Arithmetic Integration of Decision Procedures (Special University Ph.D. Oral Examination)

Ting Zhang
Advisor: Prof. Zohar Manna
Stanford University
December 7, 2005

- Decision Procedure
- Why Do We Need New

Decision Procedures? - Combination?

- Combination of Theories
- Limitation
- What are Common

Combinations?

- Our Approach
- Our Contribution (1)
- Our Contribution (2)
- Publication (1)
- Publication (2)
- Outline

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order
PART IV. Conclusion and Future
Work

Thank You!

What is a Decision Procedure?

Introduction

- Decision Procedure
- Why Do We Need New

Decision Procedures?

- Combination?
- Combination of Theories
- Limitation
- What are Common

Combinations?

- Our Approach
- Our Contribution (1)
- Our Contribution (2)
- Publication (1)
- Publication (2)
- Outline

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

An algorithm that checks whether a formula is valid in a given decidable theory.

Always terminates with either a positive or a negative answer.
Relieve users from tedious interaction with theorem prover.

Why Do We Need New Decision Procedures?

Introduction

- Decision Procedure
- Why Do We Need New

Decision Procedures?

- Combination?
- Combination of Theories
- Limitation
- What are Common

Combinations?

- Our Approach
- Our Contribution (1)
- Our Contribution (2)
- Publication (1)
- Publication (2)
- Outline

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

Decision procedures exist for specific theories

- Arithmetic: integers, reals, ...,
- Data types: lists, queues, arrays, sets, multisets,
- Algebraic structures: linear dense orders ...,

But

- programming languages involve multiple theories.
- verification conditions do not belong to a single theory.

We need to reason about mixed constraints from multiple theories.

What is Combining Decision Procedure?

Introduction

- Decision Procedure
- Why Do We Need New

Decision Procedures?

- Combination?
- Combination of Theories
- Limitation
- What are Common

Combinations?

- Our Approach
- Our Contribution (1)
- Our Contribution (2)
- Publication (1)
- Publication (2)
- Outline

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!
Σ_{1}-theory T_{1}
P_{1} for T_{1}-satisfiability

P for $\left(T_{1} \cup T_{2}\right)$-satisfiability

Combination of Theories

Introduction

- Decision Procedure
- Why Do We Need New

Decision Procedures?

- Combination?

- Combination of Theories

- Limitation
- What are Common

Combinations?

- Our Approach
- Our Contribution (1)
- Our Contribution (2)
- Publication (1)
- Publication (2)
- Outline

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

General Framework:
Nelson-Oppen Combination Method [NO79]

Recent Advances:

- Non-disjoint Signature.

Tinelli and Ringeissen [TR03]

- Model-theoretic.

Ghilardi [Ghi05]

- Proof-theoretic.

Zarba [Zar02]
Armando, Ranise and Rusinowitch [ARR01]

Limitation

Introduction

- Decision Procedure
- Why Do We Need New

Decision Procedures?

- Combination?
- Combination of Theories
- Limitation
- What are Common

Combinations?

- Our Approach
- Our Contribution (1)
- Our Contribution (2)
- Publication (1)
- Publication (2)
- Outline

PART I. Term Algebras with Integers

- All existing combination techniques impose severe restrictions on the theories to be combined.
- None of the techniques is applicable to multi-sorted theories with functions connecting the different sorts.

Logic theories are fragile.

- Nelson-Oppen combination should be viewed as exceptional.
- Why should modular combinations always exist?
- Concentrate on concrete problems instead of looking for grand scheme.

What are Common Combinations?

Introduction

- Decision Procedure
- Why Do We Need New

Decision Procedures?

- Combination?
- Combination of Theories
- Limitation
- What are Common

Combinations?

- Our Approach
- Our Contribution (1)
- Our Contribution (2)
- Publication (1)
- Publication (2)
- Outline

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

- Integration of recursive data structures with integer arithmetic
- Term algebras (tree-like objects) + integers
- Queues (linear objects)+ integers
- Why? To automatically decide the validity of verification conditions arising in the analysis of any property involving data structures and size.

Examples:

- buffer overflows
- array out of bounds
- memory overflow
- ...

Our Approach

Introduction

- Decision Procedure
- Why Do We Need New Decision Procedures? - Combination?
- Combination of Theories
- Limitation
- What are Common

Combinations?

- Our Approach
- Our Contribution (1)
- Our Contribution (2)
- Publication (1)
- Publication (2)
- Outline

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

Exploit the algebraic properties of constituent theories.
■ For quantifier-free combinations:

Extract exact integer constraints induced by constraints of data types.

- For quantified combinations:

Reduce quantifiers on data types to quantifiers on integers.
Reduce theories of data domain to the theory of integer domain.

Our Contribution (1)

Introduction

- Decision Procedure
- Why Do We Need New

Decision Procedures?

- Combination?
- Combination of Theories
- Limitation
- What are Common

Combinations?

- Our Approach
- Our Contribution (1)
- Our Contribution (2)
- Publication (1)
- Publication (2)
- Outline

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

Decision procedures for the combination of data structures with integer constraints.

- Essential for practical program verification.
- Can express memory safety properties.

Main approach:
Exploit the algebraic properties of constituent theories.
Main challenge:
Integer constraints must be precise (equisatisfiable with the data constraints).

Our Contribution (2)

Introduction

- Decision Procedure
- Why Do We Need New

Decision Procedures?

- Combination?
- Combination of Theories
- Limitation
- What are Common

Combinations?

- Our Approach
- Our Contribution (1)
- Our Contribution (2)
- Publication (1)
- Publication (2)
- Outline

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

Proof of decidability of the first-order theory of Knuth-Bendix orders

- Long-standing open problem (RTA problem \#99).
- Important result for term rewriting.
- Many partial solutions:
- Quantifier-free theory [KV00, KV01]
- Unary quantified theory [KV02]
- Same approach applicable to very different problem.

Publication (1)

Introduction

- Decision Procedure
- Why Do We Need New

Decision Procedures?

- Combination?
- Combination of Theories
- Limitation
- What are Common Combinations?
- Our Approach
- Our Contribution (1)
- Our Contribution (2)
- Outline

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

Decision procedures for term algebras with integer constraints:
T. Zhang, H.B. Sipma, and Z. Manna,

Decision Procedures for Recursive Data Structures with Integer Constraints. In Proc. 2nd International Joint Conference on Automated Reasoning (IJCAR) July 2004, LNCS, vol. 3097, pp. 152-167
(Best Paper Award, accepted for publication in Information and Computation).
> T. Zhang, H.B. Sipma and Z. Manna, Term Algebras with Length Function and Bounded

Quantifier Alternation. In Proc. of the 17th International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2004), LNCS, vol. 3223, pp. 321-336.
(journal version in preparation)

Publication (2)

Introduction

- Decision Procedure
- Why Do We Need New

Decision Procedures?

- Combination?
- Combination of Theories
- Limitation
- What are Common

Combinations?

- Our Approach
- Our Contribution (1)
- Our Contribution (2)
- Publication (1) O Publication (2) - Outline

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

Decision procedures for queues with integer constraints:
T. Zhang, H.B. Sipma and Z. Manna,

Decision Procedures for Queues with Integer Constraints.
In Proc. Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), Dec 2005, LNCS, vol. 3821, pp. 225-237.

Decision procedures for Knuth-Bendix orders:
T. Zhang, H.B. Sipma, Z. Manna,

The Decidability of the First-order Theory of Knuth-Bendix Order.
In Proc. Conference on Automated Deduction (CADE) July 2005, LNCS, vol. 3632, pp. 131-148.
(journal version in preparation)

Outline

Introduction

- Decision Procedure
- Why Do We Need New

Decision Procedures?

- Combination?
- Combination of Theories
- Limitation
- What are Common

Combinations?

- Our Approach
- Our Contribution (1)
- Our Contribution (2)
- Publication (1)
- Publication (2)

I. Term Algebras with Integers

II. Queues with Integers
III. Knuth-Bendix Orders

IV. Conclusions and Future Work

PART I. Term Algebras with
Integers

- Previous Work on Term
Algebras
- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A}
(1)
- Example: LCC for Infi nite \mathcal{A}
(2)
- Example: LCC for Infi nite \mathcal{A}
(3)
LCC for Finite Constant
Domain
- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

Previous Work on Term Algebras

Introduction
PART I. Term Algebras with Integers

- Previous Work on Term

Algebras

- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant

Domain

- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination
- Quantifier-free theory.

