Term Algebras with Length Function and Bounded Quantifier Elimination

Ting Zhang, Henny B. Sipma, Zohar Manna
Stanford University
tingz,sipma,zm@cs.stanford.edu

Motivation: Program Verification

Introduction

- Outline

Term Algebras

Quantifier Elimination

QE for TA

Term Algebras with Integers
$\underline{\text { QE for "TA + Int" }}$

Complexity
Future Work

- Term algebras can model a wide range of tree-like data structures.
- To verify programs we need to reason about these data structures.
- Programming languages often involve multiple data domains, resulting in verification conditions that span multiple theories.
- Common "mixed" constraints are combinations of data structures with integer constraints on the size of those structures.

Bounded Quantifier Elimination

Introduction

- Motivation
-BQE
- Outline

Term Algebras
Quantifier Elimination
QE for TA
Term Algebras with Integers
QE for "TA + Int"
Complexity
Future Work

In Theory:

- Term algebras have nonelementary time complexity [FR79].

The complexity lower bound remains the same for any sub-theories of term algebras [CL89, Vor96].

In Practice:

- We rarely deal with formulae with a large quantifier alternation depth.

Therefore it is worthwhile to investigate the "bounded class" of formulae.

Previous Work:

- We gave a quantifier-elimination procedure for the extended theory [ZSMO4b].

But no complexity upper bound is established.

Outline

Introduction
O Motivation
OQE
Term Algebras
Quantifier Elimination
QE for TA
Term Algebras with Integers
QE for "TA + Int"
Complexity

- Term Algebras
- A Quantifier Elimination Procedure for Term Algebras
- Term Algebras with Length Function
- A Quantifier Elimination Procedure for Term Algebras with Length Function
- Complexity
- Future work

Term Algebras

Introduction

Term Algebras

O Term Algebras

- Definitions and Notations
- Axiomatization
- Example: LISP lists

Quantifier Elimination

QE for TA

Term Algebras with Integers

QE for "TA + Int"

Complexity

Future Work

Defi nition 1 A term algebra $\mathfrak{A}_{\mathrm{TA}}:\langle\mathrm{TA} ; \mathcal{A}, \mathcal{C}, \mathcal{S}, \mathcal{T}\rangle$ consists of

1. TA: The term domain.
2. \mathcal{A} : A finite set of constants: a, b, c, \ldots
3. \mathcal{C} : A finite set of constructors: $\alpha, \beta, \gamma, \ldots$.
4. \mathcal{S} : A finite set of selectors. For a constructor α with arity k, there are k selectors $\mathrm{s}_{1}^{\alpha}, \ldots, \mathrm{s}_{k}^{\alpha}$ in \mathcal{S}.
5. \mathcal{T} : A finite set of testers. For each constructor α there is a corresponding tester Is_{α}.

Two Properties:

- The data domain is the set of data objects generated exclusively by applying constructors.
- Each data object is uniquely generated.

Definitions and Notations

Introduction
Term Algebras

- Term Algebras

O Definitions and Notations

- Axiomatization
- Example: LISP lists

Quantifier Elimination

QE for TA

Term Algebras with Integers

QE for "TA + Int"

Complexity
Future Work

- $\alpha=\left(\mathrm{s}_{1}^{\alpha}, \ldots, \mathrm{s}_{k}^{\alpha}\right)$ means that α is a constructor with $\operatorname{ar}(\alpha)=k$ and $s_{1}^{\alpha}, \ldots, s_{k}^{\alpha}$ are the corresponding selectors of α.
- A term t is a constructor term (C-term) if the outmost function symbol of t is a constructor.
- A term t is a selector term (S-term) if the outmost function symbol of t is a selector.
- We assume that no constructor term appears inside selectors as simplification can always be done. For example,

$$
\mathrm{s}_{i}^{\alpha}\left(\alpha\left(x_{1}, \ldots, x_{k}\right)\right) \quad \text { simplifies to } \quad x_{i} .
$$

- L, M, N, \ldots denote selector sequences. For $L=\mathrm{s}_{1}, \ldots, \mathrm{~s}_{n}$, $L x$ stands for

$$
\mathrm{s}_{1}\left(\ldots\left(\mathrm{~s}_{n}(x) \ldots\right)\right) .
$$

- A selector term $\mathrm{s}_{i}^{\alpha}(t)$ is called proper if $\mathrm{I}_{\alpha}(t)$ holds.

Axiomatization of Term Algebras

Introduction
Term Algebras

- Term Algebras
- Definitions and Notations

O Axiomatization

- Example: LISP lists

Quantifier Elimination
QE for TA

Term Algebras with Integers
QE for "TA + Int"

Complexity
Future Work

- Construction vs. selection.

$$
\left.\mathrm{s}_{i}^{\alpha}(x)=y \leftrightarrow \exists \bar{z}_{\alpha}\left(\alpha\left(\bar{z}_{\alpha}\right)=x \wedge y=z_{i}\right)\right) \vee\left(\forall \bar{z}_{\alpha}\left(\alpha\left(\bar{z}_{\alpha}\right) \neq x\right) \wedge x=y\right)
$$

■ Unification closure. $\quad \alpha\left(\boldsymbol{x}_{\alpha}\right)=\alpha\left(\boldsymbol{y}_{\alpha}\right) \rightarrow \bigwedge_{1 \leq i \leq \operatorname{ar}(\alpha)} x_{i}=y_{i}$.

