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What is a Decision Procedure?

An algorithm that checks whether a formula is valid in a given
decidable theory.

satisfiable

ϕ decision procedure

unsatisfiable

Always terminates with either a positive or a negative answer.

Relieve users from tedious interaction with theorem prover.
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Why Do We Need New Decision Procedures?

Decision procedures exist for specific theories

■ Arithmetic: integers, reals, . . . ,

■ Data types: lists, queues, arrays, sets, multisets, . . . ,

■ Algebraic structures: linear dense orders . . . ,

But
■ programming languages involve multiple theories.
■ verification conditions do not belong to a single theory.

☞ We need to reason about mixed constraints from multiple
theories.
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What is Combining Decision Procedure?

Σ1-theory T1 Σ2-theory T2

P1 for T1-satisfiability P2 for T2-satisfiability

?

P for (T1 ∪ T2)-satisfiability
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Combination of Theories

General Framework:
Nelson-Oppen Combination Method [NO79]

Recent Advances:
■ Non-disjoint Signature.

Tinelli and Ringeissen [TR03]

■ Model-theoretic.

Ghilardi [Ghi05]

■ Proof-theoretic.

Zarba [Zar02]

Armando, Ranise and Rusinowitch [ARR01]
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Limitation

■ All existing combination techniques impose severe
restrictions on the theories to be combined.

■ None of the techniques is applicable to multi-sorted theories
with functions connecting the different sorts.

☞ Logic theories are fragile.

■ Nelson-Oppen combination should be viewed as
exceptional.

■ Why should modular combinations always exist?

■ Concentrate on concrete problems instead of looking for
grand scheme.
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What are Common Combinations?

■ Integration of recursive data structures with integer
arithmetic

◆ Term algebras (tree-like objects) + integers

◆ Queues (linear objects)+ integers

■ Why? To automatically decide the validity of verification
conditions arising in the analysis of any property involving
data structures and size.

Examples:
◆ buffer overflows
◆ array out of bounds
◆ memory overflow
◆ . . .
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Our Approach

Exploit the algebraic properties of constituent theories.
■ For quantifier-free combinations:

Extract exact integer constraints induced by
constraints of data types.

■ For quantified combinations:

Reduce quantifiers on data types to quantifiers on
integers.

☞ Reduce theories of data domain to the theory of integer
domain.
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Our Contribution (1)

Decision procedures for the combination of data structures
with integer constraints.
■ Essential for practical program verification.

■ Can express memory safety properties.

Main approach:
Exploit the algebraic properties of constituent theories.

Main challenge:
Integer constraints must be precise (equisatisfiable with the
data constraints).
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Our Contribution (2)

Proof of decidability of the first-order theory of
Knuth-Bendix orders
■ Long-standing open problem (RTA problem #99).
■ Important result for term rewriting.
■ Many partial solutions:

◆ Quantifier-free theory [KV00, KV01]

◆ Unary quantified theory [KV02]
■ Same approach applicable to very different problem.
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Publication (1)

Decision procedures for term algebras with integer constraints:

T. Zhang, H.B. Sipma, and Z. Manna,
Decision Procedures for Recursive Data Structures with
Integer Constraints. In Proc. 2nd International Joint
Conference on Automated Reasoning (IJCAR) July 2004,
LNCS, vol. 3097, pp. 152–167
(Best Paper Award, accepted for publication in Information and
Computation).

T. Zhang, H.B. Sipma and Z. Manna,
Term Algebras with Length Function and Bounded
Quantifier Alternation. In Proc. of the 17th International
Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2004), LNCS, vol. 3223, pp. 321-336.

(journal version in preparation)
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Publication (2)

Decision procedures for queues with integer constraints:

T. Zhang, H.B. Sipma and Z. Manna,
Decision Procedures for Queues with Integer Constraints.
In Proc. Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), Dec 2005, LNCS, vol. 3821, pp.
225–237.

Decision procedures for Knuth-Bendix orders:

T. Zhang, H.B. Sipma, Z. Manna,
The Decidability of the First-order Theory of Knuth-Bendix Order.
In Proc. Conference on Automated Deduction (CADE) July
2005, LNCS, vol. 3632, pp. 131–148.