Nelson and Oppen [NO80]; Oppen [Opp80];
Downey, Sethi and Tarjan [DST80]

- Quantified theory.

Malcev [Mal71]

- Extensions.
- Infinite and rational trees: Maher [Mah88];
- Tree with membership: Comon and Delor [CD94];
- Feature trees: Backofen [Bac95];
- Term power: Kuncak and Rinard [KR03b].

Term Algebras

PART I. Term Algebras with Integers

- Previous Work on Term Algebras
- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant Domain
- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

A term algebra TA : $\langle\mathbb{T} ; \mathcal{C}, \mathcal{A}, \mathcal{S}, \mathcal{T}\rangle$ consists of

- \mathbb{T} : The term domain.
- C: A finite set of constructors: $\alpha, \beta, \gamma, \ldots$
- \mathcal{A} : A finite set of constants: a, b, c, \ldots. Require $\mathcal{A} \subseteq C$.
- \mathcal{S} : A finite set of selectors. $\alpha=\left(\mathrm{s}_{1}^{\alpha}, \ldots, \mathrm{s}_{k}^{\alpha}\right)$.
- \mathcal{T} : A finite set of testers. Is_{α} for $\alpha \in \mathcal{C}$.
- \mathbb{T} is generated exclusively using C.
- Each element of TA is uniquely generated.

Example: LISP lists

Introduction
PART I. Term Algebras with Integers

- Previous Work on Term Algebras
- Term Algebras

- Example: LISP lists

- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant Domain
- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination
- Signature:

〈list; \{cons, nil\}; \{nil\}; \{car, cdr\}; \{Is $\left.\left.\mathrm{s}_{\text {ill }}, \mathrm{Is}_{\text {cons }}\right\}\right\rangle$

- Axioms:

$$
\begin{aligned}
\mathrm{Is}_{\text {nil }}(x) & \leftrightarrow \neg \mathrm{Is}_{\operatorname{cons}}(x), \\
x & =\operatorname{car}(\operatorname{cons}(x, y)), \\
y & =\operatorname{cdr}(\operatorname{cons}(x, y)), \\
\mathrm{Is}_{\text {nil }}(x) & \leftrightarrow\{\operatorname{car}, \operatorname{cdr}\}^{+}(x)=x, \\
\mathrm{Is}_{\mathrm{cons}}(x) & \leftrightarrow \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x))=x .
\end{aligned}
$$

Term Algebras with Integers

Introduction
PART I. Term Algebras with Integers

- Previous Work on Term Algebras
- Term Algebras
- Example: LISP lists
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant Domain
- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

Presburger arithmetic (PA): $\mathscr{L}_{\mathbb{Z}}$, PA.
Two-sorted language $\Sigma=\Sigma_{\mathbb{T}} \cup \Sigma_{\mathbb{Z}} \cup\{|\cdot|\}$:

1. $\Sigma_{\mathbb{T}}$: signature of term algebras.
2. $\Sigma_{\mathbb{Z}}$: signature of Presburger arithmetic.
3. $|\cdot|: \mathbb{T} \rightarrow \mathbb{N}$, the length function such that

$$
|t|=\left\{\begin{array}{lll}
1 & \text { if } & t \text { is a constant }, \\
\sum_{i=1}^{k}\left|t_{i}\right| & \text { if } & t \equiv \alpha\left(t_{1}, \ldots, t_{k}\right) .
\end{array}\right.
$$

The Problem

Introduction
PART I. Term Algebras with Integers

- Previous Work on Term Algebras
- Term Algebras
- Example: LISP lists
- Term Algebras+Integers

- The Problem

- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant Domain
- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

The presence of $\Phi_{\mathbb{Z}}$ restricts solutions to $\Phi_{\mathbb{T}}$.

$$
x \neq \text { cons(cons(nil, nil), nil) } \wedge x \neq \operatorname{cons(nil,~cons(nil,~nil))~}
$$

is unsatisfiable with $|x|=5$.

There are "hidden" constraints on data structure length that may contradict the integer constraints.

Length Constraint Completion (LCC)

PART I. Term Algebras with Integers

- Previous Work on Term

Algebras

- Term Algebras
- Example: LISP lists
- Term Algebras+Integers

The Problem

- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant

Domain

- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

A formula $\Phi_{\Delta}(\overline{\mathbf{X}})$ is an $L C C$ for $\Phi_{\mathbb{T}}(\overline{\mathbf{X}}) \wedge \Phi_{\mathbb{Z}}(\overline{\mathbf{X}})$, if the following formulae are valid:

$$
\begin{aligned}
& \Phi_{\mathbb{T}}(\overline{\mathbf{X}}) \wedge \Phi_{\mathbb{Z}}(\overline{\mathbf{X}}) \rightarrow(\exists \overline{\mathbf{Z}}: \mathbb{Z})\left(\Phi_{\Delta}(\overline{\mathbf{Z}}) \wedge|\overline{\mathbf{X}}|=\overline{\mathbf{z}}\right) \\
& \Phi_{\Delta}(\overline{\mathbf{Z}}) \rightarrow(\exists \overline{\mathbf{X}}: \mathbb{T})\left(\Phi_{\mathbb{T}}(\overline{\mathbf{X}}) \wedge \Phi_{\mathbb{Z}}(\overline{\mathbf{X}}) \wedge|\overline{\mathbf{X}}|=\overline{\mathbf{z}}\right)
\end{aligned}
$$

Informally,

$$
\Phi_{\mathbb{T}}(\overline{\mathbf{X}}) \wedge \Phi_{\mathbb{Z}}(\overline{\mathbf{X}}) " \leftrightarrow \prime \prime \Phi_{\Delta}(\overline{\mathbf{X}})
$$

$\Phi_{\Delta}(\overline{\mathbf{X}})$ fully characterizes $\Phi_{\mathbb{T}}(\overline{\mathbf{X}}) \wedge \Phi_{\mathbb{Z}}(\overline{\mathbf{X}})$.
We reduce the combined constraint to the integer domain!

LCC (2)

Introduction
PART I. Term Algebras with
Integers

- Previous Work on Term

Algebras

- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant

Domain

- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

Let $\Phi_{\Delta+}$ be the formula that (when in place of Φ_{Δ}) satisfies

$$
\Phi_{\mathbb{T}}(\overline{\mathbf{X}}) \wedge \Phi_{\mathbb{Z}}(\overline{\mathbf{X}}) \rightarrow(\exists \overline{\mathbf{z}}: \mathbb{Z})\left(\Phi_{\Delta}(\overline{\mathbf{z}}) \wedge|\overline{\mathbf{X}}|=\overline{\mathbf{z}}\right)
$$

$\Phi_{\Delta+}$ is sound:
$|\cdot|$ maps a satisfying $\sigma_{\mathbb{T}}$ in \mathbb{T} to a satisfying $\sigma_{\mathbb{Z}}$ in PA.
Let $\Phi_{\Delta_{-}}$be the formula that (when in place of Φ_{Δ}) satisfies

$$
\Phi_{\Delta}(\overline{\mathbf{Z}}) \rightarrow(\exists \overline{\mathbf{X}}: \mathbb{T})\left(\Phi_{\mathbb{T}}(\overline{\mathbf{X}}) \wedge \Phi_{\mathbb{Z}}(\overline{\mathbf{X}}) \wedge|\overline{\mathbf{X}}|=\overline{\mathbf{Z}}\right)
$$

$\Phi_{\Delta_{-}}$is complete:
any satisfying $\sigma_{\mathbb{Z}}$ in PA is an image under $|\cdot|$ of a satisfying $\sigma_{\mathbb{T}}$ in \mathbb{T}.