- Acyclicity. $\quad t(x) \neq x$, if t is built solely by constructors and t properly contains x.
- Uniqueness. $\quad \alpha\left(\boldsymbol{x}_{\alpha}\right) \neq \beta\left(\boldsymbol{y}_{\beta}\right), a \neq b$, and $a \neq \alpha\left(\boldsymbol{x}_{\alpha}\right)$, if a and b are distinct atoms and if α and β are distinct constructors.
- Domain closure.

$$
\mathrm{Is}_{\alpha}(x) \leftrightarrow \exists \bar{z}_{\alpha} \alpha\left(\bar{z}_{\alpha}\right)=x, \quad \quad \mathrm{I} \mathrm{~s}_{A}(x) \leftrightarrow \bigwedge_{\alpha \in \mathcal{C}} \neg \mathrm{l}_{\alpha}(x)
$$

Example: LISP lists

Introduction
Term Algebras

- Term Algebras
- Definitions and Notations
- Axiomatization

O Example: LISP lists

Quantifier Elimination
QE for TA

Term Algebras with Integers

QE for "TA + Int"

Complexity
Future Work

Signature:

$$
\left.\langle\text { list; \{nil\}; \{cons }\} ;\{\text { car, cdr }\} ;\left\{\left|\mathrm{s}_{\mathrm{A}},\right| \mathrm{I}_{\text {cons }}\right\}\right\rangle
$$

Axioms:

$$
\begin{aligned}
& (1) \mathrm{I}_{\mathrm{A}}(x) \leftrightarrow \neg \mathrm{s}_{\mathrm{cons}}(x), \quad(2) \operatorname{car}(\operatorname{cons}(x, y))=x, \\
& (3) \operatorname{cdr}(\operatorname{cons}(x, y))=y, \quad(4) \mathrm{I}_{\mathrm{A}}(x) \leftrightarrow\{\operatorname{car}, \operatorname{cdr}\}^{+}(x)=x, \\
& (5) \mathrm{Is}_{\mathrm{cons}}(x) \leftrightarrow \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x))=x
\end{aligned}
$$

Formulas:

■ $\operatorname{cons}(y, z)=\operatorname{cons}(\operatorname{cdr}(x), z) \rightarrow \operatorname{cons}(\operatorname{car}(x), y)=x$ (valid).
■ $x=\operatorname{cons}(y, y) \rightarrow \operatorname{cons}(\operatorname{car}(x), y)=x$ (valid).

Quantifier Elimination Preliminary

Introduction

Term Algebras

Quantifier Elimination

- QE Preliminary
- Solved Form

QE for TA

Term Algebras with Integers

QE for "TA + Int"

Complexity

Future Work

- It is well-known that eliminating arbitrary quantifiers reduces to eliminating existential quantifiers from formulae in the form

$$
\begin{equation*}
\exists x\left(A_{1}(x) \wedge \ldots \wedge A_{n}(x)\right), \tag{1}
\end{equation*}
$$

where $A_{i}(\boldsymbol{x})(1 \leq i \leq n)$ are literals [Hod93].

- We can also assume that $A_{i}^{\prime} s$ are not of the form $x=t$ as

$$
\exists x(x=t \wedge \theta(x, y))
$$

simplifies to

- $\theta(t, \boldsymbol{y})$, if x does not occur in t;
- $\exists x \theta(x, \boldsymbol{y})$, if $t \equiv x$;
- false, if t is a constructor term properly containing x.

Solved Form

Introduction
Term Algebras
Quantifier Elimination

- QE Preliminary

OSolved Form

QE for TA

Term Algebras with Integers

QE for "TA + Int"

Complexity

Future Work

Defi nition 2 (Solved Form) We say $\exists x \theta_{\text {TA }}(x, y)$ is in the solved form (with respect to x),
if x are not in equalities, not asserted to be constants and not inside selector terms.
General Idea:
An existential formula in solved form has solutions under any instantiation of parameters.
Procedure Outline:
A sequence of equivalence-preserving transformations will bring the input formula into a disjunction of formulae in the solved form.
The whole block of existential quantifiers $\exists x$ can be eliminated by removing all literals containing x in the matrix.

Quantifier Elimination for Term Algebras

Introduction

Term Algebras

Quantifier Elimination

QE for TA

-QE for TA

- Type Completion
- Eliminate S-terms
- Decompose Relations

Solve Equalities

- Eliminate Atoms
- Final Elimination

Term Algebras with Integers
QE for "TA + Int"

Complexity
Future Work

Algorithm 1 Input: $\exists x: \theta(x, y)$.

- Guess a type completion of $\theta(\boldsymbol{x}, \boldsymbol{y})$.
- Eliminate selector terms containing x.
- Decompose relations between constructor terms.
- Solve equalities of the form $L y=t(x, y)$.
- Eliminate variables asserted to be constants.
- Eliminate quantifiers and all literals containing x.

Type Completion

Introduction

Term Algebras
Quantifier Elimination
QE for TA

- QE for TA
- Type Completion
- Eliminate S-terms
- Decompose Relations
- Solve Equalities
- Eliminate Atoms
- Final Elimination

Term Algebras with Integers
QE for "TA + Int"
Complexity
Future Work

Defi nition $3 \Phi^{\prime}$ is a type completion of Φ if Φ^{\prime} is obtained from Φ by adding tester predicates such that
for any term $\mathrm{s}(t)$ either $\mathrm{Is}_{\alpha}(t)$ (for some constructor α) or $\mathrm{I}_{\mathrm{S}_{\mathrm{A}}}(t)$ is present in Φ^{\prime}.

Example 1 A possible type completion for $y=\operatorname{car}(\operatorname{cdr}(x))$ is

$$
y=\operatorname{car}(\operatorname{cdr}(x)) \wedge \mathrm{Is}_{\text {cons }}(x) \wedge \mathrm{I}_{\mathrm{A}}(\operatorname{cdr}(x)) .
$$

With this type information, $y=\operatorname{car}(\operatorname{cdr}(x))$ simplifies to

$$
y=\operatorname{cdr}(x) .
$$

Guess a type completion of $\theta(\boldsymbol{x}, \boldsymbol{y})$ and simplify every selector term to a proper one.

Eliminate S-terms Containing x 's.

Introduction

Term Algebras
Quantifier Elimination
QE for TA

- QE for TA
- Type Completion
- Eliminate S-terms
- Decompose Relations
- Solve Equalities
- Eliminate Atoms
- Final Elimination

Term Algebras with Integers
QE for "TA + Int"
Complexity
Future Work

Replace all selector terms containing x by the corresponding equivalent constructor terms.
Example 2 Let $\alpha=\left(s_{1}^{\alpha}, s_{2}^{\alpha}\right)$.
$\exists x\left(s_{1}^{\alpha} x=y \wedge \varphi(x, y)\right)$ can be rewritten as

$$
\exists x_{1} \exists x_{2}\left(x_{1}=y \wedge \varphi\left(\alpha\left(x_{1}, x_{2}\right), y\right) .\right.
$$

Similarly, $\exists x\left(s_{1}^{\alpha} x \neq y \wedge \varphi(x, y)\right)$ becomes

$$
\exists x_{1} \exists x_{2}\left(x_{1} \neq y \wedge \varphi\left(\alpha\left(x_{1}, x_{2}\right), y\right)\right.
$$

It may increase the number of existential quantifiers, but leaves parameters unchanged.
In the following transformations, x never appear inside selector terms.

