A proof of topological completeness for S4 in (0,1)

G. Mints, T. Zhang Stanford University

ASL WINTER MEETING PHILADELPHIA

December 2002

ASL WINTER MEETING

Topological interpretation of S4

A topological model is an ordered pair $M = \langle X, V \rangle$, where X is a topological space and V is a function assigning a subset of X to each propositional variable. The valuation V is extended to all S4 formulas as follows:

$$V(\alpha \lor \beta) = V(\alpha) \cup V(\beta), \quad V(\neg \alpha) = X \setminus V(\alpha),$$

$$V(\alpha \land \beta) = V(\alpha) \cap V(\beta), \quad V(\Box \alpha) = \operatorname{Int}(V(\alpha)).$$

where Int is the interior operator.

We say that α is valid in a topological model M and write $M \models \alpha$ if and only if $V(\alpha) = X$.

Completeness results

- S4 is complete for \mathbb{R} , \mathbb{R}^n , Cantor spaces, the real interval (0,1) and in general any dense-in-itself separable metric space [1].
- Several simplified proofs were published later:
 - The completeness of S4 for Cantor spaces [2].
 - The completeness of Int for (0,1) [3] Chapter 9.
 - The completeness of S4 for (0,1) [4].

However, the last two completeness proofs contain gaps.

• A new proof presented here combines the ideas in [2], [3] and [4] and provides a further simplification.

The idea of the new proof

• S4 is complete for finite rooted Kripke models:

 $S4 \vdash \alpha$ iff $\models \alpha$ for all finite rooted Kripke structures.

• For each finite rooted Kripke model **K**, there is a continuous and open mapping from the standard topology on (0, 1) onto the corresponding Kripke space \mathcal{K} .

 $f: (0,1) \xrightarrow{onto} \mathcal{K}$ is continuous and open.

It follows that S4 is complete for the real interval (0,1).

(0,1) and a Cantor set

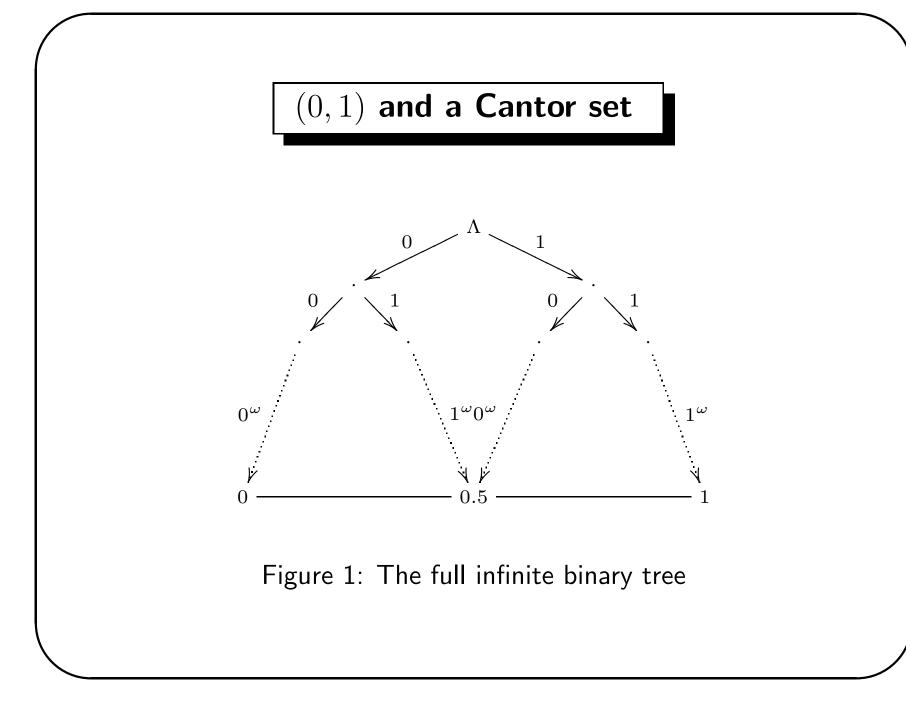
- Let \mathscr{B} be the set of all infinite binary sequences $\vec{b} = b_1 b_2 \dots$ $(b_i \in \{0, 1\})$ except the identical 0^{ω} and the sequences ending with a tail of 1's,
- Define \mathscr{B}_1 and \mathscr{B}_2 by

 $\mathscr{B}_1 = \{ \vec{b} \in \mathscr{B} \mid (\exists i) (\forall j > i) \vec{b}(j) = 0 \} \text{ and } \mathscr{B}_2 = \mathscr{B} \setminus \mathscr{B}_1.$

• A familiar one-to-one correspondence between \mathscr{B} and the real interval (0,1) is given by

$$\mathbf{real}(\vec{b}) = \sum_{i=1}^{\infty} \vec{b}(i) 2^{-i}$$

B(x)= the unique $\vec{b}\in \mathscr{B}$ such that $\mathbf{real}(\vec{b})=x$



Kripke frame and Kripke space

A Kripke frame (for S4) is an ordered pair F = (W, R) where W is a non-empty set and R is a reflexive and transitive relation on W. The elements in W are called worlds.