(journal version in preparation)

http://step-cs.stanford.edu/


Introduction

● Decision Procedure

● Why Do We Need New

Decision Procedures?
● Combination?

● Combination of Theories

● Limitation

● What are Common

Combinations?
● Our Approach

● Our Contribution (1)

● Our Contribution (2)

● Publication (1)

● Publication (2)

● Outline

PART I. Term Algebras with

Integers

PART II. Queues with Integers

PART III. Knuth-Bendix Order

PART IV. Conclusion and Future

Work

Thank You!

STeP Group, January 7, 2006 Special University Oral Exam 2005 - p. 14/79

Outline

I. Term Algebras with Integers

II. Queues with Integers

III. Knuth-Bendix Orders

IV. Conclusions and Future Work
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Previous Work on Term Algebras

■ Quantifier-free theory.

Nelson and Oppen [NO80]; Oppen [Opp80];

Downey, Sethi and Tarjan [DST80]

■ Quantified theory.

Malcev [Mal71]

■ Extensions.

◆ Infinite and rational trees: Maher [Mah88];
◆ Tree with membership: Comon and Delor [CD94];
◆ Feature trees: Backofen [Bac95];
◆ Term power: Kuncak and Rinard [KR03b].
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Term Algebras

A term algebra TA : 〈T;C,A,S,T〉 consists of

■ T: The term domain.

■ C: A finite set of constructors: α, β, γ, . . . .

■ A : A finite set of constants: a, b, c, . . .. RequireA ⊆ C.

■ S: A finite set of selectors. α = (sα1 , . . . , s
α
k ).

■ T : A finite set of testers. Isα for α ∈ C.

■ T is generated exclusively using C.

■ Each element of TA is uniquely generated.

http://step-cs.stanford.edu/
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Example: LISP lists

■ Signature:

〈list; {cons,nil}; {nil}; {car, cdr}; {Isnil, Iscons}〉

■ Axioms:

Isnil(x)↔ ¬Iscons(x),
x = car(cons(x, y)),
y = cdr(cons(x, y)),

Isnil(x)↔ {car, cdr}+(x) = x,
Iscons(x)↔ cons(car(x), cdr(x)) = x.
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Term Algebras with Integers

Presburger arithmetic (PA): LZ, PA.

Two-sorted language Σ = ΣT ∪ ΣZ ∪ {| · |}:

1. ΣT: signature of term algebras.

2. ΣZ: signature of Presburger arithmetic.
3. | · | : T→N, the length function such that

|t| =










1 if t is a constant,
∑k

i=1 |ti| if t ≡ α(t1, . . . , tk).
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The Problem

The presence of ΦZ restricts solutions to ΦT.

x , cons(cons(nil,nil),nil) ∧ x , cons(nil, cons(nil,nil))

is unsatisfiable with |x| = 5.

There are “hidden” constraints on data structure length that may
contradict the integer constraints.
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Length Constraint Completion (LCC)

A formula Φ∆(X̄) is an LCC for ΦT(X̄) ∧ ΦZ(X̄), if the following
formulae are valid:

ΦT(X̄) ∧ΦZ(X̄)→ (∃z̄ : Z)
(

Φ∆(z̄) ∧ |X̄| = z̄
)

,

Φ∆(z̄)→ (∃X̄ : T)
(

ΦT(X̄) ∧ ΦZ(X̄) ∧ |X̄| = z̄
)

.

Informally,
ΦT(X̄) ∧ ΦZ(X̄) “↔′′ Φ∆(X̄)

☞ Φ∆(X̄) fully characterizes ΦT(X̄) ∧ ΦZ(X̄).

☞ We reduce the combined constraint to the integer domain!
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LCC (2)

Let Φ∆+ be the formula that (when in place of Φ∆) satisfies

ΦT(X̄) ∧ΦZ(X̄)→ (∃z̄ : Z)
(

Φ∆(z̄) ∧ |X̄| = z̄
)

.

Φ∆+ is sound :

| · | maps a satisfying σT in T to a satisfying σZ in PA.