Decompose Relations between C-Terms.

Introduction
Term Algebras
Quantifier Elimination
QE for TA

- QE for TA
- Type Completion
- Eliminate S-terms
- Decompose Relations
- Solve Equalities
- Eliminate Atoms
- Final Elimination

Term Algebras with Integers
QE for "TA + Int"
Complexity
Future Work

- Replace

$$
\begin{equation*}
\alpha\left(t_{1}, \ldots, t_{i}\right)=\alpha\left(t_{1}^{\prime}, \ldots, t_{i}^{\prime}\right) \tag{2}
\end{equation*}
$$

by

$$
\bigwedge_{1 \leq i \leq k} t_{i}=t_{i}^{\prime}
$$

Repeat until no equality of the form (2) appears.

- Replace

$$
\begin{equation*}
\alpha\left(t_{1}, \ldots, t_{i}\right) \neq \alpha\left(t_{1}^{\prime}, \ldots, t_{i}^{\prime}\right) \tag{3}
\end{equation*}
$$

by

$$
\bigvee_{1 \leq i \leq k} t_{i} \neq t_{i}^{\prime}
$$

Repeat until no equality of the form (3) appears.

Solve Equalities of the Form $L y=t(x, y)$.

Introduction

Term Algebras

Quantifier Elimination
QE for TA

- QE for TA
- Type Completion
- Eliminate S-terms
- Decompose Relations

Solve equations of the form $L y=t(\boldsymbol{x}, \boldsymbol{y})$, where

1. L is a block of selectors,
2. $t(x, y)$ is a constructor term containing x.

The result is a set of equations in terms of $L y$ in the selector language.

Example 3 Suppose that $\alpha=\left(s_{1}^{\alpha}, s_{2}^{\alpha}\right)$. The solution set of

$$
\mathrm{s}_{2}^{\alpha} y=\alpha\left(\alpha\left(x_{1}, y_{1}\right), y_{2}\right)
$$

is

$$
x_{1}=\mathrm{s}_{1}^{\alpha} \mathrm{s}_{1}^{\alpha} \mathrm{s}_{2}^{\alpha} y, \quad y_{1}=\mathrm{s}_{2}^{\alpha} \mathrm{s}_{1}^{\alpha} \mathrm{s}_{2}^{\alpha} y, \quad y_{2}=\mathrm{s}_{2}^{\alpha} \mathrm{s}_{2}^{\alpha} y .
$$

Eliminate Variables Asserted to Be Constant

Introduction
Term Algebras
Quantifier Elimination
QE for TA

- QE for TA
- Type Completion
- Eliminate S-terms
- Decompose Relations
- Solve Equalities
- Eliminate Atoms
- Final Elimination

Term Algebras with Integers
QE for "TA + Int"
Complexity
Future Work

Instantiate x to each constant to eliminate $\exists x$ if x is asserted to be an atom. I.e.,

$$
\exists x\left(\operatorname{ls}_{\mathrm{C}}(x) \wedge \varphi(x)\right) \Rightarrow \bigwedge_{a \in \mathrm{C}} \varphi(a) .
$$

Eliminate Literals Containing x 's.

Introduction

Term Algebras

Quantifier Elimination
QE for TA

- QE for TA
- Type Completion
- Eliminate S-terms
- Decompose Relations
- Solve Equalities
- Eliminate Atoms

QE for "TA + Int"

Complexity
Future Work

Now we can assume formulae are in the form

$$
\left.\left.\begin{array}{rl}
\exists \boldsymbol{x}:\left[\bigwedge_{i} x_{f(i)}\right. & \neq t_{i}(\boldsymbol{x}, \boldsymbol{y})
\end{array}\right) \bigwedge_{i} G_{i} y_{g(i)} \neq s_{i}(\boldsymbol{x}, \boldsymbol{y})\right] \wedge, ~\left(\bigwedge_{i} G_{i}^{\prime} y_{g^{\prime}(i)} \neq s_{i}^{\prime}(\boldsymbol{y}) \wedge \bigwedge_{i} H_{i} y_{h(i)}=H_{i}^{\prime} y_{h^{\prime}(i)} .\right.
$$

Since

$$
\begin{equation*}
\exists \boldsymbol{x}:\left[\bigwedge_{i} x_{f(i)} \neq t_{i}(\boldsymbol{x}, \boldsymbol{y}) \wedge \bigwedge_{i} G_{i} y_{g(i)} \neq s_{i}(\boldsymbol{x}, \boldsymbol{y})\right] \tag{5}
\end{equation*}
$$

is in solved form and hence valid, (4) is equivalent to

$$
\begin{equation*}
\bigwedge_{i} G_{i}^{\prime} y_{g^{\prime}(i)} \neq s_{i}^{\prime}(\boldsymbol{y}) \wedge \bigwedge_{i} H_{i} y_{h(i)}=H_{i}^{\prime} y_{h^{\prime}(i)} . \tag{6}
\end{equation*}
$$

Language and Structure

Introduction
Term Algebras
Quantifier Elimination
QE for TA

Term Algebras with Integers - Language and Structure

QE for "TA + Int"
Complexity
Future Work

Presburger arithmetic (PA): $\mathscr{L}_{\mathbb{Z}}, \mathfrak{A}_{\mathbb{Z}}$.
Two-sorted language $\Sigma=\Sigma_{\text {TA }} \cup \Sigma_{\mathbb{Z}} \cup\left\{(.)^{\mathrm{L}}\right\}$:

1. $\Sigma_{\text {TA }}$: signature of term algebras.
2. $\Sigma_{\mathbb{Z}}$: signature of Presburger arithmetic.
3. (. $)^{\mathrm{L}}: \mathrm{TA} \rightarrow \mathbb{N}$, the length function defined by

$$
t^{\mathrm{L}}=\left\{\begin{array}{lll}
1 & \text { if } & t \text { is an atom } \\
\sum_{i=1}^{k} t_{i}^{\mathrm{L}}+1 & \text { if } & t \equiv \alpha\left(t_{1}, \ldots, t_{k}\right) .
\end{array}\right.
$$

t^{L} : generalized integer terms.