A Kripke frame is **rooted** if there exists a world w_0 such that any world w in W is an R-successor of w_0 .

 A Kripke space K is a topological space with the carrier W and the base of open sets O_w = {w' ∈ W | Rww'} for all w ∈ W.

We identify a Kripke frame $\langle W, R \rangle$ with a topological space \mathcal{K} .

Unwind K to cover \mathscr{B}

Label finite binary sequences $\overline{b} = b_1 b_2 \dots b_n$, $n \ge 1$ by worlds $w \in W$ as follows.

- $\mathcal{W}(\Lambda) = w_0$.
- Let b

 ∑* be a node in ℬ. Suppose b
 is already labeled by a
 world w (i.e., W(b
) = w), while none of its children has yet been
 labeled. Let w, w₁,..., w_m be all R-successors of w. Then

$$\begin{aligned} \mathcal{W}(\bar{b}0^i) &= w \text{ for } 0 < i \leq 2m, \\ \mathcal{W}(\bar{b}0^{2i-1}1) &= w_i \text{ for } 0 < i \leq m, \\ \mathcal{W}(\bar{b}0^{2i}1) &= w \text{ for } 0 \leq i < m. \end{aligned}$$

Unwind $\mathbf K$ to cover $\mathscr B$

In placing *R*-successors of w at right branches $\overline{b}0^{2i-1}1$ (i > 0), we interleave w with each of its other successors. This is the main distinction from the construction in [4].

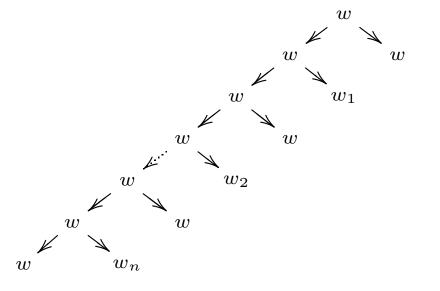


Figure 2: Unwinding and labeling

Map (0,1) onto ${\cal K}$

Let $\vec{b} \upharpoonright n = \vec{b}(1)\vec{b}(2)\dots\vec{b}(n)$.

• Define **stabilization point** by

$$\lambda(\vec{b}) = \text{ the least } n \geq 1 \ \big[(\forall i, j \geq n) R \mathcal{W}(\vec{b} \restriction i) \mathcal{W}(\vec{b} \restriction j) \big].$$

• Define **selection point** by

$$\rho(\vec{b}) = \begin{cases} max(1,n) & \text{ if } \vec{b} = \vec{b}(1)\vec{b}(2)\dots\vec{b}(n)10^{\omega} \in \mathscr{B}_1, \\ \lambda(\vec{b}) & \text{ if } \vec{b} \in \mathscr{B}_2. \end{cases}$$

Map (0,1) onto ${\cal K}$

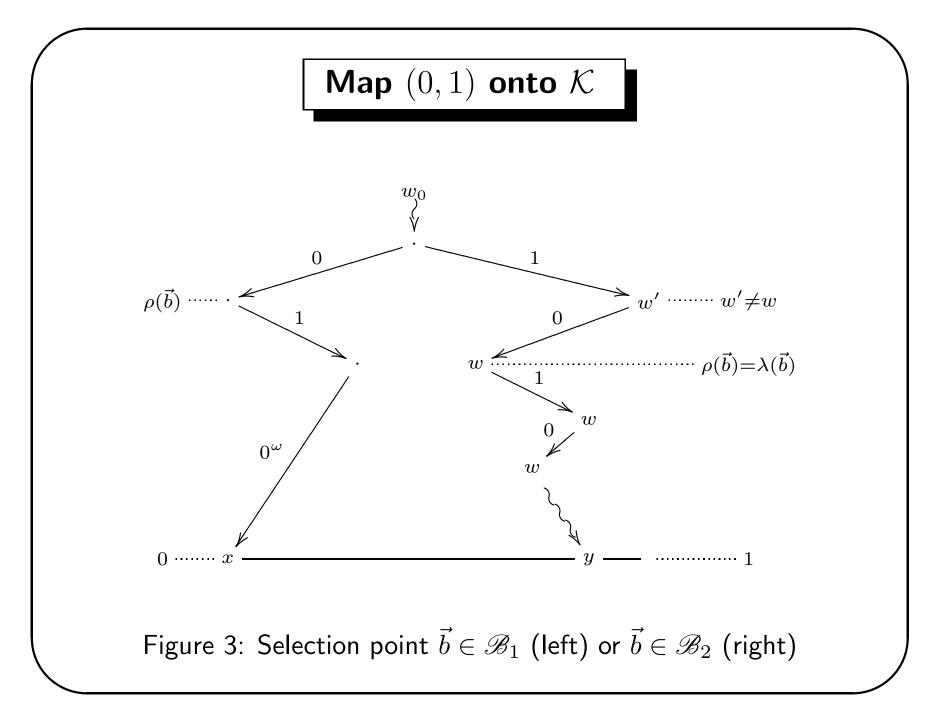
- Define a map π from (0,1) onto ${\mathcal K}$ by