Let Φ∆− be the formula that (when in place of Φ∆) satisfies

Φ∆(z̄)→ (∃X̄ : T)
(

ΦT(X̄) ∧ ΦZ(X̄) ∧ |X̄| = z̄
)

Φ∆− is complete:

any satisfying σZ in PA is an image under | · | of a satisfying σT
in T.

http://step-cs.stanford.edu/


Introduction

PART I. Term Algebras with

Integers

● Previous Work on Term

Algebras

● Term Algebras

● Example: LISP lists

● Term Algebras+Integers

● The Problem

● LCC

● LCC (2)

● LCC (3)

● Example

● Main Theorem

● Generic Decision Procedure

● Computing the LCC

● LCC for Infinite A
● Example: LCC for Infinite A

(1)

● Example: LCC for Infinite A
(2)

● Example: LCC for Infinite A
(3)

● LCC for Finite Constant

Domain
● Equality Completion

● Example: Equality Completion

● LCC for Finite A
● Example: LCC for Finite A
● Quantifier Elimination

PART II. Queues with Integers

PART III. Knuth-Bendix Order

PART IV. Conclusion and Future

Work

Thank You!

STeP Group, January 7, 2006 Special University Oral Exam 2005 - p. 23/79

LCC (3)

Identify constraints with the corresponding solution set.

Φ∆+ is an over-approximation of Φ∆:

Φ∆ ⊆ Φ∆+

Φ∆− is an under-approximation of Φ∆:

Φ∆− ⊆ Φ∆
Φ∆ is unique up to equivalence:

Φ∆′ ⊆ Φ∆ ⊆ Φ∆′
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Example: LCC

ΦT : x , cons(nil,nil) ∧ y , cons(nil,nil) ∧ x , y

ΦZ : |x| = |y|

Φ∆+ : 2 - |x| ∧ |x| = |y|

Φ∆− : |x| > 5 ∧ 2 - |x| ∧ |x| = |y|

Φ∆ : |x| > 3 ∧ 2 - |x| ∧ |x| = |y|
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Main Theorem

Given ΦT ∧ΦZ.

Let Φ∆ be an LCC for ΦT ∧ ΦZ. Then

TAZ |=∃ ΦT ∧ ΦZ ⇔ TA |=∃ ΦT & PA |=∃ Φ∆.

Decision Problem 7→ Computation of LCC.
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Generic Decision Procedure

Input: ΦT ∧ ΦZ.

1. Return FAIL if TA 6|=∃ ΦT.

2. For each partition Φ(i)
T
∧ Φ(i)

Z
of ΦT ∧ ΦZ:

(a) Compute an LCC Φ(i)
∆

for Φ(i)
T
/Φ(i)
Z

.

(b) Return SUCCESS if PA |=∃ Φ(i)
∆

.

3. Return FAIL.

How to compute LCC?
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Computing the LCC

■ Infinite constant domain:
◆ create DAG representation of the formula.

Oppen’s algorithm [Opp80]

◆ extract size constraints from the DAG.

■ Finite constant domain:
◆ create DAG representation of the formula.

◆ extract size constraints from the DAG.

◆ add counting constraints to express bounded number of
distinct terms of given length.

◆ need to know which terms are of equal length: equality
completion.
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LCC for Infinite Constant Domain

Input:
1. ΦT ∧ ΦZ.
2. GT: the DAG of ΦT,
3. R��: the equivalence relation on GT.

Initially set Φ∆ = ΦZ. For each term t add the following to Φ∆.

■ |t| = 1, if t is a constant;
■ |t| = |s|, if (t, s) ∈ R��.
■ Tree(t) if t is an untyped leaf vertex.
■ Nodeα(t, t̄α) if t is an α-typed vertex with children t̄α.
■ Treeα(t) if t is an α-typed leaf vertex.
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Example: LCC for Infinite Constant Domain (1)

Iscons(y) ∧ x = cons(car(y), y) ∧ |cons(car(y), y)| < 2|car(x)|.

n1

		��
��
��
��
��
��
�

��
++

++
++

++
++

++
+ n2

��

  
BB

BB
B

n3

����
��
��
��
�

��
22

22
22

22
2

n4 n5 n6 n7

n1 : x
n2 : cons(car(y), y)
n3 : y
n4 : car(x)
n5 : cdr(x)
n6 : car(y)
n7 : cdr(y)
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Example: LCC for Infinite Constant Domain (2)

