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1 Syntax

• The language of LRS : ∈, 6∈, Ad, ¬Ad and a constant Lα for every ordinal
α.

• The terms of LRS :

– Every constant Lα is an atomic set term of stage α.

– If a1, . . . , an are set terms of stages < α, then

{x ∈ Lα | F (x, a1, . . . , an)Lα}

is a set term of stage α.

2 Semantics

The standard interpretation of LRS is given by

(1) Lα
L = Lα,

(2) {x ∈ Lα | F (x, a1, . . . , an)Lα}L = {x ∈ Lα | Lα |= F (x, aL

1 , . . . , aL

n)}.

Proposition 2.1. (1) For every set term s of stage α we have sL ∈ Lα+1.

(2) L |= s ∈ Lα iff L |= s = t for some set term t with stg(t) < α.

(3) L |= Ad(t) iff L |= t = Lκ for some κ ∈ Reg with κ ≤ stg(t).

(4) L |= s ∈ {x ∈ Lα | F (x)} iff L |= t = s ∧ F (t) for some set term t with
stg(t) < α.
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3 The theory KP1

The theory KP1 = the theory of KPω + the following axioms.

Ad1 (∀u)[Ad(u) ⇒ ω ∈ u ∧ Tran(u)]

Ad2 (∀x)(∀y)[Ad(x) ∧Ad(y) ⇒ x ∈ y ∨ y ∈ x ∨ x = y]

Ad3 (∀x)[Ad(x) ⇒ (Pair)x∧(Union)x∧(∆0−Separation)x∧(∆0−Collection)x]

Lim (∀x)(∃u)[Ad(u) ∧ x ∈ u]

4 Classification of formulas
∨

-type formulas:

s ∈ r, Ad(t), A ∨ B, (∃x ∈ r)G(x)

∧

-type formulas:

s 6∈ r, ¬Ad(t), A ∧ B, (∀x ∈ r)G(x)

5 Characteristic sub-sentences-set

The characteristic sub-sentences-set C(F ) for all sentences F of
∨

-type is defined
inductively as follows.

• C(s ∈ r) = {t = s | stg(t) < α} if r = Lα

• C(s ∈ r) = {t = s ∧ F (t) | stg(t) < α} if r = {x ∈ Lα | F (x)}

• C(Ad(t)) = {Lκ = t | κ ∈ Reg ∧ κ ≤ stg(t)}

• C(A ∨ B) = {A, B}

• C((∃x ∈ r)G(x)) = {G(t) | stg(t) < α} if r = Lα

• C((∃x ∈ r)G(x)) = {G(t) ∧ F (t) | stg(t) < α} if r = {x ∈ Lα | F (x)}

For
∧

-type sentences F

C(F ) := {¬G | G ∈ C(¬F )}

If G ∈ C(F ) and F is neither a disjuction nor a conjuction, then G is of the
form H(t) where t is a set term. Define

oF (G) = stg(t).
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Lemma 5.1. For every sentence F of
∨

-type we have

L |= F iff L |=
∨

G∈C(F )

G

and for every sentence F of
∧

-type we have

L |= F iff L |=
∧

G∈C(F )

G

6 A Semi-formal system

Definition 6.1. Define relation |=α ∆ for finite sets of LRS-sentences ∆ in-
ductively as follows.
(
∨

)

F is of
∨

-type, |=α0 ∆, G for some G ∈ C(F ) where α0 < α and oF (G) < α

⇒
|=α ∆, F

(
∧

)

F is of
∧

-type, |=αG ∆, G for all G ∈ C(F ) where αG < α

⇒
|=α ∆, F

Lemma 6.1. For a LRS-sentence F ,

L |= F iff (∃α) |=α F.

proof sketch. Consider the case where F is of
∨

-type.

L |= F ⇔ L |=
∨

G∈C(F )

G

⇔ L |= G for some G ∈ C(F )

⇔ (∃β) |=β G for some G ∈ C(F )

(let α = max{oF (G), β})

⇒ (∃α) |=α F

Lemma 6.2. For a Σ1-sentence F and an ordinal γ we have

|=α F Lγ ⇒ Lα |= F.

