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Abstract

A labelling of the n-dimensional hypercube Hn is a mapping that assigns value 0 or 1 to each
edge of Hn. A labelling is antipodal if antipodal edges of Hn get assigned different values. It
has been conjectured that if Hn, n ≥ 2, is given a labelling that is antipodal, then there exists a
pair of antipodal vertices joined by a monochromatic path. This conjecture has been verified by
hand for n ≤ 5. In this paper we verify the conjecture in the case where the labelling is simple
in the sense that no square xyzt in Hn has value 0 assigned to xy, zt and value 1 assigned to
yz, tx, even if the given labelling is not antipodal. The proof is based on a new property of (not
necessarily antipodal) simple labellings of Hn. We also exhibit a large class of simple labellings
that thus satisfy the conjecture. Finally we conjecture that even if the given labelling is not
antipodal, there is always a path joining antipodal vertices that switches labels at most once,
which implies the original conjecture. We establish this new conjecture for Hn, n ≤ 5 as well.

1 Introduction

We let Hn = (V,E) denote the n-dimensional hypercube whose 2n vertices are the {0, 1}-strings
x = x1 · · · xn of length n and whose n2n−1 edges join vertices that differ in only one bit position in
the corresponding strings. An labelling of Hn is a decomposition of Hn into two graphs G0 = (V,E0)
and G1 = (V,E1) such that E0 ⊆ E and E1 = E \ E0. Two vertices v, vT in Hn are antipodal if
the corresponding strings differ in all bit positions. Two edges e = uv and eT = uT vT are also
said antipodal. A labelling of Hn is called antipodal if for every pair of antipodal edges e, eT ∈ E,
exactly one of e, eT is in E0 (the other one is in E1).

It has been conjectured [1] that for every antipodal labelling of Hn, n ≥ 2, there exists a
connected component K0 of G0 that contains a pair of antipodal vertices v, vT ∈ V (the antipodal
connected component KT

0 of G1 then also contains v, vT ). In other words, there exists a pair of
antipodal vertices v, vT that are connected by a monochromatic path. This conjecture has been
verified by hand for n ≤ 5.

A (not necessarily antipodal) labelling of Hn is called simple if it does not contain a square xyzt
such that xy, zt ∈ E0 and yz, tx ∈ E1. In this paper we verify the conjecture for simple labellings
that are not necessarily antipodal. The main lemma shows that if G0, G1 is a simple labelling of
Hn, K0 is a connected component of G0, and K1 is a connected component of G′ = (V,E \E(K0)),
then for every pair of vertices v, v′ ∈ V (K0)∩V (K1), the two vertices v, v′ are in the same connected
component of G1.

An even labelling of Hn is a partition of the set V ′ ⊆ V of vertices with an even number of
1s into two subsets V0, V1, and induces a labelling of Hn by letting E0, E1 be the edges of E that
have an endpoint in V0, V1 respectively. Even labellings induce simple labellings, so the conjecture
follows for labellings induced by even labellings.
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Finally we conjecture that even if the given labelling is not antipodal, there is always a path
joining antipodal vertices that switches labels at most once, and show that this conjecture gener-
alizes the conjecture on antipodal labellings. We establish this new conjecture for Hn, n ≤ 5 as
well.

2 A Property of Simple Labellings of the Hypercube

In this section we establish a basic property of simple labellings of Hn.

Theorem 1 If G0, G1 is a simple labelling of Hn, K0 is a connected component of G0, and K1 is a
connected component of G′ = (V,E \E(K0)), then for every pair of vertices v, v′ ∈ V (K0)∩V (K1),
the two vertices v, v′ are in the same connected component of G1.

Proof. Let G′
0 = (V,E \ E(K1)) and let G′

1 = (V,E(K1)). Then G′
0, G

′
1 is a labelling of Hn, and

both G′
0 and G′

1 have exactly one connected component that does not consist of just an isolated
vertex. We shall refer to the edges in E(G′

0) and E(G′
1) as 0-edges and 1-edges respectively. We

shall refer to the 1-edges that are in E(K1) ∩ E(G1) as true 1-edges respectively. Notice that if a
0-edge e shares an endpoint with a 1-edge e′, then e′ is a true 1-edge.