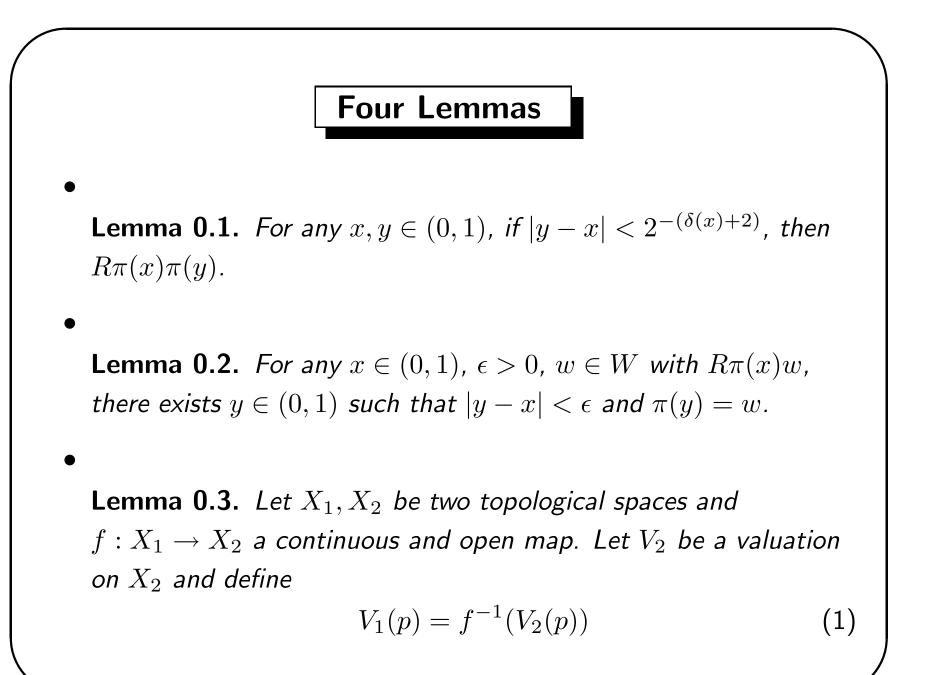
 $\pi(x) = \mathcal{W}(B(x) \restriction \rho(B(x))) \quad \text{for} \quad x \in (0, 1).$

• Define the modulus of continuity δ : if $\vec{b} = \vec{b}(1)\vec{b}(2)\dots\vec{b}(n)10^{\omega} \in \mathscr{B}_1$, then $\delta(\vec{b}) = max(1,n),$

and if $ec{b}\in\mathscr{B}_2$, then

$$\delta(\vec{b}) = \mu n [n > \lambda(\vec{b}) \& \vec{b}(n) = 1 \& \vec{b}(n-1) = 0]$$





for every propositional variable p. Then

$$V_1(\alpha) = f^{-1}(V_2(\alpha))$$

for any S4-formula α .

Lemma 0.4. Let X_1 , X_2 be two topological spaces and $f: X_1 \to X_2$ a continuous and open map. Let V_2 be a valuation for topological semantics on X_2 and define V_1 by the equation (1). Then for any S4-formula α ,

 $\langle X_2, V_2 \rangle \models \alpha \text{ implies } \langle X_1, V_1 \rangle \models \alpha.$

Moreover, if f is onto, then

 $\langle X_2, V_2 \rangle \models \alpha \text{ iff } \langle X_1, V_1 \rangle \models \alpha.$

The proof of Lemma 0.1

- Let W₀ ⊆ W be an open subset of the Kripke space K, i.e., W₀ is closed under R.
- For $w \in W_0$, let $x \in \pi^{-1}(w)$, so $\pi(x) = w$.
- The set $O_x = \{y \mid |x y| < 2^{-(\delta(x) + 2)}\}$ is open in (0, 1).
- By Lemma 0.1 $\pi(O_x) \subseteq W_0$ and hence π is continuous.

