A proof of topological completeness for S4 in (0,1)

G. Mints, T. Zhang Stanford January 3, 2003

- 1. Background
- 2. Idea of the new proof
- 3. Correspondence between (0, 1) and Kripke models
- 4. Proof sketch

Background

- 1. Completeness of modal logic S4 for \mathbb{R} , real interval (0,1) and every dense-in-itself separable metric space, [MT44].
- 2. Simplified proofs:
 - (a) completeness of S4 for Cantor spaces, [Min99].
 - (b) completeness of Int for (0, 1), [Min00] Chapter 9.
 - (c) completeness of S4 for (0, 1), [AvBB01].

However, both simplified proofs for (0, 1) contain gaps.

3. New proof: combines the ideas in [Min99], [Min00] and [AvBB01] and provides a further simplification.

The idea of the new proof

- 1. S4 is complete for finite rooted Kripke models. I.e., for any wff α , S4 $\vdash \alpha$ if and only if α is valid in every finite rooted Kripke structures.
- 2. For each finite rooted Kripke model \mathcal{K} , there is a continuous and open mapping from the standard topology on (0, 1) onto \mathcal{K} .

Corollary: S4 is complete for the real segment (0, 1).

(0,1) v.s. a Cantor set

- \mathscr{B} : the set of all infinite binary sequences $\vec{b} = b_1 b_2 \dots$ $(b_i \in \{0, 1\})$ except identical 0^{ω} and sequences ending in a tail of 1's,
- $\mathscr{B}_1 = \{ \vec{b} \in \mathscr{B} \mid (\exists i) (\forall j > i) \vec{b}(j) = 0 \},$

•
$$\mathscr{B}_2 = \mathscr{B} \backslash \mathscr{B}_1.$$

• One-to-one correspondence between \mathscr{B} and real interval (0,1) is given by

$$\mathbf{real}(\vec{b}) = \sum_{i=1}^{\infty} \vec{b}(i) 2^{-i}$$

B(x) = the unique $\vec{b} \in \mathscr{B}$ such that $\mathbf{real}(\vec{b}) = x$

LOGIC LUNCH

Kripke space

- $\mathbf{K} : \langle W, R, w_0 \rangle$: a finite rooted Kripke S4-model where W is a set of worlds, $w_0 \in W$, R is a reflexive and transitive relation on W and Rw_0w holds for all $w \in W$.
- \mathcal{K} : the topological space with the carrier W and the base of open sets $\mathcal{O}_w = \{w' \in W \mid Rww'\}$ for all $w \in W$.

Unwinding of \mathcal{K} to cover \mathscr{B}

Label finite binary sequences $\overline{b} = b_1 b_2 \dots b_n$, $n \ge 1$ by worlds $w \in W$ as follows.

1.
$$\mathcal{W}(\emptyset) = w_0,$$

2. If $\mathcal{W}(\bar{b}) = w$, no extension of \bar{b} is yet labeled and w, w_1, \ldots, w_m are all *R*-successors of $w \in W$, then let

•
$$\mathcal{W}(\overline{b}0^i) = w$$
 for all $0 < i \le 2m$

•
$$\mathcal{W}(\overline{b}0^{2i-1}1) = w_i \text{ for } 0 < i \le m$$

•
$$\mathcal{W}(\overline{b}0^{2i}1) = w \text{ for } 0 \le i < m.$$

Mapping π from (0,1) onto \mathcal{K}

Let $\vec{b} \upharpoonright n = \vec{b}(1)\vec{b}(2)\dots\vec{b}(n)$, for $\vec{b} \in \mathscr{B}$

• Stabilization point.

$$\lambda(\vec{b}) = \text{ the least } n \ge 1 \ [(\forall i, j \ge n) R \mathcal{W}(\vec{b} \restriction i) \mathcal{W}(\vec{b} \restriction j)]$$

• Choice point.

$$\rho(\vec{b}) = \begin{cases} max(1,n) & \text{if } \vec{b} = \vec{b}(1)\vec{b}(2)\dots\vec{b}(n)10^{\omega} \in \mathscr{B}_1\\ \lambda(\vec{b}) & \text{if } \vec{b} \in \mathscr{B}_2 \end{cases}$$

• Mapping of (0, 1) onto \mathcal{K} .

$$\pi(x) = \mathcal{W}(B(x) \restriction \rho(B(x))) \text{ for } x \in (0,1)$$

Two Lemmas

• Closeness measure δ :

$$\delta(\vec{b}) = max(1,n) \text{ if } \vec{b} = \vec{b}(1)\vec{b}(2)\dots\vec{b}(n)10^{\omega} \in \mathscr{B}_1$$

$$\delta(\vec{b}) = \text{ the least } n > \lambda(\vec{b})(\vec{b}(n) = 1 \text{ and } \vec{b}(n-1) = 0) \text{ if } \vec{b} \in \mathscr{B}_2.$$

Lemma 0.1. For any $x, y \in (0,1), \text{ if } |y-x| < 2^{-(\delta(x)+2)}, \text{ then } R\pi(x)\pi(y).$
This means $\delta(x) + 2$ is the modulus of continuity for π .