Let P0 be a path v = v0, v1, . . . , vℓ = v′ of 0-edges in K0 and let P1 be a path v′ = vℓ, vℓ+1, . . . , vk =
v of 1-edges. We need to find a path P ′

1 from v′ to v of true 1-edges. We shall represent the problem
as a topological problem in the plane. Assume v is the all-0s bit string, and for any vertex w in
Hn, let |w| = d(v,w) denote the number of 1s in the bit string for w. For 0 ≤ i ≤ k, represent vi

in the plane by the point with coordinates (i, |vi|), with i + |vi| even. In particular v0 and vk are
represented by (0, 0) and (k, 0), with k even, while for 0 < i < k, the vertex vi is represented by
(i, |vi|) with |vi| ≥ 1. The edges vivi+1 are represented by diagonal segments (i, |vi|)(i + 1, |vi+1|)
where |vi+1 = |vi| ± 1.

We let S = {(i, j) : 0 ≤ i ≤ k, 0 ≤ j ≤ |vi| and i + j is even}. Note that for all vi, the point
(i, |vi|) representing vi is in S. We shall assign a vertex in Hn to each point in S, extending the
assignment of vi to (i, |vi|), and in a way such that if (i, j) is assigned w then |w| = j, and if
(i, j)(i± 1, j − 1) are assigned w,w′ respectively, then ww′ ∈ E(Hn). We assign (i, j) to meet these
requirements in decreasing order of j. Suppose we have assigned all (i′, j′) ∈ S with j′ > j and
wish to assign (i, j). In particular, we have assigned (i − 1, j + 1), (i, j + 2), (i + 1, j + 1) a path
w′, w′′, w′′′ with |w′| = |w′′| − 1 = |w′′′| = j + 1. If w′ 6= w′′′, then there is a unique vertex w such
that w,w′, w′′, w′′′ is a square in Hn, and we assign w to (i, j), with |w| = j. If w′ = w′′′, then we
assign to (i, j) any w such that ww′ ∈ E(Hn) and |w| = j. At the last stage, this process assigns,
to all (i, 0) with 0 ≤ i ≤ k and i even, the vertex v corresponding the the all-0s bit string (recall k
is even).

The path v0, v1, . . . , vℓ, vℓ+1, . . . , vk is thus represented in the plane by a non-crossing closed
curve C that follows the path of (i, |vi|) from (0, 0) to (k, 0), and then back along the x-axis from
(k, 0) to (0, 0). We wish to find a path of true 1-edges from v′ = vℓ to v by a path in the plane from
(ℓ, |vℓ|) to some (i, 0) with 0 ≤ i ≤ k and i even that moves at each step from some (i′, j′) ∈ S to
some (i′ ± 1, j′ ± 1) ∈ S.

Notice that the non-crossing closed curve C goes along 0-edges from (0, 0) to (ℓ, |vℓ|), along
1-edges from (ℓ, |vℓ|) to (k, 0), then from (k, 0) back to (0, 0) along the x-axis. We shall gradually
shrink the curve C to obtain non-crossing closed curves D that successively have a smaller area
inside. For the induction, suppose we have obtained a closed curve D, initially D = C. We allow
the curve D to touch itself on the outside, but not on the inside. If D contains some point on
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the x-axis, then it contains just one segment (i′, 0) back to (i, 0) on the x-axis, with i ≤ i′ even,
and D goes from (i, 0) to (i′, 0) by following segments (i, j)(i ± 1, j ± 1), first along 0-edges to get
from w = v represented by (i, 0) to w′ represented by some (i, |w′|), and then along 1-edges to get
from w′ to w = v represented by (i′, 0). If D contains no point on the x-axis, then it ony follows
segments (i, j)(i ± 1, j ± 1), first along 0-edges to get from w to w′ and then along 1-edges to get
from w′ to w. The aim is to get from w′ to w inside D by following true 1-edges.