LCC (3)

Introduction
PART I. Term Algebras with Integers

- Previous Work on Term Algebras
- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant Domain
- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

Identify constraints with the corresponding solution set.
$\Phi_{\Delta_{+}}$is an over-approximation of Φ_{Δ} :

$$
\Phi_{\Delta} \subseteq \Phi_{\Delta+}
$$

$\Phi_{\Delta-}$ is an under-approximation of Φ_{Δ} :

$$
\Phi_{\Delta-} \subseteq \Phi_{\Delta}
$$

Φ_{Δ} is unique up to equivalence:

$$
\Phi_{\Delta^{\prime}} \subseteq \Phi_{\Delta} \subseteq \Phi_{\Delta^{\prime}}
$$

Example: LCC

PART I. Term Algebras with Integers

- Previous Work on Term Algebras
- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)

- Example

- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant Domain
- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

$$
\begin{array}{ll}
\Phi_{\mathbb{T}}: & x \neq \operatorname{cons}(\text { nil, nil }) \wedge y \neq \operatorname{cons}(\text { nil, nil }) \wedge x \neq y \\
\Phi_{\mathbb{Z}}: & |x|=|y| \\
& \\
\Phi_{\Delta_{+}}: & 2 \nmid|x| \wedge|x|=|y| \\
\Phi_{\Delta_{-}}: & |x|>5 \wedge 2 \nmid|x| \wedge|x|=|y| \\
\Phi_{\Delta}: & |x|>3 \wedge 2 \nmid|x| \wedge|x|=|y|
\end{array}
$$

Main Theorem

Introduction
PART I. Term Algebras with Integers

- Previous Work on Term Algebras
- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example

- Main Theorem

- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant Domain
- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

Given $\Phi_{\mathbb{T}} \wedge \Phi_{\mathbb{Z}}$.
Let Φ_{Δ} be an LCC for $\Phi_{\mathbb{T}} \wedge \Phi_{\mathbb{Z}}$. Then

```
\(\mathrm{TA}_{\mathbb{Z}} \vDash_{\exists} \Phi_{\mathbb{T}} \wedge \Phi_{\mathbb{Z}} \Leftrightarrow \mathrm{TA} \vDash_{\exists} \Phi_{\mathbb{T}} \& \mathrm{PA}_{\boldsymbol{Z}} \vDash_{\boldsymbol{\exists}} \Phi_{\Delta}\).
```

> Decision Problem \mapsto Computation of LCC.

Generic Decision Procedure

Introduction
PART I. Term Algebras with
Integers

- Previous Work on Term

Algebras

- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant Domain
- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

Input: $\Phi_{\mathbb{T}} \wedge \Phi_{\mathbb{Z}}$.

1. Return FAIL if $\mathrm{TA} \not \vDash_{\exists} \Phi_{\mathbb{T}}$.
2. For each partition $\Phi_{\mathbb{T}}^{(i)} \wedge \Phi_{\mathbb{Z}}^{(i)}$ of $\Phi_{\mathbb{T}} \wedge \Phi_{\mathbb{Z}}$:
(a) Compute an LCC $\Phi_{\Delta}^{(i)}$ for $\Phi_{\mathbb{T}}^{(i)} / \Phi_{\mathbb{Z}}^{(i)}$.
(b) Return SUCCESS if PA $\models_{\exists} \Phi_{\Delta}^{(i)}$.
3. Return FAIL.

Computing the LCC

PART I. Term Algebras with Integers

- Previous Work on Term

Algebras

- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure - Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination
- Infinite constant domain:
- create DAG representation of the formula.

Oppen's algorithm [Opp80]

- extract size constraints from the DAG.
- Finite constant domain:
- create DAG representation of the formula.
- extract size constraints from the DAG.
- add counting constraints to express bounded number of distinct terms of given length.
- need to know which terms are of equal length: equality completion.

LCC for Infinite Constant Domain

PART I. Term Algebras with

 Integers- Previous Work on Term

Algebras

- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC

- LCC for Infi nite \mathcal{A}

- Example: LCC for Infi nite \mathcal{A}
(1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant

Domain

- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

Input:

1. $\Phi_{\mathbb{T}} \wedge \Phi_{\mathbb{Z}}$.
2. $G_{\mathbb{T}}$: the DAG of $\Phi_{\mathbb{T}}$,
3. $R \|$: the equivalence relation on $G_{\mathbb{T}}$.

Initially set $\Phi_{\Delta}=\Phi_{\mathbb{Z}}$. For each term t add the following to Φ_{Δ}.

- $|t|=1$, if t is a constant;
- $|t|=|s|$, if $(t, s) \in R J$.
- Tree (t) if t is an untyped leaf vertex.
- $\operatorname{Node}^{\alpha}\left(t, \overline{\mathbf{t}}_{\alpha}\right)$ if t is an α-typed vertex with children $\overline{\mathbf{f}}_{\alpha}$.
- $\operatorname{Tree}^{\alpha}(t)$ if t is an α-typed leaf vertex.

Example: LCC for Infinite Constant Domain

PART I. Term Algebras with Integers

- Previous Work on Term Algebras
- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}

O Example: LCC for Infi nite \mathcal{A} (1)

- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant Domain
- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

$$
\operatorname{Is}_{\mathrm{cons}}(y) \wedge x=\operatorname{cons}(\operatorname{car}(y), y) \wedge|\operatorname{cons}(\operatorname{car}(y), y)|<2|\operatorname{car}(x)| .
$$

Example: LCC for Infinite Constant Domain

Introduction
PART I. Term Algebras with Integers

- Previous Work on Term Algebras
- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A}
(3)
- LCC for Finite Constant Domain
- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

Equivalence relation:

$$
\left\{\left\{n_{1}, n_{2}\right\},\left\{n_{3}, n_{5}\right\},\left\{n_{4}, n_{6}\right\},\left\{n_{7}\right\}\right\} .
$$

$n_{1}, n_{2}:\{x, \operatorname{cons}(\operatorname{car}(y), y)\}$
$n_{3}, n_{5}:\{y, \operatorname{cdr}(x)\}$
$n_{4}, n_{6}:\{\operatorname{car}(x), \operatorname{car}(y)\}$
$n_{7}: \operatorname{cdr}(y)$

Example: LCC for Infinite Constant Domain

Introduction
PART I. Term Algebras with Integers

- Previous Work on Term

Algebras

- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant

Domain

- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

Induced length constraints:

$$
\begin{array}{r}
|\operatorname{car}(x)| \geq 1 \wedge|\operatorname{cdr}(x)| \geq 1 \wedge|\operatorname{car}(y)| \geq 1 \wedge|\operatorname{cdr}(y)| \geq 1 \\
|x|=|\operatorname{cons}(\operatorname{car}(y), y)| \wedge|\operatorname{car}(x)|=|\operatorname{car}(y)| \wedge|\operatorname{cdr}(x)|=|y| \\
|x|=|\operatorname{car}(x)|+|\operatorname{cdr}(x)| \wedge|y|=|\operatorname{car}(y)|+|\operatorname{cdr}(y)| \wedge \\
|\operatorname{cons}(\operatorname{car}(y), y)|=|\operatorname{car}(y)|+|y|
\end{array}
$$

which imply $|\operatorname{cons}(\operatorname{car}(y), y)| \geq 2|\operatorname{car}(x)|+1$.
$\operatorname{Is}_{\mathrm{cons}}(y) \wedge x=\mathrm{cons}(\operatorname{car}(y), y) \wedge|\operatorname{cons}(\operatorname{car}(y), y)|<2|\operatorname{car}(x)|$. is unsatisfiable.

LCC for Finite Constant Domain

PART I. Term Algebras with Integers

- Previous Work on Term

Algebras

- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant Domain
- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

With finite constant domain we have more "hidden" constraints.

- there are only a bounded number of distinct terms of a given length.
- need to add counting constraint $\mathrm{CNT}_{k, n}^{\alpha}(x)$ that says that
there are at least $n+1$ different α-terms of length x in the structure having k constants.
- $\mathrm{CNT}_{k, n}^{\alpha}(x)$ is expressible in Presburger arithmetic.
- need to know which terms are of equal length: equality completion.

Equality Completion

Introduction
PART I. Term Algebras with
Integers

- Previous Work on Term

Algebras

- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant
Φ is called equality complete if for any u, v in Φ,
- exactly one of $u=v$ and $u \neq v$, and
- exactly one of $|u|=|v|$ and $|u| \neq|v|$ are in Φ.

We say that x_{1}, \ldots, x_{n} is in a cluster if
x_{1}, \ldots, x_{n} have the same length but pairwise unequal.

Equality Completion puts terms into stratified clusters.