Lemma 0.2. For any $x \in (0,1)$, $\epsilon > 0$, $w \in W$ with $R\pi(x)w$, there exists $y \in (0,1)$ such that $|y - x| < \epsilon$ and $\pi(y) = w$. This means π is open.

LOGIC LUNCH

π is continuous

- Let $W_0 \subseteq W$ be an arbitrary open set in the Kripke space \mathcal{K} . (That is, W_0 is closed under R.)
- For $w \in W_0$, let $x \in \pi^{-1}(w)$, that is, $\pi(x) = w$.
- The set $O_x = \{y \mid |x y| < 2^{-(\delta(x) + 2)}\}$ is open in the topology space (0, 1).
- By Lemma 0.1 $\pi(O_x) \subseteq W_0$ and hence π is continuous.

π is open

• Let \mathcal{O}_x be the collection of sets

$$O_{x,i} = \{ y \mid |x - y| < 2^{-(i + \delta(x) + 2)} \}$$

- $\bigcup_x \mathcal{O}_x$ is a base of the standard topology on (0, 1).
- By Lemma 0.1 for any $w \in \pi(O_{x,i})$ we have $R\pi(x)w$.
- By Lemma 0.2 for any w with $R\pi(x)w$, there exists $y \in O_{x,i}$ such that $\pi(y) = w$, that is, $w \in \pi(O_{x,i})$.
- Hence $\pi(O_{x,i}) = \{ w \in W \mid R\pi(x)w \}$ which is obviously closed under R, and so $\pi(O_{x,i})$ is open in \mathcal{K} .

Valuation

Lemma 0.3. Let X_1, X_2 be two topological spaces and $f: X_1 \to X_2$ a continuous and open map. Let V_2 be a valuation on X_2 and define

$$V_1(p) = f^{-1}(V_2(p))$$

for each proposition p. Then

$$V_1(\alpha) = f^{-1}(V_2(\alpha))$$

for any wff of S4.

Proof of Lemma 0.3

The base case and induction steps for connectives \lor, \land, \neg are straightforward. Now suppose $\alpha = \Box \beta$. By induction hypothesis,

 $V_1(\beta) = f^{-1}(V_2(\beta))$

And it follows from openness and continuity that

$$Int(f^{-1}(V_2(\beta))) = f^{-1}(Int(V_2(\beta)))$$

So finally we have,

$$V_1(\alpha) = V_1(\Box\beta) = Int(V_1(\beta)) = Int(f^{-1}(V_2(\beta)))$$

= $f^{-1}(Int(V_2(\beta))) = f^{-1}(V_2(\Box\beta)) = f^{-1}(V_2(\alpha))$

LOGIC LUNCH

Validity

Lemma 0.4. Let $M_1 = \langle X_1, V_1 \rangle$, $M_2 = \langle X_2, V_2 \rangle$ be two topological models and $f: X_1 \to X_2$ a continuous and open mapping. If V_1 is induced by V_2 as above, then for any S4 wff α ,

 $M_2 \models \alpha \text{ implies } M_1 \models \alpha$

Moreover if f is onto, then

 $M_2 \models \alpha \text{ iff } M_1 \models \alpha$

Proof of Lemma 0.4

- Let $M_2 \models \alpha$, but $M_1 \not\models \alpha$. Let V_1 be a valuation such that $V_1(\alpha) \neq X_1$. By Lemma 0.3 $V_1(\alpha) = f^{-1}(V_2(\alpha))$, so we have $V_2(\alpha) \neq X_2$, that is, $M_2 \not\models \alpha$.
- Let f be onto, $M_1 \models \alpha$, but $M_2 \not\models \alpha$. Let V_2 be a valuation such that $V_2(\alpha) \neq X_2$. Since f is onto and $V_1(\alpha) = f^{-1}(V_2(\alpha)), V_1(\alpha) \neq X_1$, that is, $M_1 \not\models \alpha$.

References

- [AvBB01] Marco Aiello, Johan van Benthem, and Guram Bezhanishvili. Reasoning about space: the modal way. Technical Report PP-2001-18, ILLC, Amsterdam, 2001.
- [Min99] Grigori Mints. A completeness proof for propositional S4 in Cantor space. In Ewa Orlowska, editor, *Logic at work: Es*says dedicated to the memory of Helena Rasiowa, pages 79–88. Heidelberg: Physica-Verlag, 1999.
- [Min00] Grigori Mints. A short introduction to intuitionistic logic. Kluwer Academic-Plenum Publishers, New York, 2000.
- [MT44] J. C. C. McKinsey and Alfred Tarski. The algebra of topology. *The Annals of Mathematics*, 45(1):141–191, January 1944.