Proof. Let F ≡ ∃xG(x) where G(x) is ∆0.

|=α F Lγ ⇔ |=α (∃xG(x))Lγ

⇔ |=α (∃x ∈ Lγ)G(x)Lγ

⇔ |=α (∃x ∈ Lγ)G(x)

⇔ |=α0 G(t) for some t with stg(t) < γ, stg(t) < α, α0 < α

⇒ Lα |= ∃xG(x)
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7 Rank of LRS-expression

Definition 7.1. Define the rank rk(E) of an LRS-expression E inductively as
follows.

• rk(Lα) := ω · α

• rk({x ∈ Lα | F (x)}) := max{rk(Lα) + 1, rk(F (L0)) + 2}

• rk(Ad(t)) := rk(¬Ad(t)) := rk(t) + 5

• rk(s ∈ t) := rk(s 6∈ t) := max{rk(s) + 6, rk(t) + 1}

• rk(A ∨ B) := rk(A ∧ B) := max{rk(A), rk(B)} + 1

• rk((∃x ∈ s)F (x)) := rk((∀x ∈ s)F (x)) := max{rk(s), rk(F (L0)) + 2}

Example 7.1. If b 6= L0, then rk(L0 ∈ b) = rk(b) + 1.

proof sketch.

rk(L0 ∈ b) = max{rk(L0) + 6, rk(b) + 1}

= max{ω · 0 + 6, rk(b) + 1}

= rk(b) + 1

Example 7.2. If a 6= L0, b 6= L0, then rk(a = b) = max{rk(a), rk(b)} + 4.

proof sketch.

rk(a = b) = rk(∀x ∈ a[x ∈ b] ∧ ∀x ∈ b[x ∈ a])

= max{rk(∀x ∈ a[x ∈ b]), rk(∀x ∈ b[x ∈ a])} + 1

= max
{

max{rk(a), rk(L0 ∈ b) + 2}, max{rk(b), rk(L0 ∈ a) + 2}
}

+ 1

= max
{

max{rk(a), rk(b) + 3}, max{rk(b), rk(a) + 3}
}

+ 1

= max{rk(a), rk(b)} + 4.

Lemma 7.1. Let b be an LRS formula and c be a set term. We have

stg(c) < α ⇒ rk(b(c)) < max{ω · α, rk(b(L0)) + 1}.

proof sketch. By induction on the structure of b. Consider the case where b ≡
(∃x ∈ s)F (x, y). So b(c) ≡ (∃x ∈ s)F (x, c) and b(L0) ≡ (∃x ∈ s)F (x, L0). By
the definition we have

rk(b(c)) = max{rk(s), rk(F (L0, c)) + 2}.
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If rk(b(c)) = rk(s), then

rk(b(c)) < max{rk(s), rk(F (L0, L0)) + 2} + 1

≤ rk(b(L0)) + 1

≤ max{ω · α, rk(b(L0)) + 1}.

Suppose that rk(b(c)) = rk(F (L0, c))+2. By the induction hypothesis we have

rk(F (L0, c)) < max{ω · α, rk(F (L0, L0)) + 1}

Now consider if rk(F (L0, c)) < ω · α or not. If it is the first case, then

rk(F (L0, c)) + 2 < ω · α.

and hence

rk(b(c)) = max{rk(s), rk(F (L0, c)) + 2}

< max{ω · α, rk(b(L0)) + 1}.

If it is the second case, then

rk(b(c)) = max{rk(s), rk(F (L0, c)) + 2}

< max{rk(s), rk(F (L0, L0)) + 1 + 2}

≤ max{rk(s) + 1, rk(F (L0, L0)) + 1 + 2}

= rk(b(L0)) + 1

≤ max{ω · α, rk(b(L0)) + 1}.