Equivalence relation:

{{n1, n2}, {n3, n5}, {n4, n6}, {n7}}.

n1 ,n2

��

$$
HHHHHH

n3 ,n5

����
��

��
��

��
�

��
55

55
55

55
55

n4 ,n6 n7

n1, n2 : {x, cons(car(y), y)}
n3, n5 : {y, cdr(x)}
n4, n6 : {car(x), car(y)}

n7 : cdr(y)
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Example: LCC for Infinite Constant Domain (3)

Induced length constraints:

|car(x)| ≥ 1 ∧ |cdr(x)| ≥ 1 ∧ |car(y)| ≥ 1 ∧ |cdr(y)| ≥ 1,
|x| = |cons(car(y), y)| ∧ |car(x)| = |car(y)| ∧ |cdr(x)| = |y|,

|x| = |car(x)| + |cdr(x)| ∧ |y| = |car(y)| + |cdr(y)| ∧
|cons(car(y), y)| = |car(y)| + |y|

which imply |cons(car(y), y)| ≥ 2|car(x)| + 1.

☞ Iscons(y)∧ x = cons(car(y), y) ∧ |cons(car(y), y)| < 2|car(x)|.

is unsatisfiable.
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LCC for Finite Constant Domain

With finite constant domain we have more "hidden" constraints.

■ there are only a bounded number of distinct terms of a given
length.

■ need to add counting constraint CNTαk,n(x) that says that

there are at least n+1 different α-terms of length x in the structure
having k constants.

■ CNTαk,n(x) is expressible in Presburger arithmetic.

■ need to know which terms are of equal length: equality
completion.
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Equality Completion

Φ is called equality complete if for any u, v in Φ,

■ exactly one of u = v and u , v, and

■ exactly one of |u| = |v| and |u| , |v| are in Φ.

We say that x1, . . . , xn is in a cluster if

x1, . . . , xn have the same length but pairwise unequal.

Equality Completion puts terms into stratified clusters.
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Example: Equality Completion

x , z ∧ y , cons(x, z)
can be made equality complete by adding

|y| = |cons(x, z)| ∧ |x| = |z|.

Picture this:
y cons(x,z)

����
��

��
��

��
�

��
66

66
66

66
66

6

x z
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LCC for Finite Constant Domain

Input:
1. ΦT ∧ ΦZ (equality complete).
2. GT: the DAG of ΦT,
3. R��: the equivalence relation on GT.

Initially set Φ∆ = ΦZ. For each term t add the following to Φ∆.

■ |t| = 1, if t is a constant;
■ |t| = |s|, if (t, s) ∈ R��.
■ Tree(t) if t is an untyped leaf vertex.
■ Node(t, t1, . . . , tk) if t is a node with children t1, . . . , tk.
■ Treeα(t) if t is an α-typed leaf vertex.
■ CNTα1,n(|t|) if there exist t1, . . . , tn s.t. t, t1, . . . tn are in the

same cluster.
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Example: LCC for Finite Constant Domain

Φ : x , cons(nil,nil) ∧ |x| = 3.

implies that x and cons(nil,nil)) are in the same cluster.

Then Φ∆ contains

CNTcons
1,2 (|x|) : |x| - 2 ∧ |x| > 3.

So Φ is unsatisfiable.
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Quantifier Elimination for Th(TAZ)

1. Blockwise Elimination. Remove a block of quantifiers in one
step.

(∃x1, . . . ,∃xn)Φ(x1, . . . , xn, y1, . . . , ym) 7→ Φ
′(y1, . . . , ym)

2. Almost Optimal Complexity. One exponential for each
quantifier alternation.

(Term algebras itself are non-elementary.)

n

. .
.

2
2



































O(n)
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PART II. Queues with Integers
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Previous Work on Queues

■ Quantifier-free theory with subsequence relations.

Bjørner [Bjø98]

■ Quantified theory.

Rybina and Voronkov [RV00] [RV03]

■ With prefix relation.

Benedikt, Libkin, Schwentick and Segoufin [BLSS01]

■ WS1S with cardinality constraints.