Example: Equality Completion

PART I. Term Algebras with Integers

- Previous Work on Term Algebras
- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant Domain
- Equality Completion
- Example: Equality Completion

- LCC for Finite \mathcal{A}

- Example: LCC for Finite \mathcal{A}
- Quantifi er Elimination

$$
x \neq z \wedge y \neq \operatorname{cons}(x, z)
$$

can be made equality complete by adding

$$
|y|=|\operatorname{cons}(x, z)| \wedge|x|=|z|
$$

Picture this:

LCC for Finite Constant Domain

PART I. Term Algebras with

 Integers- Previous Work on Term

Algebras

- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant

Domain

- Equality Completion
- Example: Equality Completion
- Quantifi er Elimination

Input:

1. $\Phi_{\mathbb{T}} \wedge \Phi_{\mathbb{Z}}$ (equality complete).
2. $G_{\mathbb{T}}$: the DAG of $\Phi_{\mathbb{T}}$,
3. $R \|$: the equivalence relation on $G_{\mathbb{T}}$.

Initially set $\Phi_{\Delta}=\Phi_{\mathbb{Z}}$. For each term t add the following to Φ_{Δ}.

- $|t|=1$, if t is a constant;
- $|t|=|s|$, if $(t, s) \in R J \mid$.
- Tree (t) if t is an untyped leaf vertex.
- $\operatorname{Node}\left(t, t_{1}, \ldots, t_{k}\right)$ if t is a node with children t_{1}, \ldots, t_{k}.
- $\operatorname{Tree}^{\alpha}(t)$ if t is an α-typed leaf vertex.
- $\mathrm{CNT}_{1, n}^{\alpha}(|t|)$ if there exist t_{1}, \ldots, t_{n} s.t. $t, t_{1}, \ldots t_{n}$ are in the same cluster.

Example: LCC for Finite Constant Domain

PART I. Term Algebras with Integers

- Previous Work on Term Algebras
- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant Domain
- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}

Quantifi er Elimination

$$
\Phi: \quad x \neq \operatorname{cons}(\text { nil }, \text { nil }) \wedge|x|=3
$$

implies that x and cons(nil, nil)) are in the same cluster.
Then Φ_{Δ} contains

$$
\mathrm{CNT}_{1,2}^{\text {cons }}(|x|):|x| \nmid 2 \wedge|x|>3 .
$$

So Φ is unsatisfiable.

Quantifier Elimination for $\operatorname{Th}\left(\mathrm{TA}_{\mathbb{Z}}\right)$

PART I. Term Algebras with Integers

- Previous Work on Term Algebras
- Term Algebras
- Example: LISP lists
- Term Algebras+Integers
- The Problem
- LCC
- LCC (2)
- LCC (3)
- Example
- Main Theorem
- Generic Decision Procedure
- Computing the LCC
- LCC for Infi nite \mathcal{A}
- Example: LCC for Infi nite \mathcal{A} (1)
- Example: LCC for Infi nite \mathcal{A} (2)
- Example: LCC for Infi nite \mathcal{A} (3)
- LCC for Finite Constant Domain
- Equality Completion
- Example: Equality Completion
- LCC for Finite \mathcal{A}
- Example: LCC for Finite \mathcal{A} - Quantifi er Elimination

1. Blockwise Elimination. Remove a block of quantifiers in one step.

$$
\left(\exists x_{1}, \ldots, \exists x_{n}\right) \Phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \quad \mapsto \quad \Phi^{\prime}\left(y_{1}, \ldots, y_{m}\right)
$$

2. Almost Optimal Complexity. One exponential for each quantifier alternation.
(Term algebras itself are non-elementary.)

PART I. Term Algebras with Integers

- Difference

- Queues (1)
- Queues (2)
- Decision Procedure for Queues (Bjørner) - Normal Form in \mathfrak{Q}
- Queues+Integers
- Problem I
- Problem II
- Cut Length
- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

Previous Work on Queues

PART I. Term Algebras with Integers

PART II. Queues with Integers O Previous Work on Queues

- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathbb{Q}
- Queues+Integers
- Problem I
- Problem II
- Cut Length
- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

- Quantifier-free theory with subsequence relations.

Bjørner [Bjø98]

- Quantified theory.

Rybina and Voronkov [RV00] [RV03]

- With prefix relation.

Benedikt, Libkin, Schwentick and Segoufin [BLSS01]

- WS1S with cardinality constraints.

Klaedtke and Ruess [KR03a]

Difference Between Term Algebras and Que

A term is constructed uniquely. For example,

$$
\operatorname{cons}(\operatorname{cons}(a, b), a)):
$$

A queue can be constructed in many ways. For example,

Queues (1)

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers

- Previous Work on Queues
- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathbb{Q}
- Queues+Integers
- Problem I
- Problem II
- Cut Length
- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!
$\mathfrak{Q}:\langle Q ; \mathcal{A}, \mathcal{C}, \mathcal{S}\rangle:$

1. $\mathcal{A}:$ Constants: a, b, c, \ldots
2. Q : Sequences of constants. ϵ_{Q} : the empty queue.
3. C : Constructors:

Left Insertion la : $\mathcal{A} \times Q \rightarrow Q$
Right Insertion ra : $\mathcal{A} \times Q \rightarrow Q$, s.t.

$$
\begin{aligned}
\operatorname{la}\left(a, \epsilon_{Q}\right) & =\operatorname{ra}\left(a, \epsilon_{Q}\right)=\langle a\rangle, \\
\operatorname{la}\left(a,\left\langle s_{1}, \ldots, s_{n}\right\rangle\right) & =\left\langle a, s_{1}, \ldots, s_{n}\right\rangle, \\
\operatorname{ra}\left(a,\left\langle s_{1}, \ldots, s_{n}\right\rangle\right) & =\left\langle s_{1}, \ldots, s_{n}, a\right\rangle .
\end{aligned}
$$

Queues (2)

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers

- Previous Work on Queues
- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathfrak{Q}
- Queues+Integers
- Problem I
- Problem II
- Cut Length
- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!
$4 S$: Selectors:
Left Head lh : $Q \rightarrow \mathcal{A}$, Left Tail lt $: Q \rightarrow Q$,
Right Head rh : $Q \rightarrow \mathcal{A}$, Right Tail rt : $Q \rightarrow Q$, s.t.

$$
\begin{aligned}
\operatorname{lh}\left(\left\langle s_{1}, \ldots, s_{n}\right\rangle\right) & =s_{1} \\
\operatorname{lt}\left(\left\langle s_{1}, \ldots, s_{n}\right\rangle\right) & =\left\langle s_{2}, \ldots, s_{n}\right\rangle \\
\operatorname{rh}\left(\left\langle s_{1}, \ldots, s_{n}\right\rangle\right) & =s_{n} \\
\operatorname{rt}\left(\left\langle s_{1}, \ldots, s_{n}\right\rangle\right) & =\left\langle s_{1}, \ldots, s_{n-1}\right\rangle .
\end{aligned}
$$

Convention: use concatenation operator \circ.
$a \circ X \circ b$ stands for $\operatorname{ra}(b, \operatorname{la}(a, X))$ or $\operatorname{la}(a, \mathrm{ra}(b, X))$.

Decision Procedure for Queues (Bjørner)

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers

- Previous Work on Queues
- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathfrak{Q}
- Queues+Integers
- Problem I
- Problem II
- Cut Length
- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

Input: $\Phi \equiv \mathcal{E} \cup \mathcal{D}$.

1. Normalize Φ to $\Phi^{\prime}: \mathcal{E}^{\prime} \cup \mathcal{D}^{\prime}$.
2. Return FAIL, if inconsistency is discovered;

Return SUCCESS.

Normal Form in \mathfrak{Q}

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers

- Previous Work on Queues
- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathbb{Q}
- Queues+Integers
- Problem I
- Problem II
- Cut Length
- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

Let $X \in \operatorname{orb}(\alpha, k)$ denote that X is of the form $\alpha^{*} \alpha[1 . . k]$.
A queue constraint Φ_{Q} is in normal form if

- all equalities are in triangular form,
- for each X there exists at most one literal $X \in \operatorname{orb}(\alpha, k)$,
- if $X \in \operatorname{orb}(\alpha, k)$ occurs, then no $X \notin \operatorname{orb}\left(\alpha^{\prime}, k^{\prime}\right)$ occurs, and
- disequalities are in the form $\alpha X \neq Y \beta$ for $X \not \equiv Y$.

Queues with Integers

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers

- Previous Work on Queues
- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathfrak{Q}
- Queues+Integers
- Problem I
- Problem II
- Cut Length
- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

Presburger arithmetic (PA): $\mathscr{L}_{\mathbb{Z}}$, PA.
Two-sorted language $\Sigma=\Sigma_{Q} \cup \Sigma_{\mathbb{Z}} \cup\{|\cdot|\}$:

1. Σ_{Q} : signature of queues.
2. $\Sigma_{\mathbb{Z}}:$ signature of Presburger arithmetic.
3. $|\cdot|: \mathbb{Q} \rightarrow \mathbb{N}$, the length function.