Counting Constraints

Introduction

Term Algebras
Quantifier Elimination

QE for TA

Term Algebras with Integers

QE for "TA + Int"
O Counting Constraints

- Equality Completion
- Clusters
- Clusters: Examples
- Length Constraint Completion
- Example
- Strong Solved Form
- Notations
- Compute Length Completion
- QE on Integers
- QE on Terms
- Compute Equality Completion
- Eliminate Equalities
- Propagate Disequalities
- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity
Future Work

Defi nition 4 (Counting Constraint) A counting constraint is a predicate $\mathrm{CNT}_{k, n}^{\alpha}(x)(k>0, n \geq 0)$ that is true if and only if there are at least $n+1$ different α-terms of length x in $\mathfrak{A}_{\mathrm{TA}}$ with k constants. $\mathrm{CNT}_{k, n}(x)$ is similarly defined with α-terms replaced by TA-terms.
Example 4 For $\mathfrak{A}_{\text {list }}^{\mathbb{Z}}=\left(\mathfrak{A}_{\text {list }} ; \mathfrak{A}_{\mathbb{Z}}\right)$ with one constant,

$$
\mathrm{CNT}_{1, n}^{\text {cons }}(x) \quad \text { is } \quad x \geq 2 m-1 \wedge 2 \nmid x
$$

where m is the least number such that the m-th Catalan number $C_{m}=\frac{1}{m}\binom{2 m-2}{m-1}$ is greater than n.
Reason: C_{m} gives the number of binary trees with m leaves (that tree has $2 m-1$ nodes).

Equality Completion

Introduction
Term Algebras
Quantifier Elimination
QE for TA

Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints

- Equality Completion

- Clusters

- Clusters: Examples
- Length Constraint Completion
- Example
- Strong Solved Form
- Notations
- Compute Length Completion
- QE on Integers
- QE on Terms
- Compute Equality Completion
- Eliminate Equalities
- Propagate Disequalities
- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity

In order to construct counting constraints, we need equality information between terms and equality information between lengths of terms.
Definition 5 (Equality Completion) Let S be a set of TA-terms. An equality completion θ of S is a formula consisting of the following literals: for any $u, v \in S$, exactly one of $u=v$ and $u \neq v$, and exactly one of $u^{\mathrm{L}}=v^{\mathrm{L}}$ and $u^{\mathrm{L}} \neq v^{\mathrm{L}}$ are in θ.
Example 5 Let $\alpha=\left(s_{1}^{\alpha}, s_{2}^{\alpha}\right)$ and θ be

$$
y \neq \alpha(x, z) \wedge \operatorname{Is}_{\alpha}(y)
$$

A possible equality completion of θ is

$$
\mathrm{Is}_{\alpha}(y) \wedge y^{\mathrm{L}}=(\alpha(x, z))^{\mathrm{L}} \wedge x^{\mathrm{L}}=z^{\mathrm{L}} \wedge y^{\mathrm{L}} \neq x^{\mathrm{L}} \wedge \bigwedge_{t, t^{\prime} \in \Sigma(\theta) ; t \neq t^{\prime}} t \neq t^{\prime}
$$

Clusters

Introduction

Term Algebras
Quantifier Elimination

QE for TA

Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints
- Equality Completion
- Clusters: Examples
- Length Constraint Completion
- Example
- Strong Solved Form
- Notations
- Compute Length Completion
- QE on Integers
- QE on Terms
- Compute Equality Completion
- Eliminate Equalities
- Propagate Disequalities
- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity
Future Work

Defi nition 6 (Clusters) Let $[t]$ denote the equivalence class containing t with respect to term equality. We say that

$$
C=\left\{\left[t_{0}\right], \ldots,\left[t_{n}\right]\right\}
$$

is a cluster if t_{0}, \ldots, t_{n} are pairwise unequal terms of the same length.

- A cluster is maximal if no superset of it is a cluster.
- A cluster C is closed if C is maximal and for any maximal C^{\prime},

$$
C \cap C^{\prime} \neq \emptyset \rightarrow C=C^{\prime} .
$$

- Two distinct closed clusters are said to be mutually independent.
- The rank of a cluster C, written $\mathrm{rk}(C)$, is the length of its terms.

Clusters: Examples

Introduction
Term Algebras
Quantifier Elimination

QE for TA

Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints
- Equality Completion
- Clusters
- Clusters: Examples
- Length Constraint Completion
- Example
- Strong Solved Form
- Notations
- Compute Length Completion
- QE on Integers
- QE on Terms
- Compute Equality Completion
- Eliminate Equalities
- Propagate Disequalities
- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity
Future Work

Example 6 In Ex. 5, formula (7) induces two mutually independent clusters

$$
C_{1}:\{[x],[z]\} \text { and } C_{2}:\{[y],[\alpha(x, z)]\}
$$

with $\mathrm{rk}\left(C_{1}\right)<\operatorname{rk}\left(C_{2}\right)$.
Example 7 The formula

$$
x \neq y \wedge x \neq z \wedge x^{\mathrm{L}}=y^{\mathrm{L}} \wedge x^{\mathrm{L}}=z^{\mathrm{L}} \wedge \mathrm{I}_{\alpha}(x) \wedge \mathrm{I}_{\alpha}(y)
$$

gives two maximal clusters

$$
C_{1}^{\prime}:\{x, y\} \text { and } C_{2}^{\prime}:\{x, z\} .
$$

However, neither C_{1}^{\prime} nor C_{2}^{\prime} is closed and their ranks are incomparable.

Any equality completion induces a set of mutually independent clusters.

Length Constraint Completion

Introduction
Term Algebras
Quantifier Elimination
QE for TA
Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints
- Equality Completion
- Clusters
- Clusters: Examples

OLength Constraint Completion

- Example
- Strong Solved Form
- Notations
- Compute Length Completion
- QE on Integers
- QE on Terms
- Compute Equality Completion
- Eliminate Equalities
- Propagate Disequalities
- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity
Future Work

For the construction of accurate length constraints for x, we need to make $\theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right)$ "complete".

