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Background

1. Completeness of modal logic S4 for R, real interval (0, 1) and

every dense-in-itself separable metric space, [MT44].

2. Simplified proofs:

(a) completeness of S4 for Cantor spaces, [Min99].

(b) completeness of Int for (0, 1), [Min00] Chapter 9.

(c) completeness of S4 for (0, 1), [AvBB01].

However, both simplified proofs for (0, 1) contain gaps.

3. New proof: combines the ideas in [Min99], [Min00] and

[AvBB01] and provides a further simplification.
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The idea of the new proof

1. S4 is complete for finite rooted Kripke models. I.e., for any wff

α, S4 ` α if and only if α is valid in every finite rooted Kripke

structures.

2. For each finite rooted Kripke model K, there is a continuous

and open mapping from the standard topology on (0, 1) onto K.

Corollary: S4 is complete for the real segment (0, 1).
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(0, 1) v.s. a Cantor set

• B: the set of all infinite binary sequences ~b = b1b2 . . .

(bi ∈ {0, 1}) except identical 0ω and sequences ending in a tail

of 1’s,

• B1 = {~b ∈ B | (∃i)(∀j > i)~b(j) = 0},

• B2 = B\B1.

• One-to-one correspondence between B and real interval (0, 1)

is given by

real(~b) =

∞
∑

i=1

~b(i)2−i

B(x) = the unique ~b ∈ B such that real(~b) = x
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Kripke space

• K : 〈W, R, w0〉: a finite rooted Kripke S4-model where W is a

set of worlds, w0 ∈ W , R is a reflexive and transitive relation

on W and Rw0w holds for all w ∈ W .

• K: the topological space with the carrier W and the base of

open sets Ow = {w′ ∈ W | Rww′} for all w ∈ W .
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Unwinding of K to cover B

Label finite binary sequences b̄ = b1b2 . . . bn, n ≥ 1 by worlds

w ∈ W as follows.

1. W(∅) = w0,

2. If W(b̄) = w, no extension of b̄ is yet labeled and w, w1, . . . , wm

are all R-successors of w ∈ W , then let

• W(b̄0i) = w for all 0 < i ≤ 2m

• W(b̄02i−11) = wi for 0 < i ≤ m

• W(b̄02i1) = w for 0 ≤ i < m.
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Mapping π from (0, 1) onto K

Let ~b�n = ~b(1)~b(2) . . .~b(n), for ~b ∈ B

• Stabilization point.

λ(~b) = the least n ≥ 1 [(∀i, j ≥ n)RW(~b� i)W(~b�j)]

• Choice point.

ρ(~b) =







max(1, n) if ~b = ~b(1)~b(2) . . .~b(n)10ω ∈ B1

λ(~b) if ~b ∈ B2

• Mapping of (0, 1) onto K.

π(x) = W(B(x)�ρ(B(x))) for x ∈ (0, 1)
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Two Lemmas

• Closeness measure δ:

δ(~b) = max(1, n) if ~b = ~b(1)~b(2) . . .~b(n)10ω ∈ B1

δ(~b) = the least n > λ(~b)(~b(n) = 1 and ~b(n − 1) = 0) if ~b ∈ B2.

•

Lemma 0.1. For any x, y ∈ (0, 1), if |y − x| < 2−(δ(x)+2), then

Rπ(x)π(y).

This means δ(x) + 2 is the modulus of continuity for π.

•

Lemma 0.2. For any x ∈ (0, 1), ε > 0, w ∈ W with Rπ(x)w,

there exists y ∈ (0, 1) such that |y − x| < ε and π(y) = w.

This means π is open.
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π is continuous

• Let W0 ⊆ W be an arbitrary open set in the Kripke space K.

(That is, W0 is closed under R.)

• For w ∈ W0, let x ∈ π−1(w), that is, π(x) = w.

• The set Ox = {y | |x − y| < 2−(δ(x)+2)} is open in the topology

space (0, 1).

• By Lemma 0.1 π(Ox) ⊆ W0 and hence π is continuous.
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π is open

• Let Ox be the collection of sets

Ox,i = {y | |x − y| < 2−(i+δ(x)+2)}

•
⋃

x Ox is a base of the standard topology on (0, 1).

• By Lemma 0.1 for any w ∈ π(Ox,i) we have Rπ(x)w.

• By Lemma 0.2 for any w with Rπ(x)w, there exists y ∈ Ox,i

such that π(y) = w, that is, w ∈ π(Ox,i).

• Hence π(Ox,i) = {w ∈ W | Rπ(x)w} which is obviously closed

under R, and so π(Ox,i) is open in K.
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Valuation

Lemma 0.3. Let X1, X2 be two topological spaces and f : X1 → X2

a continuous and open map. Let V2 be a valuation on X2 and define

V1(p) = f−1(V2(p))

for each proposition p. Then

V1(α) = f−1(V2(α))

for any wff of S4.
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Proof of Lemma 0.3

The base case and induction steps for connectives ∨,∧,¬ are

straightforward. Now suppose α = 2β. By induction hypothesis,

V1(β) = f−1(V2(β))

And it follows from openness and continuity that

Int(f−1(V2(β))) = f−1(Int(V2(β)))

So finally we have,

V1(α) = V1(2β) = Int(V1(β)) = Int(f−1(V2(β)))

= f−1(Int(V2(β))) = f−1(V2(2β)) = f−1(V2(α))
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Validity

Lemma 0.4. Let M1 = 〈X1, V1〉, M2 = 〈X2, V2〉 be two topological

models and f : X1 → X2 a continuous and open mapping. If V1 is

induced by V2 as above, then for any S4 wff α,

M2 |= α implies M1 |= α

Moreover if f is onto, then

M2 |= α iff M1 |= α
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Proof of Lemma 0.4

• Let M2 |= α, but M1 6|= α.

Let V1 be a valuation such that V1(α) 6= X1.

By Lemma 0.3 V1(α) = f−1(V2(α)), so we have V2(α) 6= X2,

that is, M2 6|= α.

• Let f be onto, M1 |= α, but M2 6|= α.

Let V2 be a valuation such that V2(α) 6= X2.

Since f is onto and V1(α) = f−1(V2(α)), V1(α) 6= X1, that is,

M1 6|= α.
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