Problem I

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers

- Previous Work on Queues
- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathfrak{Q}
- Queues+Integers
- Problem I
- Problem II
- Cut Length
- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

The presence of $\Phi_{\mathbb{Z}}$ restricts solutions to Φ_{Q}.
Example: Suppose $\mathcal{A}=\{a, b\}$. Then

$$
\Phi_{Q}: X b a \neq a b Y \wedge X a b \neq b a \Upsilon \wedge X a a \neq b a \Upsilon \wedge X a b \neq a a Y
$$

is not satisfiable with $\Phi_{\mathbb{Z}}:|X|=|Y|=1$.

Problem I

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers

- Previous Work on Queues
- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathbb{Q}
- Queues+Integers

- Problem

- Problem II
- Cut Length
- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

The presence of $\Phi_{\mathbb{Z}}$ restricts solutions to Φ_{Q}.
Example: Suppose $\mathcal{A}=\{a, b\}$. Then

$$
\Phi_{Q}: X b a \neq a b Y \wedge X a b \neq b a \Upsilon \wedge X a a \neq b a \Upsilon \wedge X a b \neq a a Y
$$

is not satisfiable with $\Phi_{\mathbb{Z}}:|X|=|Y|=1$.

Computing LCC.

Example:

$$
\begin{array}{ll}
\Phi_{\mathbb{Z}} & \Phi_{\Delta} \\
|X|=|Y| & |X| \neq 1 \wedge|X|=|Y|
\end{array}
$$

Problem I

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers

- Previous Work on Queues
- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathbb{Q}
- Queues+Integers

- Problem I

- Problem II
- Cut Length
- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

The presence of $\Phi_{\mathbb{Z}}$ restricts solutions to Φ_{Q}.
Example: Suppose $\mathcal{A}=\{a, b\}$. Then

$$
\Phi_{Q}: \quad X b a \neq a b Y \wedge X a b \neq b a Y \wedge X a a \neq b a \Upsilon \wedge X a b \neq a a Y
$$

is not satisfiable with $\Phi_{\mathbb{Z}}:|X|=|Y|=1$.

> Computing LCC.

Example:

$$
\begin{array}{ll}
\Phi_{\mathbb{Z}} & \Phi_{\Delta} \\
|X|=|Y| & |X| \neq 1 \wedge|X|=|Y|
\end{array}
$$

But more work needs to be done here: new normalization.

Problem II

PART I. Term Algebras with Integers

PART II. Queues with Integers

- Previous Work on Queues
- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathbb{Q}
- Queues+Integers
- Problem I

O Problem II

- Cut Length
- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

We cannot partition terms into stratified clusters and construct a satisfying assignment inductively.

Example: Consider

$$
X \neq Y \wedge a X \neq Y b \wedge X a \neq b Y
$$

Infinitely many assignments of the form

$$
X=(b a)^{n} b, \quad Y=a(b a)^{n}
$$

satisfy $X \neq Y$, but neither $a X \neq Y b$ nor $X a \neq b Y$.

Problem II

PART I. Term Algebras with Integers

PART II. Queues with Integers

- Previous Work on Queues
- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathbb{Q}
- Queues+Integers
- Problem I
- Cut Length
- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

We cannot partition terms into stratified clusters and construct a satisfying assignment inductively.

Example: Consider

$$
X \neq Y \wedge a X \neq Y b \wedge X a \neq b Y
$$

Infinitely many assignments of the form

$$
X=(b a)^{n} b, \quad Y=a(b a)^{n}
$$

satisfy $X \neq Y$, but neither $a X \neq Y b$ nor $X a \neq b Y$.

Find a cut length!

Cut Length

PART I. Term Algebras with Integers

PART II. Queues with Integers

- Previous Work on Queues
- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathbb{Q}
- Queues+Integers
- Problem I
- Problem II

- Cut Length

- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

1. Φ_{Q} can be satisfied by sufficiently long queues.
2. There exists a cut length δ such that for any solution $\left(l_{i}\right)_{n}$ for $\Phi_{\Delta_{+}}$with $l_{i} \geq \delta$ is realizable.
3. But δ is not the smallest $\max \left\{\left(\mu_{i}\right)_{n}\right\}$ such that

$$
\mathfrak{Q}_{\mathbb{Z}} \vDash_{\exists} \Phi_{Q} \wedge \bigwedge_{i=1}^{n}\left|X_{i}\right|=\mu_{i}
$$

Example: $\left\{X:=\epsilon_{Q}, Y:=\epsilon_{Q}\right\}$ is a solution for

$$
X b a \neq a b Y \wedge X a b \neq b a Y \wedge X a a \neq b a Y \wedge X a b \neq a a Y
$$

while there is no solution σ such that $|\sigma(X)|=|\sigma(Y)|=1$.

Computation of Cut Length

PART I. Term Algebras with Integers

- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathbb{Q}
- Queues+Integers
- Problem I
- Problem II
- Cut Length
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination Work
$\operatorname{PRE}_{\Phi}$: the set of all words α s.t. $\alpha \mathrm{X}$ or α is a proper term in Φ_{Q}. d_{Φ} : the shortest strongly primitive word d such that

$$
\left(\forall \alpha \in \operatorname{PRE}_{\Phi}\right) d \notin \operatorname{orb}(\alpha) .
$$

L_{d} : the length of d_{Φ}.
L_{c} : the smallest number of letters to create a unique identifying word, called a color, for each queue variable in Φ_{Q}.
$L_{t}: L_{c}+L_{d}$.
We claim that $L_{t} \geq \delta$.

Example

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers

- Previous Work on Queues
- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathbb{Q}
- Queues+Integers
- Problem I
- Problem II
- Cut Length
- Computation of Cut Length

- Example

- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

Consider

$$
X b a \neq a b Y \wedge X a b \neq b a Y \wedge X a a \neq b a Y \wedge X a b \neq a a Y
$$

Then

1. $\operatorname{PRE}_{\Phi}=\{a b, b a, a a\}$.
2. $L_{d}=3 ; d_{\Phi}=a a b$.
3. $L_{c}=1 ; \Phi_{Q}$ includes two queue variables.

So $L_{t}=L_{c}+L_{d}=4$.

Computation of LCC for Queues

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers

- Previous Work on Queues
- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathbb{Q}
- Queues+Integers
- Problem I
- Problem II
- Cut Length
- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!

Input: $\Phi_{Q} \wedge \Phi_{\mathbb{Z}}$ in normal form of $\mathfrak{Q}_{\mathbb{Z}}$.
Initially set $\Phi_{\Delta}=\Phi_{\mathbb{Z}}$. Add to Φ_{Δ} :

- $\left|t_{1}\right|=\left|t_{2}\right|$, if $t_{1} \neq t_{2}$ or $t_{1}=t_{2}$;

■ $|X|+|\alpha|=|\alpha X|=|X \alpha|$, if αX or X α occurs;

- $|X| \equiv k(\bmod |\alpha|)$, if $X \in \operatorname{orb}(\alpha, k)$.

■ $|X|=i$ (for some $i<L_{t}$) or $|X| \geq L_{t}$ for each X in Φ_{Q}.

Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$

PART I. Term Algebras with Integers

PART II. Queues with Integers

- Previous Work on Queues
- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathbb{Q}
- Queues+Integers
- Problem I
- Problem II
- Cut Length
- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$
- Quantifi er Elimination

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

Thank You!
Φ_{Q} is in normal form in $\mathfrak{Q}_{\mathbb{Z}}$ if

1. Φ_{Q} is in normal form in Q;
2. Φ_{Q} is equality complete;
3. if $\alpha X \neq Y \beta$ occurs with either $X \in \operatorname{orb}\left(\alpha^{\prime}, k\right)$ or $Y \in \operatorname{orb}\left(\beta^{\prime}, l\right)$, then $\alpha \equiv \epsilon_{Q}$;
4. $\alpha X \neq Y \beta$ does not occur with both $X \in \operatorname{orb}\left(\alpha^{\prime}, k\right)$ and $Y \in \operatorname{orb}\left(\beta^{\prime}, l\right)$.

