Proof Theory 293B: The Ramified Set Theory

Ting Zhang (tingz@cs.stanford.edu)
Department of Computer Science
Stanford University
March 16, 2003

1 Syntax

- The language of $\mathcal{L}_{R S}: \in, \notin, \mathbf{A d}, \neg \mathbf{A d}$ and a constant L_{α} for every ordinal α.
- The terms of $\mathcal{L}_{R S}$:
- Every constant L_{α} is an atomic set term of stage α.
- If a_{1}, \ldots, a_{n} are set terms of stages $<\alpha$, then

$$
\left\{x \in L_{\alpha} \mid F\left(x, a_{1}, \ldots, a_{n}\right)^{L_{\alpha}}\right\}
$$

is a set term of stage α.

2 Semantics

The standard interpretation of $\mathcal{L}_{R S}$ is given by
(1) $L_{\alpha}{ }^{\mathbf{L}}=\mathbf{L}_{\alpha}$,
(2) $\left\{x \in L_{\alpha} \mid F\left(x, a_{1}, \ldots, a_{n}\right)^{L_{\alpha}}\right\}^{\mathbf{L}}=\left\{x \in \mathbf{L}_{\alpha} \mid \mathbf{L}_{\alpha} \models F\left(x, a_{1}^{\mathbf{L}}, \ldots, a_{n}^{\mathbf{L}}\right)\right\}$.

Proposition 2.1. (1) For every set term s of stage α we have $s^{\mathbf{L}} \in \mathbf{L}_{\alpha+1}$.
(2) $\mathbf{L} \models s \in L_{\alpha}$ iff $\mathbf{L} \models s=t$ for some set term t with $\operatorname{stg}(t)<\alpha$.
(3) $\mathbf{L} \models \mathbf{A d}(t)$ iff $\mathbf{L} \models t=L_{\kappa}$ for some $\kappa \in \boldsymbol{\operatorname { R e g }}$ with $\kappa \leq \boldsymbol{\operatorname { s t g }}(t)$.
(4) $\mathbf{L} \models s \in\left\{x \in L_{\alpha} \mid F(x)\right\}$ iff $\mathbf{L} \models t=s \wedge F(t)$ for some set term t with $\operatorname{stg}(t)<\alpha$.

3 The theory KP1

The theory $\mathbf{K P 1}=$ the theory of $\mathbf{K P} \omega+$ the following axioms.
$\operatorname{Ad1}(\forall u)[\mathbf{A d}(u) \Rightarrow \omega \in u \wedge \operatorname{Tran}(u)]$
$\operatorname{Ad} 2(\forall x)(\forall y)[\mathbf{A d}(x) \wedge \mathbf{A d}(y) \Rightarrow x \in y \vee y \in x \vee x=y]$
Ad3 $(\forall x)\left[\mathbf{A d}(x) \Rightarrow(\text { Pair })^{x} \wedge(\text { Union })^{x} \wedge\left(\Delta_{0}-\text { Separation }\right)^{x} \wedge\left(\Delta_{0}-\text { Collection }\right)^{x}\right]$
$\operatorname{Lim}(\forall x)(\exists u)[\mathbf{A d}(u) \wedge x \in u]$

4 Classification of formulas

V-type formulas:

$$
s \in r, \quad \mathbf{A d}(t), \quad A \vee B, \quad(\exists x \in r) G(x)
$$

Λ-type formulas:

$$
s \notin r, \quad \neg \mathbf{A d}(t), \quad A \wedge B, \quad(\forall x \in r) G(x)
$$

5 Characteristic sub-sentences-set

The characteristic sub-sentences-set $\mathcal{C}(F)$ for all sentences F of \bigvee-type is defined inductively as follows.