The proof of Lemma 0.2

• Let \mathcal{O}_x be the collection of sets

$$O_{x,i} = \{ y \mid |x - y| < 2^{-(i + \delta(x) + 2)} \}.$$

- $\bigcup_x \mathcal{O}_x$ is a base of the standard topology on (0,1).
- By Lemma 0.1 for any $w \in \pi(O_{x,i})$ we have $R\pi(x)w$.
- By Lemma 0.2 for any w with $R\pi(x)w$, there exists $y \in O_{x,i}$ such that $\pi(y) = w$, i.e., $w \in \pi(O_{x,i})$.
- Hence $\pi(O_{x,i}) = \{w \in W \mid R\pi(x)w\}$, which is obviously closed under R, and so $\pi(O_{x,i})$ is open in \mathcal{K} .

Proof of Lemma 0.3

The base case and induction steps for connectives \lor, \land, \neg are straightforward. Now suppose that $\alpha = \Box \beta$. By induction hypothesis,

 $V_1(\beta) = f^{-1}(V_2(\beta)).$

It follows from openness and continuity that

$$Int(f^{-1}(V_2(\beta))) = f^{-1}(Int(V_2(\beta))).$$

So we have,

$$V_1(\alpha) = V_1(\Box\beta) = Int(V_1(\beta)) = Int(f^{-1}(V_2(\beta)))$$

= $f^{-1}(Int(V_2(\beta))) = f^{-1}(V_2(\Box\beta)) = f^{-1}(V_2(\alpha)).$

Proof of Lemma 0.4

- Suppose that $\langle X_2, V_2 \rangle \models \alpha$, i.e., $V_2(\alpha) = X_2$. By Lemma 0.3 $V_1(\alpha) = f^{-1}(V_2(\alpha))$, and so $V_1(\alpha) = X_1$ as required.
- Suppose that f is onto and $\langle X_1, V_1 \rangle \models \alpha$, but $\langle X_2, V_2 \rangle \not\models \alpha$, i.e., $V_2(\alpha) \neq X_2$. Since f is onto and $V_1(\alpha) = f^{-1}(V_2(\alpha))$, we have $V_1(\alpha) \neq X_1$, i.e., $\langle X_1, V_1 \rangle \not\models \alpha$, a contradiction.

S4 is complete

- Let α be an non-theorem of S4. So there exists a finite rooted Kripke model $\mathbf{K} = \langle X, V' \rangle$ such that $\mathbf{K} \not\models \alpha$.
- Let V be the valuation on $\left(0,1\right)$ such that

$$V(p) = \pi^{-1}(V'(p))$$

for every propositional variable p.

- By Lemma 0.4 $V'(\beta) = X$ if and only if $V(\beta) = (0, 1)$ for any S4-formula β .
- In particular since $V'(\alpha) \neq X$, we have $V(\alpha) \neq (0,1)$, i.e., S4 is refuted on (0,1). It follows that S4 is complete for (0,1).

Future works

- The completeness of **Dynamic Topological Logic** (DTL).
 - DTL is a S4-based trimodal logic $(\Box, \bigcirc, *)$ for dynamical topological systems $\langle X, T \rangle$, where T is a continuous map on the topological space X.
 - The action of T on X is represented by the temporal operator \bigcirc ("tomorrow") interpreted as a pre-image under T.
 - Properties of an orbit of T is described using the operator * ("forever in the future").
- The completeness of $\boldsymbol{S4C}$ for $\mathbb{R}.$
 - S4C is a \Box , \bigcirc -fragment of DTL.

REFERENCES

References

- [1] J. C. C. McKinsey and Alfred Tarski. The algebra of topology. *The Annals of Mathematics*, 45(1):141–191, January 1944.
- [2] Grigori Mints. A completeness proof for propositional S4 in Cantor space.
 In Ewa Orlowska, editor, *Logic at work: Essays dedicated to the memory of Helena Rasiowa*, pages 79–88. Heidelberg: Physica-Verlag, 1999.
- [3] Grigori Mints. *A short introduction to intuitionistic logic*. Kluwer Academic-Plenum Publishers, New York, 2000.
- [4] Marco Aiello, Johan van Benthem, and Guram Bezhanishvili. Reasoning about space: the modal way. Technical Report PP-2001-18, ILLC, Amsterdam, 2001.