Quantifier Elimination for Queues with Integ

PART I. Term Algebras with Integers

PART II. Queues with Integers

- Previous Work on Queues
- Difference
- Queues (1)
- Queues (2)
- Decision Procedure for

Queues (Bjørner)

- Normal Form in \mathfrak{Q}
- Queues+Integers
- Problem I
- Problem II
- Cut Length
- Computation of Cut Length
- Example
- Computation of LCC
- Normal Form in $\mathfrak{Q}_{\mathbb{Z}}$ Work

Thank You!

New Normalization. To deal with parameters $\overline{\mathbf{Y}}$.
Blockwise Elimination. Remove a block of quantifiers in one step.

$$
\left(\exists x_{1}, \ldots, \exists x_{n}\right) \Phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \mapsto \Phi^{\prime}\left(y_{1}, \ldots, y_{m}\right)
$$

PART I. Term Algebras with Integers

PART II. Queues with Integers

PART III. Knuth-Bendix Order

- Motivation
- Background: Previous Work (1)
- Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challenges (2)

PART IV. Conclusion and Future
ininrl

Motivation

Introduction

PART I. Term Algebras with Integers

PART II. Queues with Integers

PART III. Knuth-Bendix Order
OMotivation

- Background: Previous Work
(1)
- Background: Previous Work
(2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challlenges (2)

Background: Previous Work (1)

Two types of widely used orderings:

	Syntactic Nature	Hybrid Nature
	LPO	KBO
syntactic precedence	$\sqrt{ }$	$\sqrt{ }$
lexicographical ordering	$\sqrt{ }$	$\sqrt{ }$
numerical ordering		$\sqrt{ }$

Background: Previous Work (2)

Introduction
PART I. Term Algebras with Integers
PART II. Queues with Integers
PART III. Knuth-Bendix Order
- Motivation - Background: Previous Work (1)
O Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challlenges (2)
PART IV. Conclusion and Future

Decidability Status:

	LPO	KBO
QFT	$\begin{gathered} \sqrt{ } \\ {[\text { Com90] }[\mathrm{Nie93]}} \end{gathered}$	$\begin{gathered} \sqrt{ } \\ {[K V 00][K V 01]} \end{gathered}$
UQT	$\begin{gathered} \checkmark \\ {[\text { NROO }]} \end{gathered}$	$\begin{gathered} \checkmark \\ {[K \vee 02]} \end{gathered}$
GQT	[Tre92, CT97]	?

QFT: Quantifier-free Theory.
UQT: Unary Quantified Theory.
GQT: General Quantified Theory.

Background: Previous Work (2)

Introduction
PART I. Term Algebras with Integers
PART II. Queues with Integers
PART III. Knuth-Bendix Order
- Motivation - Background: Previous Work (1)
O Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challlenges (2)
PART IV. Conclusion and Future

Decidability Status:

	LPO	KBO
QFT	$\begin{gathered} \sqrt{ } \\ {[\text { Com90] }[\text { Nie93] }} \end{gathered}$	$\begin{gathered} \sqrt{ } \\ {[K \vee 00][K V 01]} \end{gathered}$
UQT	$\begin{gathered} \checkmark \\ {[\text { NR00 }} \end{gathered}$	$\begin{gathered} \sqrt{ } \\ {[K \vee 02]} \end{gathered}$
GQT	$\begin{gathered} \times \\ {[\text { Tre92, CT97] }} \end{gathered}$	$\begin{gathered} \sqrt{ } \\ {[Z S M 05]} \end{gathered}$

QFT: Quantifier-free Theory.
UQT: Unary Quantified Theory.
GQT: General Quantified Theory.

Knuth-Bendix Order (1)

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers

PART III. Knuth-Bendix Order

- Motivation
- Background: Previous Work (1)
- Background: Previous Work (2)

O Knuth-Bendix Order (1)

- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challlenges (2)

A Knuth-Bendix order (KBO) $<^{\mathrm{kb}}$ is parametrically defined with

- $\mathrm{W}:$ TA $\rightarrow \mathbb{N}:$ a weight function satisfying

$$
\mathrm{W}\left(\alpha\left(t_{1}, \ldots, t_{k}\right)\right)=\mathrm{W}(\alpha)+\sum_{i=1}^{k} \mathrm{~W}\left(t_{i}\right) .
$$

- $<^{\Sigma}$: a linear (precedence) order on C such that

$$
\alpha_{1}>^{\Sigma} \alpha_{2}>^{\Sigma} \ldots>^{\Sigma} \alpha_{|C|} .
$$

Knuth-Bendix Order (2)

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order

- Motivation
- Background: Previous Work (1)
- Background: Previous Work (2)
- Knuth-Bendix Order (1) O Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challlenges (2)

Quantifier Elimination

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order

- Motivation
- Background: Previous Work (1)
- Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challlenges (2)

PART IV. Conclusion and Future inorrk

- Suffices to eliminate \exists-quantifiers from primitive formulas

$$
\exists \overline{\mathbf{x}}\left[A_{1}(\overline{\mathbf{x}}) \wedge \ldots \wedge A_{n}(\overline{\mathbf{x}})\right],
$$

where $A_{i}(\overline{\mathbf{x}})$ are literals.

- Suffices to assume $A_{i} \equiv x=t$ if $x \notin t$, because

$$
\exists x[x=t \wedge \varphi(x, \overline{\mathbf{y}})] \leftrightarrow \varphi(t, \overline{\mathbf{y}}) .
$$

Main Idea: Depth Reduction

Introduction

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order

- Motivation
- Background: Previous Work (1)
- Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination

- Main Idea

- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challlenges (2)

PART IV. Conclusion and Future

Eliminating $\exists x$ from $(\exists x) \varphi(x, \overline{\mathbf{y}})$ is straightforward if

$$
\operatorname{depth}_{\varphi}(x)=0 .
$$

Such $\varphi(x, \overline{\mathbf{y}})$ is said to be solved in x.
($\operatorname{depth}_{\varphi}(x)$: the length of the longest selector sequence in front of x in φ.)

Solved Form

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order

- Motivation
- Background: Previous Work (1)
- Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challenges (1)
- Techinical Challlenges (2)
- $\varphi(x, \overline{\mathbf{y}})$ is solved in x if it is in the form

$$
\bigwedge_{i \leq m} u_{i}<^{\mathrm{kb}} x \wedge \bigwedge_{j \leq n} x<^{\mathrm{kb}} v_{j} \wedge \varphi^{\prime}(\bar{y}),
$$

where x does not appear in u_{i}, v_{i} and φ^{\prime}.

- If $\varphi(x, \overline{\mathbf{y}})$ is solved in x, then $(\exists x) \varphi(x, \overline{\mathbf{y}})$ simplifies to

$$
\bigwedge_{i \leq m, j \leq n} u_{i}<_{2}^{\mathrm{kb}} v_{j} \wedge \varphi^{\prime}(\overline{\mathbf{y}})
$$

where $x<_{n}^{\mathrm{kb}} y$, called gap order, states there is an increasing chain from x to y of length at least n.

Depth Reduction: Case 1

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers

PART III. Knuth-Bendix Order

- Motivation
- Background: Previous Work (1)
- Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challlenges (2)

PART IV. Conclusion and Future

Case 1:Example

Introduction
PART I. Term Algebras with
Integers
PART II. Queues with Integers
PART III. Knuth-Bendix Order
Motivation
Background: Previous Work
(1)
(2)
Background: Previous Work
Knuth-Bendix Order (1)
Knuth-Bendix Order (2)
Quantifi er Elimination
Main Idea
Solved Form
Depth Reduction: Case 1
Case 1:Example
Depth Reduction: Case 2
Case 2:Example
Case 2:Example (Cont'd)
QE for KBO
Variable Selection
Decomposition
Simplifi cation
PART IV. Conclusion and Future
Techinical Challlenges (1)
Techinical Challenges (2)
Dlion

$$
\begin{aligned}
& (\exists x)\left[\operatorname{car}(x)<^{\mathrm{kb}} \operatorname{cdr}(x)\right] \\
\Rightarrow & \left(\exists x_{1}\right)\left(\exists x_{2}\right)(\exists x)\left[x_{1}=\operatorname{car}(x) \wedge x_{2}=\operatorname{cdr}(x) \wedge \operatorname{car}(x)<^{\mathrm{kb}} \operatorname{cdr}(x)\right] \\
& (\text { decompose } x) \\
\Rightarrow & \left(\exists x_{1}\right)\left(\exists x_{2}\right)(\exists x)\left[x_{1}=\operatorname{car}(x) \wedge x_{2}=\operatorname{cdr}(x) \wedge x_{1}<^{\mathrm{kb}} x_{2}\right] \\
& (\text { substitution }) \\
\Rightarrow & \left(\exists x_{1}\right)\left(\exists x_{2}\right)\left[x_{1}<^{\mathrm{kb}} x_{2}\right] \\
& (\text { remove } x)
\end{aligned}
$$

Depth Reduction: Case 2

Introduction

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order

- Motivation
- Background: Previous Work (1)
- Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example - Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challlenges (2)

Case 2: Some x have depth 0 and some do not.