Defi nition 7 (Length Constraint Completion) Let

$$
\theta_{\mathrm{TA}}(\boldsymbol{x}, \boldsymbol{y}) \equiv \theta_{\mathrm{TA}}^{(1)}(\boldsymbol{x}, \boldsymbol{y}) \wedge \theta_{\mathrm{TA}}^{(2)}(\boldsymbol{y}) \in \mathscr{L}_{\mathrm{TA}}, \quad \theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right) \in \mathscr{L}_{\mathbb{Z}}
$$

We say a formula $\Theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right)$ is a completion of $\theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right)$ in \boldsymbol{x} with respect to $\theta_{\text {TA }}(\boldsymbol{x}, \boldsymbol{y})$ if the following formulae are valid:

$$
\begin{align*}
\forall \boldsymbol{y}: \operatorname{TA} \forall \boldsymbol{x}: \operatorname{TA}[& \theta_{\mathrm{TA}}(\boldsymbol{x}, \boldsymbol{y}) \wedge \theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right) \\
& \left.\leftrightarrow \theta_{\mathrm{TA}}(\boldsymbol{x}, \boldsymbol{y}) \wedge \Theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right)\right] . \tag{8}
\end{align*}
$$

$$
\begin{align*}
\forall \boldsymbol{y}: \mathrm{TA} \forall \boldsymbol{x}^{\mathrm{L}}: \mathbb{Z}[& \theta_{\mathrm{TA}}^{(2)}(\boldsymbol{y}) \wedge \Theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right) \\
& \left.\rightarrow \exists \boldsymbol{x}: \operatorname{TA}\left(\theta_{\mathrm{TA}}(\boldsymbol{x}, \boldsymbol{y}) \wedge \Theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right)\right)\right] . \tag{9}
\end{align*}
$$

Length Constraint Completion: Example

Introduction
Term Algebras
Quantifier Elimination
QE for TA
Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints
- Equality Completion
- Clusters
- Clusters: Examples
- Length Constraint Completion

- Example

- Strong Solved Form
- Notations
- Compute Length Completion
- QE on Integers
- QE on Terms
- Compute Equality Completion
- Eliminate Equalities
- Propagate Disequalities
- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity
Future Work

Example 8 Let

$$
\begin{aligned}
\theta_{\mathrm{TA}}\left(x_{1}, x_{2}, x_{3}\right) & \equiv \alpha\left(x_{1}, x_{2}\right)=x_{3} \\
\theta_{\mathbb{Z}}\left(x_{1}^{\mathrm{L}}, x_{2}^{\mathrm{L}}, x_{3}^{\mathrm{L}}\right) & \equiv x_{1}^{\mathrm{L}}<x_{3}^{\mathrm{L}} \wedge x_{2}^{\mathrm{L}}<x_{3}^{\mathrm{L}} .
\end{aligned}
$$

Consider the following formulae:

$$
\begin{aligned}
& \Theta_{\mathbb{Z}}: \\
& \Theta_{\mathbb{Z}}^{1}: \\
& x_{1}^{\mathrm{L}}+x_{2}^{\mathrm{L}}+1=x_{3}^{\mathrm{L}} \wedge x_{2}^{\mathrm{L}}<x_{3}^{\mathrm{L}} \wedge x_{1}^{\mathrm{L}}>0 \wedge x_{1}^{\mathrm{L}}>0 \wedge x_{2}^{\mathrm{L}}>0 \\
& \Theta_{\mathbb{Z}}^{2}: \\
& x_{1}^{\mathrm{L}}+x_{2}^{\mathrm{L}}+1=x_{3}^{\mathrm{L}} \wedge x_{1}^{\mathrm{L}}>5 \wedge x_{2}^{\mathrm{L}}>5
\end{aligned}
$$

■ $\Theta_{\mathbb{Z}}$ is a completion of $\theta_{\mathbb{Z}}\left(x_{1}^{\mathrm{L}}, x_{2}^{\mathrm{L}}, x_{3}^{\mathrm{L}}\right)$.

- $\Theta_{\mathbb{Z}}^{1}$ satisfies (8), it does not satisfies (9).

$$
\text { Reason: }\left\{x_{1}^{\mathrm{L}}=3, x_{2}^{\mathrm{L}}=3, x_{3}^{\mathrm{L}}=4\right\} .
$$

- $\Theta_{\mathbb{Z}}^{2}$ satisfies (9), but not (8).

Reason: $\left\{x_{1}=a, x_{2}=a, x_{3}=\alpha(a, a)\right\}$.

Strong Solved Form

Introduction
Term Algebras
Quantifier Elimination
QE for TA
Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints
- Equality Completion
- Clusters
- Clusters: Examples
- Length Constraint Completion
- Example
- Strong Solved Form
- Notations
- Compute Length Completion
- QE on Integers
- QE on Terms
- Compute Equality Completion
- Eliminate Equalities
- Propagate Disequalities
- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity

For the construction of length constraint completion, we require that $\theta_{\mathrm{TA}}(\boldsymbol{x}, \boldsymbol{y}) \wedge \theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right)$ be in "strong normal form".
Defi nition 8 We say $\theta_{\mathrm{TA}}(\boldsymbol{x}, \boldsymbol{y}) \wedge \theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right)$ is in strong solved form (with respect to x)
if $\theta_{\text {TA }}(\boldsymbol{x}, \boldsymbol{y})$ is in solved form and all literals of the form

$$
L y \neq t(\boldsymbol{x}, \boldsymbol{y}),
$$

where $y \in \boldsymbol{y}$ and $t(\boldsymbol{x}, \boldsymbol{y})$ is a constructor term (properly) containing x, are redundant.
Example 9 In Ex. 5, formula (7) is not in strong solved form. However, it can be made into strong solved form by adding

$$
\mathrm{s}_{1}^{\alpha} y \neq x \quad \text { or } \quad \mathrm{s}_{2}^{\alpha} y \neq z .
$$

Notations

Introduction

Term Algebras
Quantifier Elimination

QE for TA

Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints
- Equality Completion
- Clusters
- Clusters: Examples
- Length Constraint Completion
- Example
- Strong Solved Form

O Notations

- Compute Length Completion
- QE on Integers
- QE on Terms
- Compute Equality Completion
- Eliminate Equalities
- Propagate Disequalities
- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity

The following predicates are needed to describe the construction algorithm:

$$
\begin{aligned}
\operatorname{Tree}(t) & : \exists x_{1}, \ldots, x_{n} \geq 0\left(t^{\mathrm{L}}=\left(\sum_{i=1}^{n} d_{i} x_{i}\right)+1\right), \\
\operatorname{Node}^{\alpha}\left(t, \boldsymbol{t}_{\alpha}\right) & : t^{\mathrm{L}}=\sum_{i=1}^{\operatorname{ar}(\alpha)} t_{i}^{\mathrm{L}}+1 \\
\operatorname{Tree}^{\alpha}(t) & : \exists \boldsymbol{t}_{\alpha}\left(\operatorname{Node}^{\alpha}\left(t, \boldsymbol{t}_{\alpha}\right) \wedge \bigwedge_{i=1}^{\operatorname{ar}(\alpha)} \operatorname{Tree}\left(t_{i}\right)\right),
\end{aligned}
$$

where
■ \boldsymbol{t}_{α} stands for $t_{1}, \ldots, t_{\operatorname{ar}(\alpha)}$,

- d_{1}, \ldots, d_{n} are the distinct arities of constructors.