- $\mathcal{C}(s \in r)=\{t=s \mid \boldsymbol{\operatorname { s t g }}(t)<\alpha\}$ if $r=L_{\alpha}$
- $\mathcal{C}(s \in r)=\{t=s \wedge F(t) \mid \boldsymbol{s t g}(t)<\alpha\}$ if $r=\left\{x \in L_{\alpha} \mid F(x)\right\}$
- $\mathcal{C}(\mathbf{A d}(t))=\left\{L_{\kappa}=t \mid \kappa \in \boldsymbol{\operatorname { R e g }} \wedge \kappa \leq \boldsymbol{\operatorname { s t g }}(t)\right\}$
- $\mathcal{C}(A \vee B)=\{A, B\}$
- $\mathcal{C}((\exists x \in r) G(x))=\{G(t) \mid \operatorname{stg}(t)<\alpha\}$ if $r=L_{\alpha}$
- $\mathcal{C}((\exists x \in r) G(x))=\{G(t) \wedge F(t) \mid \boldsymbol{s t g}(t)<\alpha\}$ if $r=\left\{x \in L_{\alpha} \mid F(x)\right\}$

For Λ-type sentences F

$$
\mathcal{C}(F):=\{\neg G \mid G \in \mathcal{C}(\neg F)\}
$$

If $G \in \mathcal{C}(F)$ and F is neither a disjuction nor a conjuction, then G is of the form $H(t)$ where t is a set term. Define

$$
o_{F}(G)=\operatorname{stg}(t)
$$

Lemma 5.1. For every sentence F of \bigvee-type we have

$$
\mathbf{L} \models F \quad \text { iff } \quad \mathbf{L} \models \bigvee_{G \in \mathcal{C}(F)} G
$$

and for every sentence F of \bigwedge-type we have

$$
\mathbf{L} \models F \quad \text { iff } \quad \mathbf{L} \models \bigwedge_{G \in \mathcal{C}(F)} G
$$

6 A Semi-formal system

Definition 6.1. Define relation $\models^{\alpha} \Delta$ for finite sets of $\mathcal{L}_{R S}$-sentences Δ inductively as follows.
$(\bigvee) F$ is of \bigvee-type, $\models^{\alpha_{0}} \Delta, G$ for some $G \in \mathcal{C}(F)$ where $\alpha_{0}<\alpha$ and $o_{F}(G)<\alpha$ \Rightarrow

$$
\models^{\alpha} \Delta, F
$$

$(\bigwedge) F$ is of \bigwedge-type, $\models^{\alpha_{G}} \Delta, G$ for all $G \in \mathcal{C}(F)$ where $\alpha_{G}<\alpha$ \Rightarrow

$$
\models^{\alpha} \Delta, F
$$

Lemma 6.1. For a $\mathcal{L}_{R S}$-sentence F,

$$
\mathbf{L} \models F \quad \text { iff } \quad(\exists \alpha) \models^{\alpha} F .
$$

proof sketch. Consider the case where F is of \bigvee-type.

$$
\begin{aligned}
\mathbf{L} \models F & \Leftrightarrow \mathbf{L} \models \bigvee_{G \in \mathcal{C}(F)} G \\
& \Leftrightarrow \quad \mathbf{L} \models G \text { for some } G \in \mathcal{C}(F) \\
& \Leftrightarrow \quad(\exists \beta) \models^{\beta} G \text { for some } G \in \mathcal{C}(F) \\
& \left(\text { let } \alpha=\max \left\{o_{F}(G), \beta\right\}\right) \\
& \Rightarrow \quad(\exists \alpha) \models^{\alpha} F
\end{aligned}
$$

Lemma 6.2. For a Σ_{1}-sentence F and an ordinal γ we have

$$
\models^{\alpha} F^{L_{\gamma}} \Rightarrow \mathbf{L}_{\alpha} \models F
$$

Proof. Let $F \equiv \exists x G(x)$ where $G(x)$ is Δ_{0}.