Klaedtke and Ruess [KR03a]

http://step-cs.stanford.edu/


Introduction

PART I. Term Algebras with

Integers

PART II. Queues with Integers

● Previous Work on Queues

● Difference

● Queues (1)

● Queues (2)

● Decision Procedure for

Queues (Bjørner)
● Normal Form in Q

● Queues+Integers

● Problem I

● Problem II

● Cut Length

● Computation of Cut Length

● Example

● Computation of LCC

● Normal Form in QZ

● Quantifier Elimination

PART III. Knuth-Bendix Order

PART IV. Conclusion and Future

Work

Thank You!

STeP Group, January 7, 2006 Special University Oral Exam 2005 - p. 40/79

Difference Between Term Algebras and Queues

A term is constructed uniquely. For example,

cons(cons(a, b), a)) :
AA

AA
AA

��
��

��

<<
<<

<<

��
��

��
a

a b

A queue can be constructed in many ways. For example,

aba :

( ( a ) b ) a
a ( b ( a ) )
( a ( b ) ) a
a ( ( b ) a )
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Queues (1)

Q : 〈Q;A,C,S〉:

1. A: Constants: a, b, c, . . .

2. Q: Sequences of constants. εQ: the empty queue.
3. C: Constructors:

Left Insertion la : A×Q → Q
Right Insertion ra : A×Q → Q, s.t.

la(a, εQ) = ra(a, εQ) = 〈a〉,
la(a, 〈s1, . . . , sn〉) = 〈a, s1, . . . , sn〉,
ra(a, 〈s1, . . . , sn〉) = 〈s1, . . . , sn, a〉.
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Queues (2)

4 S: Selectors:

Left Head lh : Q → A, Left Tail lt : Q → Q,

Right Head rh : Q → A, Right Tail rt : Q → Q, s.t.

lh(〈s1, . . . , sn〉) = s1,

lt(〈s1, . . . , sn〉) = 〈s2, . . . , sn〉,
rh(〈s1, . . . , sn〉) = sn,

rt(〈s1, . . . , sn〉) = 〈s1, . . . , sn−1〉.

Convention: use concatenation operator ◦.

a◦X◦b stands for ra(b, la(a,X)) or la(a, ra(b,X)).
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Decision Procedure for Queues (Bjørner)

Input: Φ ≡ E ∪D.

1. Normalize Φ to Φ′ : E′ ∪D′.

2. Return FAIL, if inconsistency is discovered;

Return SUCCESS.
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Normal Form in Q

Let X ∈ orb(α, k) denote that X is of the form α∗α[1..k].

A queue constraint ΦQ is in normal form if
■ all equalities are in triangular form,

■ for each X there exists at most one literal X ∈ orb(α, k),
■ if X ∈ orb(α, k) occurs, then no X < orb(α′, k′) occurs, and

■ disequalities are in the form αX , Yβ for X . Y.
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Queues with Integers

Presburger arithmetic (PA): LZ, PA.

Two-sorted language Σ = ΣQ ∪ ΣZ ∪ {| · |}:

1. ΣQ: signature of queues.

2. ΣZ: signature of Presburger arithmetic.
3. | · | : Q→N, the length function.
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Problem I

The presence of ΦZ restricts solutions to ΦQ.

Example: SupposeA = {a, b}. Then

ΦQ : Xba , abY ∧ Xab , baY ∧ Xaa , baY ∧ Xab , aaY

is not satisfiable with ΦZ : |X| = |Y| = 1.

Computing LCC.

Example:
ΦZ Φ∆

|X| = |Y| |X| , 1 ∧ |X| = |Y|

But more work needs to be done here: new normalization.
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Problem II

We cannot partition terms into stratified clusters and construct
a satisfying assignment inductively.

Example: Consider

X , Y ∧ aX , Yb ∧ Xa , bY

Infinitely many assignments of the form

X = (ba)nb, Y = a(ba)n

satisfy X , Y, but neither aX , Yb nor Xa , bY.

Find a cut length!
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Cut Length

1. ΦQ can be satisfied by sufficiently long queues.
2. There exists a cut length δ such that for any solution (li)n for
Φ∆+ with li ≥ δ is realizable.