Compute Length Constraint Completion

Introduction

Term Algebras
Quantifier Elimination
QE for TA

Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints
- Equality Completion
- Clusters
- Clusters: Examples
- Length Constraint Completion
- Example
- Strong Solved Form
- Notations - Compute Length Completion
- QE on Integers
- QE on Terms
- Compute Equality Completion
- Eliminate Equalities
- Propagate Disequalities
- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity
Future Work

Algorithm 2 (Length Constraint Completion) Input:

$$
\theta_{\mathrm{TA}}(\boldsymbol{x}, \boldsymbol{y}) \equiv \theta_{\mathrm{TA}}^{(1)}(\boldsymbol{x}, \boldsymbol{y}) \wedge \theta_{\mathrm{TA}}^{(2)}(\boldsymbol{y}) \in \mathscr{L}_{\mathrm{TA}}, \quad \theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right) \in \mathscr{L}_{\mathbb{Z}} .
$$

Initially set $\Theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right)=\theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right)$. For each term t occurring in $\theta_{\mathrm{TA}}(\boldsymbol{x}, \boldsymbol{y})$, add the following to $\Theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right)$.

- $t^{\mathrm{L}}=1$, if t is a constant.
- $t^{\mathrm{L}}=s^{\mathrm{L}}$, if $t=s$.
- Tree (t), if t is untyped.
- Tree ${ }^{\alpha}(t)$, if t is α-typed.
- $\operatorname{Node}^{\alpha}\left(t, \boldsymbol{t}_{\alpha}\right)$, if t is α-typed with children \boldsymbol{t}_{α}.
- $\mathrm{CNT}_{k, n}\left(t^{\mathrm{L}}\right)$, if t occurs in an untyped clusters of size $n+1$ and $\mathfrak{A}_{\mathrm{TA}}$ has k constants.
- $\mathrm{CNT}_{k, n}^{\alpha}\left(t^{\mathrm{L}}\right)$, ift occurs in an α-cluster of size $n+1$ and $\mathfrak{A}_{\text {TA }}$ has k constants.

Quantifiers Elimination on Integer Variables

Introduction
Term Algebras
Quantifier Elimination
QE for TA

Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints
- Equality Completion
- Clusters
- Clusters: Examples
- Length Constraint Completion
- Example
- Strong Solved Form
- Notations
- Compute Length Completion

- QE on Integers

- QE on Terms
- Compute Equality Completion
- Eliminate Equalities
- Propagate Disequalities
- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity

Algorithm 3 (Integer Quantifier Elimination) We assume that formulae with quantifiers on integer variables are in the form

$$
\begin{equation*}
\exists \boldsymbol{z}: \mathbb{Z}\left(\theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}, \boldsymbol{z}\right) \wedge \theta_{\mathrm{TA}}(\boldsymbol{x})\right), \tag{10}
\end{equation*}
$$

where y, z are integer variables and x are term variables.
Since $\theta_{\text {TA }}(\boldsymbol{x})$ is in $\mathscr{L}_{\text {TA }}$, we can move $\theta_{\text {TA }}(\boldsymbol{x})$ out of the scope of $\exists \boldsymbol{z}$, obtaining

$$
\begin{equation*}
\exists \boldsymbol{z}: \mathbb{Z} \theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}, \boldsymbol{z}\right) \wedge \theta_{\mathrm{TA}}(\boldsymbol{x}) \tag{11}
\end{equation*}
$$

Now $\exists \boldsymbol{z}: \mathbb{Z} \theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}, \boldsymbol{z}\right)$ is essentially a Presburger formula and we can proceed to remove the block of existential quantifiers.

In fact, we can defer the elimination of integer quantifiers until all term quantifiers have been eliminated.

Quantifiers Elimination on Term Variables

Introduction
Term Algebras
Quantifier Elimination
QE for TA
Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints
- Equality Completion
- Clusters
- Clusters: Examples
- Length Constraint Completion
- Example
- Strong Solved Form
- Notations
- Compute Length Completion
- QE on Integers
- Compute Equality Completion
- Eliminate Equalities
- Propagate Disequalities
- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity
Future Work

Algorithm 4 We assume that formulae with quantifiers on term variables are in the form

$$
\begin{equation*}
\exists \boldsymbol{x}: \operatorname{TA}\left(\theta_{\mathrm{TA}}(\boldsymbol{x}, \boldsymbol{y}) \wedge \Psi_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}, \boldsymbol{z}\right)\right) \tag{12}
\end{equation*}
$$

where $\boldsymbol{x}, \boldsymbol{y}$ are term variables, \boldsymbol{z} are integer variables, and $\Psi_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}, \boldsymbol{z}\right)$ is an arbitrary Presburger formula.
Run Alg. 1 up to the last step. Apply the following subprocedures successively unless noted otherwise.

1. Equality Completion (Alg. 5).
2. Elimination of Equalities Containing x (Alg. 6).
3. Propagation of Disequalities of the Form $L y \neq t(\boldsymbol{x}, \boldsymbol{y})$ (Alg. 7).
4. Reduction of Term Quantifi ers to Integer Quantifi ers (Alg.8).