$$
\begin{aligned}
\models^{\alpha} F^{L_{\gamma}} & \Leftrightarrow \models^{\alpha}(\exists x G(x))^{L_{\gamma}} \\
& \Leftrightarrow \models^{\alpha}\left(\exists x \in L_{\gamma}\right) G(x)^{L_{\gamma}} \\
& \Leftrightarrow \models^{\alpha}\left(\exists x \in L_{\gamma}\right) G(x) \\
& \Leftrightarrow \models^{\alpha_{0}} G(t) \text { for some } t \text { with } \operatorname{stg}(t)<\gamma, \operatorname{stg}(t)<\alpha, \alpha_{0}<\alpha \\
& \Rightarrow \mathbf{L}_{\alpha} \models \exists x G(x)
\end{aligned}
$$

7 Rank of $\mathcal{L}_{R S}$-expression

Definition 7.1. Define the rank $\operatorname{rk}(E)$ of an $\mathcal{L}_{R S}$-expression E inductively as follows.

- $\operatorname{rk}\left(L_{\alpha}\right):=\omega \cdot \alpha$
- $\boldsymbol{r k}\left(\left\{x \in L_{\alpha} \mid F(x)\right\}\right):=\max \left\{\mathbf{r k}\left(L_{\alpha}\right)+1, \operatorname{rk}\left(F\left(L_{0}\right)\right)+2\right\}$
- $\operatorname{rk}(\mathbf{A d}(t)):=\operatorname{rk}(\neg \mathbf{A d}(t)):=\operatorname{rk}(t)+5$
- $\mathbf{r k}(s \in t):=\mathbf{r k}(s \notin t):=\max \{\mathbf{r k}(s)+6, \operatorname{rk}(t)+1\}$
- $\mathbf{r k}(A \vee B):=\mathbf{r k}(A \wedge B):=\max \{\mathbf{r k}(A), \mathbf{r k}(B)\}+1$
- $\mathbf{r k}((\exists x \in s) F(x)):=\mathbf{r k}((\forall x \in s) F(x)):=\max \left\{\mathbf{r k}(s), \mathbf{r k}\left(F\left(L_{0}\right)\right)+2\right\}$

Example 7.1. If $b \neq L_{0}$, then $\mathbf{r k}\left(L_{0} \in b\right)=\mathbf{r k}(b)+1$.
proof sketch.

$$
\begin{aligned}
\mathbf{r k}\left(L_{0} \in b\right) & =\max \left\{\mathbf{r k}\left(L_{0}\right)+6, \mathbf{r k}(b)+1\right\} \\
& =\max \{\omega \cdot 0+6, \mathbf{r k}(b)+1\} \\
& =\operatorname{rk}(b)+1
\end{aligned}
$$

Example 7.2. If $a \neq L_{0}, b \neq L_{0}$, then $\mathbf{r k}(a=b)=\max \{\mathbf{r k}(a), \operatorname{rk}(b)\}+4$.
proof sketch.

$$
\begin{aligned}
\mathbf{r k}(a=b) & =\mathbf{r k}(\forall x \in a[x \in b] \wedge \forall x \in b[x \in a]) \\
& =\max \{\mathbf{r k}(\forall x \in a[x \in b]), \mathbf{r k}(\forall x \in b[x \in a])\}+1 \\
& =\max \left\{\max \left\{\mathbf{r k}(a), \mathbf{r k}\left(L_{0} \in b\right)+2\right\}, \max \left\{\mathbf{r k}(b), \mathbf{r k}\left(L_{0} \in a\right)+2\right\}\right\}+1 \\
& =\max \{\max \{\mathbf{r k}(a), \mathbf{r k}(b)+3\}, \max \{\mathbf{r k}(b), \mathbf{r k}(a)+3\}\}+1 \\
& =\max \{\mathbf{r k}(a), \mathbf{r k}(b)\}+4 .
\end{aligned}
$$