- Decompose 0-depth occurrences of x in terms of

$$
\mathrm{S}_{1}^{\alpha}(x), \ldots, \mathrm{S}_{k}^{\alpha}(x)
$$

- This amounts to expressing $x<_{n}^{\mathrm{kb}} t$ and $t<_{n}^{\mathrm{kb}} x$ using

$$
\mathrm{s}_{1}^{\alpha}(x), \ldots, \mathrm{s}_{k}^{\alpha}(x)
$$

- Then apply the reduction as in Case 1!

Case 2: Example

Introduction
PART I. Term Algebras withIntegers
PART II. Queues with Integers
PART III. Knuth-Bendix Order

- Motivation- Background: Previous Work(1)
- Background: Previous Work
(2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2

- Case 2:Example

- Case 2:Example (Cont’d)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challlenges (2)

Case 2:Example (Cont’d)

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers

PART III. Knuth-Bendix Order

- Motivation
- Background: Previous Work (1)
- Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challlenges (2)

PART IV. Conclusion and Future

$$
\begin{aligned}
\Rightarrow \quad\left(\exists x_{1}\right)\left(\exists x_{2}\right)(\exists x)\left[x_{1}\right. & =\operatorname{car}(x) \wedge x_{2}=\operatorname{cdr}(x) \\
& \left.\wedge x_{1} \prec^{\mathrm{kb}} y \wedge \operatorname{car}(y)=x_{1} \wedge \operatorname{cdr}(y)<^{\mathrm{kb}} x_{2}\right]
\end{aligned}
$$

(substitution)
$\Rightarrow \quad\left(\exists x_{1}\right)\left(\exists x_{2}\right)\left[x_{1}<^{\mathrm{kb}} y \wedge \operatorname{car}(y)=x_{1} \wedge \operatorname{cdr}(y)<{ }^{\mathrm{kb}} x_{2}\right]$ (remove x)

Quantifier Elimination for Knuth-Bendix Ord

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order

- Motivation
- Background: Previous Work (1)
- Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)

- QE for KBO

- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challlenges (2)

PART IV. Conclusion and Future

Input: $\quad(\exists \overline{\mathbf{x}}) \varphi(\overline{\mathbf{x}}, \overline{\mathbf{y}})$.
While $\overline{\mathbf{x}} \neq \emptyset$.

- While $(\forall x \in \overline{\mathbf{x}}) \operatorname{depth}_{\varphi}(x)>0$.

Depth Reduction.

- Variable Selection.
- Decomposition.
- Simplification.

Done.

- While $(\exists x \in \overline{\mathbf{x}}) \operatorname{depth}_{\varphi}(x)=0$.

Elimination.
Done.
Done.

Variable Selection

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers

PART III. Knuth-Bendix Order

- Motivation
- Background: Previous Work (1)
- Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challlenges (2)

PART IV. Conclusion and Future inınrl

Decomposition

Introduction

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order

- Motivation
- Background: Previous Work (1)
- Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challlenges (2)

PART IV. Conclusion and Future
inınrl

Rewrite ($\exists \overline{\mathbf{x}}) \varphi(\overline{\mathbf{x}}, \overline{\mathbf{y}})$ to

$$
\exists x_{1} \ldots \exists x_{k} \exists \overline{\mathbf{x}}\left[\mathrm{Is}_{\alpha}(x) \wedge \bigwedge_{1 \leq i \leq k} \mathrm{~s}_{i}^{\alpha}(x)=x_{i} \wedge \varphi(\overline{\mathbf{x}}, \overline{\mathbf{y}})\right] .
$$

Simplification

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order

- Motivation
- Background: Previous Work (1)
- Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1)
- Techinical Challlenges (2)

Apply the following rules to each occurrence of x.

1. Replace $x<{ }_{n}^{\sharp} t$ (or $\left.t<{ }_{n}^{\sharp} x\right)$ by a quantifier-free formula

$$
\varphi^{\prime}\left(\mathbf{s}_{1}^{\alpha}(x), \ldots, \mathbf{s}_{k}^{\alpha}(x), \mathbf{s}_{1}^{\alpha}(t), \ldots, \mathbf{s}_{k}^{\alpha}(t)\right) .
$$

2. Replace $\mathrm{s}_{i}^{\alpha}(x)$ in $\varphi(\overline{\mathbf{x}}, \overline{\mathbf{y}})$ by $x_{i}(1 \leq i \leq k)$.

Denote the result of this simplification by

$$
\exists x_{1} \ldots \exists x_{k} \exists(\overline{\mathbf{x}} \backslash x)\left[\varphi^{\prime}\left(\overline{\mathbf{x}} \backslash x, x_{1}, \ldots, x_{k}, \overline{\mathbf{y}}\right)\right] .
$$

Elimination

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order

- Motivation
- Background: Previous Work (1)
- Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation

- Elimination

- Techinical Challlenges (1)
- Techinical Challenges (2)

PART IV. Conclusion and Future

- We have

$$
\exists x\left[\bigwedge_{i \leq m} u_{i}<^{\mathrm{kb}} x \wedge \bigwedge_{j \leq n} x<^{\mathrm{kb}} v_{j} \wedge \varphi^{\prime}(\overline{\mathbf{y}})\right],
$$

where x appears none of u_{i}, v_{j} and φ^{\prime}.

- Guessing a gap order completion, we rewrite it to

$$
u_{i^{\prime}}<_{2}^{\mathrm{kb}} v_{j^{\prime}} \wedge \varphi^{\prime}(\overline{\mathbf{y}})
$$

\wedge " u_{i}, is the greatest of $\left\{u_{i} \mid i \leq m\right\}$ "
\wedge " $v_{j^{\prime}}$ is the smallest of $\left\{v_{j} \mid j \leq n\right\}$ ".

Technical Challenges (1)

- Background: Previous Work (1)
- Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination

Techinical Challlenges (2)

1. Decompose $<^{\mathrm{kb}}$ into three disjoint suborders $<^{\mathrm{w}},<^{\mathrm{p}}$ and $<^{\mathrm{l}}$.
2. Extend $<^{\mathrm{w}},<^{\mathrm{p}}$ and $<^{\prime}$ to $<_{n}^{\mathrm{w}},<_{n}^{\mathrm{p}}$ and $<_{n}^{1}$, respectively.
3. Add Presburger arithmetic explicitly to represent weight.
4. Define counting constraints to count terms of certain weight.
5. Define boundary functions to delineate gap orders.

$$
0^{\mathrm{w}}(n), \quad 0^{\mathrm{p}}(n, p), \quad 1^{\mathrm{w}}(n), \quad 1^{\mathrm{p}}(n, p) .
$$

6. Extend all aforementioned notions to tuples of terms.

Technical Challenges (2)

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order

- Motivation
- Background: Previous Work (1)
- Background: Previous Work (2)
- Knuth-Bendix Order (1)
- Knuth-Bendix Order (2)
- Quantifi er Elimination
- Main Idea
- Solved Form
- Depth Reduction: Case 1
- Case 1:Example
- Depth Reduction: Case 2
- Case 2:Example
- Case 2:Example (Cont'd)
- QE for KBO
- Variable Selection
- Decomposition
- Simplifi cation
- Elimination
- Techinical Challlenges (1) - Techinical Challlenges (2)
- Elimination of Complex Terms.

$$
\operatorname{car}\left(0_{\left((\operatorname{car}(x))^{\mathrm{w}}\right)}^{\mathrm{w}}\right)
$$

- Elimination of Integer Quantifiers.

$$
(\exists z: \mathbb{Z})\left[\operatorname{car}\left(0_{(z)}^{\mathrm{w}}\right)<^{\mathrm{kb}} \operatorname{cdr}\left(0_{(z)}^{\mathrm{w}}\right)\right] .
$$

- Elimination of Equalities.

$$
\exists x\left[x=0_{\left((\operatorname{car}(x))^{w}\right)}^{\mathrm{w}} \wedge \operatorname{car}(x)<_{4}^{\mathrm{p}} \operatorname{cdr}(x)\right] .
$$

- Elimination of Negations.

$$
\neg\left(\operatorname{car}(x) \prec_{3}^{\mathrm{w}} \operatorname{cdr}(x)\right) .
$$

- TERMINATION!