Lemma 7.2. stg(c) < α ⇒ rk(F (c)) + 1 < rk(s ∈ {x ∈ Lα | F (x)}).

proof sketch. If stg(c) < α ⇒, then

rk(F (c)) + 1 < max{ω · α + 1, rk(F (L0)) + 2}

= max{rk(Lα) + 1, rk(F (L0)) + 2}

= rk(s ∈ {x ∈ Lα | F (x)})

Theorem 7.1. For G ∈ C(F ) we have rk(G) < rk(F ).

proof sketch. Consider only the case where F ≡ (∃x ∈ {y ∈ Lα | H(y)})K(x).
We have

G ≡ H(t) ∧ K(t) and stg(t) < α.

rk(G) = max{rk(H(t)), rk(K(t))} + 1

< max
{

max{ω · α, rk(H(L0)) + 1}, max{ω · α, rk(K(L0)) + 1}
}

+ 1

= max{ω · α + 1, rk(H(L0)) + 2, rk(K(L0)) + 2}

= max{rk(x ∈ Lα | H(x)}), rk(K(L0)) + 2}

= rk(F ).
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Lemma 7.3. For an LRS sentence F and all G ∈ C(F )

oF (G) < rk(F ).

proof sketch. Consider the case where G = H(t) with t = {x ∈ Lα | F (x)}.
Then

oF (G) = stg(t) < α < rk({x ∈ Lα | F (x)}) < rk(G) < rk(F ).

Theorem 7.2. For LRS sentences F

L |= F ⇒ |=rk(F ) F.

proof sketch. By Theorem 7.1 and Lemma 7.3.

8 Another semi-formal system

Definition 8.1. Define relation `α
ρ ∆ for finite sets of LRS-sentences ∆ induc-

tively as follows.
(
∨

)

F ∈ ∆∩
∨

-type, `α0

ρ ∆, G for some G ∈ C(F ) with α0 < α and oF (G) < α

⇒
`α

ρ ∆

(
∧

)

F ∈ ∆ ∩
∧

-type, `αG
ρ ∆, G for all G ∈ C(F ) with αG < α

⇒
`α

ρ ∆

(cut) `α0

ρ ∆, A, `α0

ρ ∆,¬A for some α0 < α and some A with rk(A) < ρ

⇒
`α

ρ ∆

(Refκ) F Lκ ∈ Πκ
2 , (∃z ∈ Lκ)[z 6= 0∧F z ] ∈ ∆, `α0

ρ ∆, F Lκ , κ ∈ Reg, κ, α0+1 < α

⇒
`α

ρ ∆

Lemma 8.1 (Soundness). `α
ρ ∆ ⇒ L |=

∨

∆.

Theorem 8.1 (Cut Elimination). If `α
ρ ∆, Γ and L 6|= F for all F ∈ Γ, then

|=α ∆.

proof sketch. Case (
∧

).
There exists F ∈ ∆ ∪ Γ such that

`αG
ρ ∆, Γ, G for all G ∈ C(F ) where αG < α
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If F ∈ Γ, then L 6|= G0 for some G0 ∈ C(F ). By induction hypothesis we have

|=αG0 ∆

and since αG0
< α we have

|=α ∆

If F 6∈ Γ, then F ∈ ∆. By induction hypothesis we have

|=αG ∆, G for all G ∈ C(F ) with αG < α

By the definition of relation |=α, we have

|=α ∆, F

which is the same as
|=α ∆

Case (cut).
In this case we have

`α0

ρ ∆, Γ, A and `α0

ρ ∆, Γ,¬A for some α0 < α and some A with rk(A) < ρ

Without loss of generality, let us assume that L 6|= A. Then by induction
hypothesis we have

|=α ∆

Case (Refκ)
We have

(∃z ∈ Lκ)[z 6= 0 ∧ F z] ∈ ∆ ∪ Γ, `α0

ρ ∆, Γ, F Lκ

If L 6|= (∃z ∈ Lκ)[z 6= 0 ∧ F z], then L 6|= F Lκ . By the induction hypotheis we
have

|=α0 ∆

which implies
|=α ∆

If L |= (∃z ∈ Lκ)[z 6= 0 ∧ F z], then (∃z ∈ Lκ)[z 6= 0 ∧ F z] ∈ ∆. Since

rk((∃z ∈ Lκ)[z 6= 0 ∧ F z]) = κ < α

we have
|=α (∃z ∈ Lκ)[z 6= 0 ∧ F z]

and hence
|=α ∆
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