Lemma 7.1. Let be an $\mathcal{L}_{R S}$ formula and c be a set term. We have

$$
\boldsymbol{\operatorname { s t g }}(c)<\alpha \Rightarrow \mathbf{r k}(b(c))<\max \left\{\omega \cdot \alpha, \mathbf{r k}\left(b\left(L_{0}\right)\right)+1\right\} .
$$

proof sketch. By induction on the structure of b. Consider the case where $b \equiv$ $(\exists x \in s) F(x, y)$. So $b(c) \equiv(\exists x \in s) F(x, c)$ and $b\left(L_{0}\right) \equiv(\exists x \in s) F\left(x, L_{0}\right)$. By the definition we have

$$
\mathbf{r k}(b(c))=\max \left\{\mathbf{r k}(s), \mathbf{r k}\left(F\left(L_{0}, c\right)\right)+2\right\}
$$

If $\mathbf{r k}(b(c))=\operatorname{rk}(s)$, then

$$
\begin{aligned}
\mathbf{r k}(b(c)) & <\max \left\{\mathbf{r k}(s), \mathbf{r k}\left(F\left(L_{0}, L_{0}\right)\right)+2\right\}+1 \\
& \leq \operatorname{rk}\left(b\left(L_{0}\right)\right)+1 \\
& \leq \max \left\{\omega \cdot \alpha, \operatorname{rk}\left(b\left(L_{0}\right)\right)+1\right\} .
\end{aligned}
$$

Suppose that $\operatorname{rk}(b(c))=\operatorname{rk}\left(F\left(L_{0}, c\right)\right)+2$. By the induction hypothesis we have

$$
\mathbf{r k}\left(F\left(L_{0}, c\right)\right)<\max \left\{\omega \cdot \alpha, \operatorname{rk}\left(F\left(L_{0}, L_{0}\right)\right)+1\right\}
$$

Now consider if $\operatorname{rk}\left(F\left(L_{0}, c\right)\right)<\omega \cdot \alpha$ or not. If it is the first case, then

$$
\operatorname{rk}\left(F\left(L_{0}, c\right)\right)+2<\omega \cdot \alpha
$$

and hence

$$
\begin{aligned}
\mathbf{r k}(b(c)) & =\max \left\{\mathbf{r k}(s), \operatorname{rk}\left(F\left(L_{0}, c\right)\right)+2\right\} \\
& <\max \left\{\omega \cdot \alpha, \mathbf{r k}\left(b\left(L_{0}\right)\right)+1\right\}
\end{aligned}
$$

If it is the second case, then

$$
\begin{aligned}
\mathbf{r k}(b(c)) & =\max \left\{\mathbf{r k}(s), \mathbf{r k}\left(F\left(L_{0}, c\right)\right)+2\right\} \\
& <\max \left\{\mathbf{r k}(s), \mathbf{r k}\left(F\left(L_{0}, L_{0}\right)\right)+1+2\right\} \\
& \leq \max \left\{\mathbf{r k}(s)+1, \mathbf{r k}\left(F\left(L_{0}, L_{0}\right)\right)+1+2\right\} \\
& =\mathbf{r k}\left(b\left(L_{0}\right)\right)+1 \\
& \leq \max \left\{\omega \cdot \alpha, \mathbf{r k}\left(b\left(L_{0}\right)\right)+1\right\} .
\end{aligned}
$$

Lemma 7.2. $\boldsymbol{\operatorname { s t g }}(c)<\alpha \Rightarrow \boldsymbol{r k}(F(c))+1<\boldsymbol{\operatorname { r k }}\left(s \in\left\{x \in L_{\alpha} \mid F(x)\right\}\right)$.
proof sketch. If $\boldsymbol{\operatorname { s t g }}(c)<\alpha \Rightarrow$, then

$$
\begin{aligned}
\operatorname{rk}(F(c))+1 & <\max \left\{\omega \cdot \alpha+1, \operatorname{rk}\left(F\left(L_{0}\right)\right)+2\right\} \\
& =\max \left\{\operatorname{rk}\left(L_{\alpha}\right)+1, \operatorname{rk}\left(F\left(L_{0}\right)\right)+2\right\} \\
& =\operatorname{rk}\left(s \in\left\{x \in L_{\alpha} \mid F(x)\right\}\right)
\end{aligned}
$$