3. But δ is not the smallest max{(µi)n} such that

QZ |=∃ ΦQ ∧
n
∧

i=1
|Xi| = µi

Example: {X := εQ,Y := εQ} is a solution for

Xba , abY ∧ Xab , baY ∧ Xaa , baY ∧ Xab , aaY

while there is no solution σ such that |σ(X)| = |σ(Y)| = 1.
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Computation of Cut Length

PREΦ : the set of all words α s.t. αX or α is a proper term in ΦQ.

dΦ: the shortest strongly primitive word d such that

(∀α ∈ PREΦ) d < orb(α).

Ld: the length of dΦ.

Lc: the smallest number of letters to create a unique identifying
word, called a color , for each queue variable in ΦQ.

Lt: Lc + Ld.

We claim that Lt ≥ δ.
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Example

Consider

Xba , abY ∧ Xab , baY ∧ Xaa , baY ∧ Xab , aaY

Then

1. PREΦ = {ab, ba, aa}.
2. Ld = 3; dΦ = aab.
3. Lc = 1; ΦQ includes two queue variables.

So Lt = Lc + Ld = 4.
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Computation of LCC for Queues

Input: ΦQ ∧ΦZ in normal form of QZ.

Initially set Φ∆ = ΦZ. Add to Φ∆:

■ |t1| = |t2|, if t1 , t2 or t1 = t2;

■ |X| + |α| = |αX| = |Xα|, if αX or Xα occurs;

■ |X| ≡ k( mod |α|), if X ∈ orb(α, k).
■ |X| = i (for some i < Lt) or |X| ≥ Lt for each X in ΦQ.
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Normal Form in QZ

ΦQ is in normal form in QZ if

1. ΦQ is in normal form in Q;

2. ΦQ is equality complete;

3. if αX , Yβ occurs with either X ∈ orb(α′, k) or Y ∈ orb(β′, l),
then α ≡ εQ;

4. αX , Yβ does not occur with both X ∈ orb(α′, k) and
Y ∈ orb(β′, l).
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Quantifier Elimination for Queues with Integers

New Normalization. To deal with parameters Ȳ.

Blockwise Elimination. Remove a block of quantifiers in one
step.

(∃x1, . . . ,∃xn)Φ(x1, . . . , xn, y1, . . . , ym) 7→ Φ
′(y1, . . . , ym)
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PART III. Knuth-Bendix Order
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Motivation

■ Termination Proofs. To rank program states:

〈x = 3, y = 2〉 > 〈x = 3, y = 1〉

■ Ordered Resolution. To restrict the search space:

A ∨ C ¬A′ ∨ C′
(C ∨ C′)σ

σ = mgu(A,A′)
∀B ∈ Cσ ∨ C′σ (Aσ ≮ Bσ)

■ Ordered Rewriting. To orient commutative equations:

L→ R (Lσ > Rσ)

How to decide satisfiability of order constraints?
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Background: Previous Work (1)

Two types of widely used orderings:

Syntactic Nature Hybrid Nature
LPO KBO

syntactic
precedence

√ √

lexicographical
ordering

√ √

numerical
ordering

√
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Background: Previous Work (2)

Decidability Status:

LPO KBO

QFT
√

[Com90] [Nie93]

√

[KV00] [KV01]

UQT
√

[NR00]

√

[KV02]

GQT
×

[Tre92, CT97]
?

QFT: Quantifier-free Theory.

UQT: Unary Quantified Theory.

GQT: General Quantified Theory.
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Background: Previous Work (2)

Decidability Status:

LPO KBO

QFT
√

[Com90] [Nie93]

√

[KV00] [KV01]

UQT
√

[NR00]

√

[KV02]

GQT
×

[Tre92, CT97]

√

[ZSM05]

QFT: Quantifier-free Theory.

UQT: Unary Quantified Theory.

GQT: General Quantified Theory.
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Knuth-Bendix Order (1)

A Knuth-Bendix order (KBO) ≺kb is parametrically defined with

■ W : TA→N : a weight function satisfying

W(α(t1, . . . , tk)) =W(α) +
k
∑

i=1
W(ti).

■ ≺Σ: a linear (precedence) order on C such that

α1 �Σ α2 �Σ . . . �Σ α|C|.
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Knuth-Bendix Order (2)

For u, v ∈ TA, u ≺kb v if one of the following holds:

■ W(u) <W(v).