PART IV. Conclusion and Future Work

- Future Work (1)
- Future Work (2)

Thank You!

Conclusion

PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order
PART IV. Conclusion and Future
Work

O Conclusion

- Future Work (1)
- Future Work (2)

Thank You!

- Decision procedures for the combination of data structures with integer constraints
- Express memory safety property.
- Essential for practical program verification.
- Proof of decidability of the first-order theory of Knuth-Bendix orders.
- Long-standing open problem (RTA problem \#99).
- Important result for term rewriting.

Exploit algebraic properties of concrete domains.

Future Work (1)

PART I. Term Algebras with Integers

Future Work (1)

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers

PART III. Knuth-Bendix Order
PART IV. Conclusion and Future Work

- Conclusion
- Future Work (1)
- Future Work (2)

Thank You!

- Implementation and experimentation.
- More expressive languages.
- Term algebras with subterm relation
- Queues with subsequence relations, namely, prefix \leq_{p}, subqueue \leq and suffix \leq_{s}
With our decision procedures for

$$
\mathfrak{Q}_{\mathbb{Z}}+\leq_{p}+\leq \quad \text { and } \quad \mathfrak{Q}_{\mathbb{Z}}+\leq_{s}+\leq
$$

the next step is $\mathfrak{Q}_{\mathbb{Z}^{+} \leq_{p}+\leq_{s}}$!

Future Work (2)

Introduction
PART I. Term Algebras with Integers

PART II. Queues with Integers
PART III. Knuth-Bendix Order
$\mathfrak{Q}_{\mathbb{Z}}+\leq_{p}+\leq_{s}$ is a very expressive theory.

1. Equivalent to the theory of concatenation with integers. (Open problem since 80's, Büchi and Senger [BS88])

$$
u v^{2}=v u v \wedge|u|<|v|
$$

2. Interpret the theory of arrays.

$$
q[i]=a \leftrightarrow \exists p\left(p a \leq_{p} q \wedge|p a|=i\right)
$$

3. Interpret Presburger arithmetic with divisibility predicate.

$$
x=y+2 \wedge y \mid x
$$

4. Augmentable to theory of unbounded bit-vectors.

$$
u \oplus v=w \wedge u v=w w
$$

Thank You!

[ARR01] Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch. Uniform derivation of decision procedures by superposition. Lecture Notes in Computer Science, 2142:513-527, 2001.
[Bac95] Rolf Backofen. A complete axiomatization of a theory with feature and arity constraints. Journal of Logical Programming, 24(1\&2):37-71, 1995.
[Bjø98] Nikolaj S. Bjørner. Integrating Decision Procedures for Temporal Verification. PhD thesis, Computer Science Department, Stanford University, November 1998.
[BLSS01] Michael Benedikt, Leonid Libkin, Thomas Schwentick, and Luc Segoufin. A modeltheoretic approach to regular string relations. In Proc. 16th IEEE Symp. Logic in Comp. Sci., pages 431-440. IEEE Computer Society Press, 2001.
[BS88] J. Richard Büchi and Steen Senger. Definability in the existential theory of concatenation and undecidable extensions of this
theory. Zeitschr. f. math. Logik und Grundlagen d. Math., 34:337-342, 1988.
[CD94] Hubert Comon and Catherine Delor. Equational formulae with membership constraints. Information and Computation, 112(2):167-216, 1994.
[Com90] Hubert Comon. Solving symbolic ordering constraints. International Journal of Foundations of Computer Science, 1(4):387411, 1990.
[CT97] Hubert Comon and Ralf Treinen. The firstorder theory of lexicographic path orderings is undecidable. Theoretical Computer Science, 176(1-2):67-87, 1997.
[DST80] J. Downey, R. Sethi, and R. E. Tarjan. Variations of the common subexpression problem. J. ACM, 27:758-771, 1980.
[Ghi05] Silvio Ghilardi. Model-theoretic methods in combined constraint satisfiability. Journal of Automated Reasoning, 33(3-4):221249, 2005.
[KR03a] Felix Klaedtke and Harald Rueß. Monadic second-order logics with cardinalities. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, 30th International Colloquium on Automata, Languages and Programming, ICALP'2003, volume 2719 of Lecture Notes in Computer Science. SpringerVerlag, 2003.
[KR03b] Viktor Kuncak and Martin Rinard. The structural subtyping of non-recursive types is decidable. In Proc. 18th IEEE Symp. Logic in Comp. Sci., pages 96-107. IEEE Computer Society Press, 2003.
[KV00] Konstantin Korovin and Andrei Voronkov. A decision procedure for the existential theory of term algebras with the Knuth-Bendix ordering. In Proc. 15th IEEE Symp. Logic in Comp. Sci., pages 291-302, 2000.
$\begin{array}{lll}\text { [KV01] } & \begin{array}{l}\text { Konstantin } \\ \\ \text { Voronkov. }\end{array} \text { Korovin and Andrei } \\ \text { Knuth-Bendix constraint } \\ \text { solving is NP-complete. In Proceedings of }\end{array}$
79-3

28th International Colloquium on Automata, Languages and Programming (ICALP'01), volume 2076 of Lecture Notes in Computer Science, pages 979-992. Springer-Verlag, 2001.
[KV02] Konstantin Korovin and Andrei Voronkov. The decidability of the first-order theory of the Knuth-Bendix order in the case of unary signatures. In Proceedings of the 22th Conference on Foundations of Software Technology and Theoretical Computer Science, (FSTTCS'02), volume 2556 of Lecture Notes in Computer Science, pages 230-240. Springer-Verlag, 2002.
[Mah88] M. J. Maher. Complete axiomatizations of the algebras of finite, rational and infinite tree. In Proceedings of the Third Annual Symposium on Logic in Computer Science, pages 348-357. IEEE Computer Society Press, 1988.
[Mal71] A. I. Mal'cev. Axiomatizable classes of locally free algebras of various types. In The
79-4

Metamathematics of Algebraic Systems, Collected Papers, chapter 23, pages 262-281. North Holland, 1971.
[Nie93] Robert Nieuwenhuis. Simple LPO constraint solving methods. Information Processing Letters, 47(2):65-69, 1993.
[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM Trans. Prog. Lang. Sys., 1(2):245-257, October 1979.
[NO80] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure. J. ACM, 27(2):356-364, April 1980.
[NR00] Paliath Narendran and Michael Rusinowitch. The theory of total unary RPO is decidable. In CL 2000, volume 1861 of Lecture Notes in Artificial Intelligence, pages 660-672. Springer-Verlag, 2000.
[Opp80] Derek C. Oppen. Reasoning about recursively defined data structures. J. ACM, 27(3), July 1980.
[RV00] Tatiana Rybina and Andrei Voronkov. A decision procedure for term algebras with queues. In Proc. 15th IEEE Symp. Logic in Comp. Sci., pages 279-290, 2000.
[RV03] Tatiana Rybina and Andrei Voronkov. Upper bounds for a theory of queues. In Proceedings of 30th International Colloquium on Automata, Languages and Programming (ICALP'03), volume 2719 of $L N C S$, pages 714-724. Springer-Verlag, 2003.
[TR03] Cesare Tinelli and Christophe Ringeissen. Unions of non-disjoint theories and combinations of satisfiability procedures. Theoretical Computer Science, 290(1):291-353, January 2003.
[Tre92] Ralf Treinen. A new method for undecidability proofs of first order theories. Journal of Symbolic Computation, 14:437-457, 1992.
[Zar02] Calogero G. Zarba. A tableau calculus for combining non-disjoint theories. volume 2381 of Lecture Notes in Artificial Intelligence, pages 315-329. Springer, 2002.
[ZSM05] Ting Zhang, Henny B. Sipma, and Zohar Manna. The decidability of the firstorder theory of term algebras with KnuthBendix order. In Robert Nieuwenhuis, editor, the $20^{\text {th }}$ International Conference on Automated Deduction (CADE'05), volume 3632 of LNCS, pages 131-148. SpringerVerlag, 2005.

79-7