Theorem 7.1. For $G \in \mathcal{C}(F)$ we have $\operatorname{rk}(G)<\operatorname{rk}(F)$.
proof sketch. Consider only the case where $F \equiv\left(\exists x \in\left\{y \in L_{\alpha} \mid H(y)\right\}\right) K(x)$. We have

$$
G \equiv H(t) \wedge K(t) \quad \text { and } \quad \mathbf{s t g}(t)<\alpha
$$

$\operatorname{rk}(G)=\max \{\mathbf{r k}(H(t)), \mathbf{r k}(K(t))\}+1$
$<\max \left\{\max \left\{\omega \cdot \alpha, \operatorname{rk}\left(H\left(L_{0}\right)\right)+1\right\}, \max \left\{\omega \cdot \alpha, \operatorname{rk}\left(K\left(L_{0}\right)\right)+1\right\}\right\}+1$
$=\max \left\{\omega \cdot \alpha+1, \mathbf{r k}\left(H\left(L_{0}\right)\right)+2, \operatorname{rk}\left(K\left(L_{0}\right)\right)+2\right\}$
$\left.=\max \left\{\mathbf{r k}\left(x \in L_{\alpha} \mid H(x)\right\}\right), \mathbf{r k}\left(K\left(L_{0}\right)\right)+2\right\}$
$=\operatorname{rk}(F)$.

Lemma 7.3. For an $\mathcal{L}_{R S}$ sentence F and all $G \in \mathcal{C}(F)$

$$
o_{F}(G)<\operatorname{rk}(F)
$$

proof sketch. Consider the case where $G=H(t)$ with $t=\left\{x \in L_{\alpha} \mid F(x)\right\}$. Then

$$
o_{F}(G)=\operatorname{stg}(t)<\alpha<\operatorname{rk}\left(\left\{x \in L_{\alpha} \mid F(x)\right\}\right)<\operatorname{rk}(G)<\operatorname{rk}(F)
$$

Theorem 7.2. For $\mathcal{L}_{R S}$ sentences F

$$
\mathbf{L} \models F \quad \Rightarrow \quad \models^{\mathbf{r k}(F)} F \text {. }
$$

proof sketch. By Theorem 7.1 and Lemma 7.3.

8 Another semi-formal system

Definition 8.1. Define relation $\vdash_{\rho}^{\alpha} \Delta$ for finite sets of $\mathcal{L}_{R S}$-sentences Δ inductively as follows.
$(\bigvee) F \in \Delta \cap \bigvee$-type, $\vdash_{\rho}^{\alpha_{0}} \Delta, G$ for some $G \in \mathcal{C}(F)$ with $\alpha_{0}<\alpha$ and $o_{F}(G)<\alpha$ \Rightarrow

$$
\vdash_{\rho}^{\alpha} \Delta
$$

$(\bigwedge) F \in \Delta \cap \bigwedge$-type $, \vdash_{\rho}^{\alpha_{G}} \Delta, G$ for all $G \in \mathcal{C}(F)$ with $\alpha_{G}<\alpha$ \Rightarrow

$$
\vdash_{\rho}^{\alpha} \Delta
$$

(cut) $\underset{\rho}{\vdash} \stackrel{\alpha}{0}^{\rho} \Delta, A, \vdash_{\rho}^{\alpha_{0}} \Delta, \neg A$ for some $\alpha_{0}<\alpha$ and some A with $\mathbf{r k}(A)<\rho$