Compute Equality Completion

Introduction
Term Algebras
Quantifier Elimination
QE for TA
Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints
- Equality Completion
- Clusters
- Clusters: Examples
- Length Constraint Completion
- Example
- Strong Solved Form
- Notations
- Compute Length Completion
- QE on Integers
- QE on Terms
- Compute Equality Completion
- Eliminate Equalities
- Propagate Disequalities
- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity
Future Work

Algorithm 5 (Equality Completion) We assume the input formula is in the form (renaming the first part of (5))

$$
\begin{equation*}
\exists \boldsymbol{x}: \operatorname{TA}\left[\bigwedge_{i} x_{f(i)} \neq t_{i}(\boldsymbol{x}, \boldsymbol{y}) \wedge \bigwedge_{i} L_{i} y_{g(i)} \neq s_{i}(\boldsymbol{x}, \boldsymbol{y})\right] \tag{13}
\end{equation*}
$$

Let S be all terms including subterms which appear in (13). Guess an equality completion of S and we obtain

$$
\begin{align*}
& \exists x: T A \not \overbrace{i} x_{f(i)} \neq t_{i}(x, y) \wedge \bigwedge_{i} L_{i} y_{g}(i) \neq s_{i}(x, y) \wedge \\
& \left.\bigwedge_{i} x_{f^{\prime}(i)}=t_{i}^{\prime}(x, y) \wedge \bigwedge_{i}^{\prime} y_{g^{\prime}(i)}=S_{i}^{\prime}(x, y)\right] \tag{14}
\end{align*}
$$

Eliminate Equalities Containing x 's

Introduction

Term Algebras
Quantifier Elimination
QE for TA

Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints
- Equality Completion
- Clusters
- Clusters: Examples
- Length Constraint Completion
- Example
- Strong Solved Form
- Notations
- Compute Length Completion
- QE on Integers
- QE on Terms
- Compute Equality Completion
- Propagate Disequalities
- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity

Algorithm 6 (Elimination of Equalities Containing x) Let \mathcal{E} denote the set of equalities containing x. Exhaustively apply the following subprocedures until \mathcal{E} is empty.
Pick an $E \in \mathcal{E}$.

- E is $x=u$. Then we know x does not occur in u and hence we can remove $\exists x$ by substituting u for all occurrences of x.
- E is $L y=\alpha\left(t_{1}(\boldsymbol{x}, \boldsymbol{y}), \ldots, t_{k}(\boldsymbol{x}, \boldsymbol{y})\right)$. Then replace E by

$$
\mathrm{s}_{1}^{\alpha} L y=t_{1}(\boldsymbol{x}, \boldsymbol{y}), \ldots, \mathrm{s}_{k}^{\alpha} L y=t_{k}(\boldsymbol{x}, \boldsymbol{y}) .
$$

■ E is $\beta\left(u_{1}(\boldsymbol{x}, \boldsymbol{y}), \ldots, u_{l}(\boldsymbol{x}, \boldsymbol{y})\right)=\beta\left(u_{1}^{\prime}(\boldsymbol{x}, \boldsymbol{y}), \ldots, u_{l}^{\prime}(\boldsymbol{x}, \boldsymbol{y})\right)$. Then replace E by

$$
u_{1}(\boldsymbol{x}, \boldsymbol{y})=u_{1}^{\prime}(\boldsymbol{x}, \boldsymbol{y}), \ldots, u_{l}(\boldsymbol{x}, \boldsymbol{y})=u_{l}^{\prime}(\boldsymbol{x}, \boldsymbol{y})
$$

Propagate Disequalities

Introduction

Term Algebras

Quantifier Elimination

QE for TA

Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints
- Equality Completion
- Clusters
- Clusters: Examples
- Length Constraint Completion
- Example
- Strong Solved Form
- Notations
- Compute Length Completion
- QE on Integers
- QE on Terms
- Compute Equality Completion
- Eliminate Equalities

O Propagate Disequalities

- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity

Algorithm 7 (Propagation of Disequalities) Let \mathcal{D} denote the set of disequalities of the form

$$
L y \neq \alpha\left(t_{1}(\boldsymbol{x}, \boldsymbol{y}), \ldots, t_{k}(\boldsymbol{x}, \boldsymbol{y})\right)
$$

Exhaustively apply the following subprocedures until \mathcal{D} is empty.
Pick $D \in \mathcal{D}$.

- Disequality Spliting. Remove D from \mathcal{D} and add to $\theta_{\text {TA }}(\boldsymbol{x}, \boldsymbol{y})$

$$
\neg \mid \mathrm{s}_{\alpha}(L y) \vee \bigvee_{1 \leq i \leq k} \mathrm{~s}_{i}^{\alpha} L y \neq t_{i}(\boldsymbol{x}, \boldsymbol{y}) .
$$

Return if we take $\neg \mathrm{ls}_{\alpha}($ Ly $)$; continue otherwise.

Propagate Disequalities (2)

Introduction

Term Algebras

Quantifier Elimination

QE for TA

Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints
- Equality Completion
- Clusters
- Clusters: Examples
- Length Constraint Completion
- Example
- Strong Solved Form
- Notations
- Compute Length Completion
- QE on Integers
- QE on Terms
- Compute Equality Completion
- Eliminate Equalities
- Propagate Disequalities
- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity
Future Work

- Length Spliting. Suppose we take $\mathrm{s}_{j}^{\alpha} L y \neq t_{j}(\boldsymbol{x}, \boldsymbol{y})(1 \leq j \leq k)$. Split on

$$
\left(\mathrm{s}_{j}^{\alpha} L y\right)^{\mathrm{L}}=\left(t_{j}(\boldsymbol{x}, \boldsymbol{y})\right)^{\mathrm{L}} \vee\left(\mathrm{~s}_{j}^{\alpha} L y\right)^{\mathrm{L}} \neq\left(t_{j}(\boldsymbol{x}, \boldsymbol{y})\right)^{\mathrm{L}}
$$

Return if we take $\left(s_{j}^{\alpha} L y\right)^{\mathrm{L}} \neq\left(t_{j}(\boldsymbol{x}, \boldsymbol{y})\right)^{\mathrm{L}}$; continue otherwise.

- Equality Spliting. Suppose the cluster of $t_{j}(\boldsymbol{x}, \boldsymbol{y})$ contains u_{0}, \ldots, u_{n}. Split on

$$
\bigvee_{i \leq n} \mathrm{~s}_{j}^{\alpha} L y=u_{i} \vee \bigwedge_{i \leq n} \mathrm{~s}_{j}^{\alpha} L y \neq u_{i}
$$

- If we choose any $\mathrm{s}_{j}^{\alpha} L y=u_{i}$, rerun Alg. 6 in case that u_{i} properly contains x;
- If we choose $\bigwedge_{i \leq n} s_{j}^{\alpha} L y \neq u_{i}$, rerun this algorithm.