■ W(u) =W(v) and type(u) ≺Σ type(v).

■ W(u) =W(v), u ≡ α(u1, . . . , uk), v ≡ α(v1, . . . , vk), and

∃i
[

1 ≤ i ≤ k ∧ ui ≺kb vi ∧ ∀ j(1 ≤ j < i→ u j = v j)
]

.
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Quantifier Elimination

■ Suffices to eliminate ∃-quantifiers from primitive formulas

∃x̄
[

A1(x̄) ∧ . . . ∧ An(x̄)
]

,

where Ai(x̄) are literals.

■ Suffices to assume Ai . x = t if x < t, because

∃x
[

x = t ∧ ϕ(x, ȳ)
]

↔ ϕ(t, ȳ).
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Main Idea: Depth Reduction

Eliminating ∃x from (∃x)ϕ(x, ȳ) is straightforward if

depthϕ(x) = 0.

Such ϕ(x, ȳ) is said to be solved in x.

(

depthϕ(x): the length of the longest selector sequence in front

of x in ϕ.
)
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Solved Form

■ ϕ(x, ȳ) is solved in x if it is in the form
∧

i≤m
ui ≺kb x ∧

∧

j≤n
x ≺kb v j ∧ ϕ′(ȳ),

where x does not appear in ui, vi and ϕ′.
■ If ϕ(x, ȳ) is solved in x, then (∃x) ϕ(x, ȳ) simplifies to

∧

i≤m, j≤n
ui ≺kb

2 v j ∧ ϕ′(ȳ)

where x ≺kb
n y, called gap order, states there is an increasing

chain from x to y of length at least n.
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Depth Reduction: Case 1

Case 1: All occurrences of x have depth greater than 0.

In this case, ∃xϕ(x, ȳ) goes to

∃x1, . . . ,∃xkϕ
′(x1, . . . , xk, ȳ),

where

ϕ′(x1, . . . , xk, ȳ) ≡ ϕ(x, ȳ)
[

sαi (x)← xi
]

.
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Case 1:Example

(∃x)
[

car(x) ≺kb cdr(x)
]

⇒ (∃x1)(∃x2)(∃x)
[

x1 = car(x) ∧ x2 = cdr(x) ∧ car(x) ≺kb cdr(x)
]

(decompose x)

⇒ (∃x1)(∃x2)(∃x)
[

x1 = car(x) ∧ x2 = cdr(x) ∧ x1 ≺kb x2
]

(substitution)

⇒ (∃x1)(∃x2)
[

x1 ≺kb x2
]

(remove x)
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Depth Reduction: Case 2

Case 2: Some x have depth 0 and some do not.

■ Decompose 0-depth occurrences of x in terms of

sα1 (x), . . . , sαk (x).

■ This amounts to expressing x ≺kb
n t and t ≺kb

n x using

sα1 (x), . . . , sαk (x).

■ Then apply the reduction as in Case 1!
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Case 2: Example

(∃x)
[

car(x) ≺kb y ∧ y ≺kb x
]

⇒
(∃x1)(∃x2)(∃x)

[

x1 = car(x) ∧ x2 = cdr(x)

∧ car(x) ≺kb y ∧ y ≺kb x
]

(decompose x)

⇒
(∃x1)(∃x2)(∃x)

[

x1 = car(x) ∧ x2 = cdr(x) ∧ car(x) ≺kb y
∧ car(y) = car(x) ∧ cdr(y) ≺kb cdr(x)

]

(decompose y ≺kb x; reduce to case 1)
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Case 2:Example (Cont’d)

⇒
(∃x1)(∃x2)(∃x)

[

x1 = car(x) ∧ x2 = cdr(x)

∧ x1 ≺kb y ∧ car(y) = x1 ∧ cdr(y) ≺kb x2
]

(substitution)

⇒ (∃x1)(∃x2)
[

x1 ≺kb y ∧ car(y) = x1 ∧ cdr(y) ≺kb x2
]

(remove x)
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Quantifier Elimination for Knuth-Bendix Order

Input: (∃x̄) ϕ(x̄, ȳ).
While x̄ , ∅.