$$
\vdash_{\rho}^{\alpha} \Delta
$$

$\left(R e f_{\kappa}\right) F^{L_{\kappa}} \in \Pi_{2}^{\kappa},\left(\exists z \in L_{\kappa}\right)\left[z \neq 0 \wedge F^{z}\right] \in \Delta, \vdash_{\rho}^{\alpha_{0}} \Delta, F^{L_{\kappa}}, \kappa \in \mathbf{R e g}, \kappa, \alpha_{0}+1<\alpha$ \Rightarrow

$$
\vdash_{\rho}^{\alpha} \Delta
$$

Lemma 8.1 (Soundness). $\vdash_{\rho}^{\alpha} \Delta \Rightarrow \mathbf{L} \models \bigvee \Delta$.
Theorem 8.1 (Cut Elimination). If $\vdash_{\rho}^{\alpha} \Delta, \Gamma$ and $\mathbf{L} \not \vDash F$ for all $F \in \Gamma$, then $\neq{ }^{\alpha} \Delta$.
proof sketch. Case (\bigwedge).
There exists $F \in \Delta \cup \Gamma$ such that

$$
\vdash_{\rho}^{\alpha_{G}} \Delta, \Gamma, G \text { for all } G \in \mathcal{C}(F) \text { where } \alpha_{G}<\alpha
$$

If $F \in \Gamma$, then $\mathbf{L} \not \vDash G_{0}$ for some $G_{0} \in \mathcal{C}(F)$. By induction hypothesis we have

$$
\models^{\alpha_{G_{0}}} \Delta
$$

and since $\alpha_{G_{0}}<\alpha$ we have

$$
\models^{\alpha} \Delta
$$

If $F \notin \Gamma$, then $F \in \Delta$. By induction hypothesis we have

$$
\models^{\alpha_{G}} \Delta, G \text { for all } G \in \mathcal{C}(F) \text { with } \alpha_{G}<\alpha
$$

By the definition of relation \models^{α}, we have

$$
\models^{\alpha} \Delta, F
$$

which is the same as

$$
\models^{\alpha} \Delta
$$

Case (cut).
In this case we have
$\vdash_{\rho}^{\alpha_{0}} \Delta, \Gamma, A$ and $\vdash_{\rho}^{\alpha_{0}} \Delta, \Gamma, \neg A$ for some $\alpha_{0}<\alpha$ and some A with $\mathbf{r k}(A)<\rho$
Without loss of generality, let us assume that $\mathbf{L} \not \vDash A$. Then by induction hypothesis we have

$$
\models^{\alpha} \Delta
$$

Case $\left(R e f_{\kappa}\right)$
We have

$$
\left(\exists z \in L_{\kappa}\right)\left[z \neq 0 \wedge F^{z}\right] \in \Delta \cup \Gamma, \quad \vdash_{\rho}^{\alpha_{0}} \Delta, \Gamma, F^{L_{\kappa}}
$$

If $\mathbf{L} \not \neq\left(\exists z \in L_{\kappa}\right)\left[z \neq 0 \wedge F^{z}\right]$, then $\mathbf{L} \not \vDash F^{L_{\kappa}}$. By the induction hypotheis we have

$$
\models^{\alpha_{0}} \Delta
$$

which implies

$$
\models^{\alpha} \Delta
$$

If $\mathbf{L} \models\left(\exists z \in L_{\kappa}\right)\left[z \neq 0 \wedge F^{z}\right]$, then $\left(\exists z \in L_{\kappa}\right)\left[z \neq 0 \wedge F^{z}\right] \in \Delta$. Since

$$
\operatorname{rk}\left(\left(\exists z \in L_{\kappa}\right)\left[z \neq 0 \wedge F^{z}\right]\right)=\kappa<\alpha
$$

we have

$$
\models^{\alpha}\left(\exists z \in L_{\kappa}\right)\left[z \neq 0 \wedge F^{z}\right]
$$

and hence

$$
\models^{\alpha} \Delta
$$