Reduction of Term Quantifiers

Introduction

Term Algebras

Quantifier Elimination

QE for TA

Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints
- Equality Completion
- Clusters
- Clusters: Examples
- Length Constraint Completion
- Example
- Strong Solved Form
- Notations
- Compute Length Completion
- QE on Integers
- QE on Terms
- Compute Equality Completion
- Eliminate Equalities
- Propagate Disequalities
- Propagate Disequalities (2)

Algorithm 8 (Reduction of Term Quantifiers to Integer Quantifiers) Omitting the redundant disequalities of the form $L y \neq t(\boldsymbol{x}, \boldsymbol{y})$, we may assume the resulting formula be

$$
\begin{equation*}
\exists \boldsymbol{x}: \operatorname{TA}\left[\theta_{\mathrm{TA}}^{(1)}(\boldsymbol{x}, \boldsymbol{y}) \wedge \theta_{\mathrm{TA}}^{(2)}(\boldsymbol{y}) \wedge \theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right) \wedge \Psi_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}, \boldsymbol{z}\right)\right], \tag{15}
\end{equation*}
$$

where

- $\theta_{\text {TA }}^{(1)}(\boldsymbol{x}, \boldsymbol{y})$ is of the form $\bigwedge_{i} x_{f(i)} \neq t_{i}(\boldsymbol{x}, \boldsymbol{y})$,
- $\theta_{\mathrm{TA}}^{(2)}(\boldsymbol{y})$ does not contain \boldsymbol{x},
- $\theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right)$ is the integer constraint obtained from Algs. 5, 7,
- and $\Psi_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}, \boldsymbol{z}\right)$ is the PA formula not listed before for simplicity.

Reduction of Term Quantifiers (2)

Introduction

Term Algebras

Quantifier Elimination
QE for TA

Term Algebras with Integers
QE for "TA + Int"

- Counting Constraints
- Equality Completion
- Clusters
- Clusters: Examples
- Length Constraint Completion
- Example
- Strong Solved Form
- Notations
- Compute Length Completion
- QE on Integers
- QE on Terms
- Compute Equality Completion
- Eliminate Equalities
- Propagate Disequalities
- Propagate Disequalities (2)
- Reduction of TQ
- Reduction of TQ (2)

Complexity
Future Work

Let $\theta_{\mathrm{TA}}(\boldsymbol{x}, \boldsymbol{y})$ denote $\theta_{\mathrm{TA}}^{(1)}(\boldsymbol{x}, \boldsymbol{y}) \wedge \theta_{\mathrm{TA}}^{(2)}(\boldsymbol{y})$.
Call Alg. 2 to get the completion $\Theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right)$ of $\theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right)$ in \boldsymbol{x} with respect to $\theta_{\text {TA }}(\boldsymbol{x}, \boldsymbol{y})$.
Now we claim that (15) is equivalent to

$$
\begin{equation*}
\exists \boldsymbol{x}: \mathrm{TA}\left[\theta_{\mathrm{TA}}^{(1)}(\boldsymbol{x}, \boldsymbol{y}) \wedge \theta_{\mathrm{TA}}^{(2)}(\boldsymbol{y}) \wedge \Theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right) \wedge \Psi_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}, \boldsymbol{z}\right)\right] \tag{16}
\end{equation*}
$$

which in turn is equivalent to

$$
\begin{equation*}
\exists \boldsymbol{x}^{\mathrm{L}}: \mathbb{Z}\left[\theta_{\mathrm{TA}}^{(2)}(\boldsymbol{y}) \wedge \Theta_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}\right) \wedge \Psi_{\mathbb{Z}}\left(\boldsymbol{x}^{\mathrm{L}}, \boldsymbol{y}^{\mathrm{L}}, \boldsymbol{z}\right)\right] . \tag{17}
\end{equation*}
$$

Complexity

```
Introduction
```

Term Algebras

Quantifier Elimination
QE for TA

Term Algebras with Integers
QE for "TA + Int"

Complexity

- Complexity

Future Work

Theorem 1 Alg. 1 eliminates a block of quantifiers in time $2^{O(n)}$.
Theorem $2 \mathrm{BC}_{\mathrm{k}}\left(\mathfrak{A}_{\text {TA }}\right)$ is decidable in $O\left(\exp _{k}(n)\right)$.
Theorem 3 Alg. 4 eliminates a block of quantifiers in time $2^{2^{O(n)}}$.
Theorem $4 \mathrm{BC}_{\mathrm{k}}\left(\mathfrak{A}_{\mathrm{T}_{\mathrm{A}}}\right)$ is decidable in $O\left(\exp _{2 k}(n)\right)$.

Future Work

```
Introduction
```

Term Algebras
Quantifier Elimination
QE for TA

Term Algebras with Integers
QE for "TA + Int"

Complexity

Future Work
O Future Work

- Refine length constraint construction to reduce double-exponential blowup to one exponential.
- Apply bounded elimination to improve the decision procedure of the first-order theory of Knuth-Bendix order [ZSM04a].
[CL89] Hubert Comon and Pierre Lescanne. Equational problems and disunifi cation. Journal of Symbolic Computation, 7:371-425, 1989.
[FR79] J. Ferrante and C. W. Rackoff. The Computational Complexity of Logical Theories. Springer-Verlag, 1979.
[Hod93] Wilfrid Hodges. Model Theory. Cambridge University Press, Cambridge, UK, 1993.
[Vor96] Sergei Vorobyov. An improved lower bound for the elementary theories of trees. In Proc. of the $13^{t h}$ Intl. Conference on Automated Deduction, volume 1104 of LNCS, pages 275-287. Springer-Verlag, 1996.
[ZSM04a] Ting Zhang, Henny Sipma, and Zohar Manna. The decidability of the fi rst-order theory of term algebras with Knuth-Bendix order, 2004. Submitted.
[ZSM04b] Ting Zhang, Henny Sipma, and Zohar Manna. Decision procedures for recursive data structures with integer constraints, 2004. To appear in the Proceedings of the $2^{\text {nd }}$ International Joint Conference on Automated Reasoning.