■ While (∀x ∈ x̄) depthϕ(x) > 0.

Depth Reduction.

◆ VARIABLE SELECTION.

◆ DECOMPOSITION.

◆ SIMPLIFICATION.

Done.
■ While (∃x ∈ x̄) depthϕ(x) = 0.

Elimination.

Done.

Done.
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Variable Selection

Select a variable x ∈ x̄ such that sαi (x) appears in ϕ(x̄, ȳ).

☞ The variable selection is done in depth-first manner.

☞ I.e., choose variables generated in the previous round.
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Decomposition

Rewrite (∃x̄) ϕ(x̄, ȳ) to

∃x1 . . .∃xk∃x̄
[

Isα(x) ∧
∧

1≤i≤k
sαi (x) = xi ∧ ϕ(x̄, ȳ)

]

.
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Simplification

Apply the following rules to each occurrence of x.

1. Replace x ≺]n t (or t ≺]n x) by a quantifier-free formula

ϕ′(sα1 (x), . . . , sαk (x), sα1 (t), . . . , sαk (t)).

2. Replace sαi (x) in ϕ(x̄, ȳ) by xi (1 ≤ i ≤ k).

Denote the result of this simplification by

∃x1 . . .∃xk∃(x̄ \ x)
[

ϕ′(x̄ \ x, x1, . . . , xk, ȳ)
]

.
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Elimination

■ We have

∃x
[
∧

i≤m
ui ≺kb x ∧

∧

j≤n
x ≺kb v j ∧ ϕ′(ȳ)

]

,

where x appears none of ui, v j and ϕ′.

■ Guessing a gap order completion, we rewrite it to

ui′ ≺kb
2 v j′ ∧ ϕ′(ȳ)

∧ “ui′ is the greatest of {ui | i ≤ m}”

∧ “v j′ is the smallest of {v j | j ≤ n}”.
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Technical Challenges (1)

1. Decompose ≺kb into three disjoint suborders ≺w, ≺p and ≺l.

2. Extend ≺w, ≺p and ≺l to ≺w
n , ≺p

n and ≺l
n, respectively.

3. Add Presburger arithmetic explicitly to represent weight.

4. Define counting constraints to count terms of certain weight.

5. Define boundary functions to delineate gap orders.

0w(n), 0p(n, p), 1w(n), 1p(n, p).

6. Extend all aforementioned notions to tuples of terms.
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Technical Challenges (2)

■ Elimination of Complex Terms.

car(0w
((car(x))w)).

■ Elimination of Integer Quantifiers.

(∃z : Z)
[

car(0w
(z)) ≺kb cdr(0w

(z))
]

.

■ Elimination of Equalities.

∃x
[

x = 0w
((car(x))w) ∧ car(x) ≺p

4 cdr(x)
]

.

■ Elimination of Negations.

¬
(

car(x) ≺w
3 cdr(x)

)

.

■ TERMINATION!
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PART IV. Conclusion and Future Work
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Conclusion

■ Decision procedures for the combination of data structures
with integer constraints

◆ Express memory safety property.

◆ Essential for practical program verification.

■ Proof of decidability of the first-order theory of Knuth-Bendix
orders.

◆ Long-standing open problem (RTA problem #99).

◆ Important result for term rewriting.

Exploit algebraic properties of concrete domains.
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Future Work (1)

■ Implementation and experimentation.

■ More expressive languages.

◆ Term algebras with subterm relation

◆ Queues with subsequence relations, namely,
prefix �p, subqueue � and suffix �s

With our decision procedures for

QZ+ �p + � and QZ+ �s + �,

the next step is QZ+�p+�s !
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Future Work (1)
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Future Work (2)

QZ+�p+�s is a very expressive theory.

1. Equivalent to the theory of concatenation with integers.
(Open problem since 80’s, Büchi and Senger [BS88])

uv2
= vuv ∧ |u| < |v|

2. Interpret the theory of arrays.

q[i] = a↔ ∃p (pa �p q ∧ |pa| = i)

3. Interpret Presburger arithmetic with divisibility predicate.

x = y + 2 ∧ y | x

4. Augmentable to theory of unbounded bit-vectors.

u ⊕ v = w ∧ uv = ww
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Thank You!
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