesses a ∆-tree G, an encoding of

Pathfinder’s winning strategy, and then simulates D on the

(Σ,∆)-tree (F,G).
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Complementation of Automaton A

Given automaton A = 〈S, δ0, δ,F〉, construct

1. Automaton B: B wins all plays on a Σ × ∆-tree (F,G).

2. Automaton D: D accepts (F,G) if and only if B wins all plays on

(F,G).

3. Automaton E : E accepts a Σ-tree F if and only if there exists

∆-tree G such that D accepts (F,G).

☞ E accepts F if and only if Pathfinder has a winning strategy G if

and only if A rejects F . In other words, L (E) = L (A).
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Reformulate S2S

• Introduce purely second-order signature Succ0, Succ1 and Sing.

Y = SucciX
int
= Y = Si(X) (i ∈ {0, 1})

Sing(X)
int
= ∃!x ∈ X

• Transform formulas.

v
ρ
7→ Xv (Xv is a second-order fresh variable)

Pt
ρ
7→ tρ ⊆ P

Sit
ρ
7→ Succit

ρ (i ∈ {0, 1})

∀vϕ(v)
ρ
7→ ∀Xv(Sing(Xv) → ϕρ(Xv))

ψ(v1 . . . vn)
µ
7→ ψρ(Xv1 , . . .Xvn

) ∧
∧

i Sing(Xvi
)

☞ This reformulation turns S2S into a formally first-order theory.
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Link S2S with Game Automata

Map valuations of V1, . . . , Vn to {0, 1}n-tree T(V1, . . . , Vn)

T(u) = CV1
(u), . . . , CVn

(u)

where u ∈ {0, 1} and CVi
is characteristic function of Vi.

☞ There is a 1-1 correspondence between automaton and formula

constructions.

☞ For every S2S-formula ϕ(X1, . . . , Xn) there exists {0, 1}n-tree

automaton Aϕ such that for every V1, . . . , Vn ∈ {0, 1}∗

T |= ϕ[V1, . . . , Vn] ⇔ T(V1, . . . , Vn) ∈ L (Aϕ)
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Emptiness Problem for Game Automata

• Let A = 〈S, δ0, δ,F〉 be a game automaton.

• Let B = 〈S, δ′0, δ
′,F〉 be such that

δ′0(0) =
⋃

σ∈Σ

δ0(σ),

δ′(s, d, 0) =
⋃

σ∈Σ

δ(s, d, σ).

☞ The automaton A accepts some Σ-tree if and only if the

automaton B accepts the unique {0}-tree T .
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Check Emptiness

• There are finite number of strategies for B and Pathfinder P.

f1, . . . , fm for B, g1, . . . , gn for P

• Check each fi against each gj on game Γ(B, T ).

– Each play consistent with (fi, gj) stabilize, i.e., the play

becomes periodic eventually.

– There exists a depth limit after which every play stabilizes.

• B has a winning strategy f if B wins via some fi against all g′js.
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Decidability of S2S

☞ It is effective to decide whether B accepts the unique {0}-tree.

☞ It is effective to decide whether an automaton A accepts a

non-empty language.

☞ A formula ϕ is a S2S theorem if and only if ¬ϕ is unsatisfiable .

☞ A formula ψ is unsatisfiable if and only if the language of Aψ is

empty.

☞ S2S is decidable.
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