Let P be the path of 0-edges from w to w′, and let Q be the path of 1-edges from w′ to w, along
D. We shall find a square R inside of D given by xyzt = (i − 1, j)(i, j + 1)(i + 1, j), (i, j − 1) such
that w′ is one of x, y, z, t, say w′ = y, with yx a 0-edge and yz a 1-edge, so that the path of 0-edges
from w to w′ = y to x and the path of 1-edges from z to y = w′ to w meet at w′ but do not cross.
The edge yz is a true 1-edge, as it meets a 0-edge. The edges zt and tx cannot be a 0-edge and
a 1-edge respectively simultaneously, since the labelling is simple. The series of edges along yxtzy
are thus 0-edges followed by 1-edges according to the possible sequences 0001, 0011, 0111, with all
the 1-edges in any of these sequences being true 1-edges. Thus following P , then yxtzy, then Q,
gives a smaller closed curve D′ for the induction.

The only difficulty for the induction occurs if one or more of x, t, z are already in D, as the curve
is not allowed to touch itself inside. Let the path from w′ back to w′ along Q,w,P be given by four
segments T1, z

′, T2, t
′, T3, x

′, T4, possibly satisfying any subset of the conditions z = z′, t = t′, x = x′.
The cases of the three sequences are similar, so we shall assume the sequence is 0001. The worst

case is z = z′, t = t′, x = x′, so we shall assume these three equalities hold as well. If w occurs in T1

then consider the cycle w′, T1, z for the induction, and we shall find a path of true 1-edges from z
to w inside the cycle. If w = y we are done. If w occurs in T2, t, then consider the cycle z, T2, t for
the induction, and we shall find a path of true 1-edges from z to w inside the cycle. If w occurs in
T3, x, T4, we first consider the cycle z, T2, t for the induction and find a path of true 1-edges from z
to t inside the cycle. If w occurs in T3, x, we finish by considering the cycle t, T3, x and find a path
of true 1-edges from t to w inside the cycle. Finally if w occurs in T4, we continue with the cycle
t, T3, x by finding a path of true 1-edges from t to x, and finish with the cycle x, T4, w

′ by finding
a path of true 1-edges from x to w.

It remains to find the square R. Suppose P enters w′ along the 0-edge uw′, and Q leaves w′ along
the 1-edge w′u′. Up to rotation, there are three cases: (1) uw′v is (i−1, j)(i, j+1)(i+1, j) with D un-
derneath w′; then we may set xyzt = uw′vt with t = (i, j−1). (2) uw′v is (i−1, j−1)(i, j)(i+1, j+1)
with D underneath w′; then if e = (i, j)(i+1, j−1) is a 0-edge we may set xyzt = (i+1, j−1)(i, j)(i+
1, j + 1)(i + 2, j), and if e is a 1-edge we may set xyzt = (i− 1, j − 1)(i, j)(i + 1, j − 1)(i, j − 2). (3)
uw′v is (i−1, j +1)(i, j)(i+1, j +1) with D underneath w′; then if e′ = (i, j)(i−1, j −1) is a 0-edge
and e′′ = (i, j)(i+1, j −1) is a 1-edge we may set xyzt = (i−1, j −1)(i, j)(i+1, j −1)(i, j −2), if e′

is a 1-edge we may set xyzt = (i− 1, j +1)(i, j)(i− 1, j − 1)(i− 2, j), and finally if e′′ is a 0-edge we
may set xyzt = (i+1, j−1)(i, j)(i+1, j+1)(i+2, j). This completes the induction for shrinking D.

3 Antipodal Paths in Simple Labellings of the Hypercube

In this section we first prove the conjecture for simple antipodal labellings of Hn, n ≥ 2, and then
extend the result to simple labellings of Hn that are not necessarily antipodal. The proofs are
direct applications of Theorem 1.

Theorem 2 For every simple antipodal labelling G0, G1 of Hn, n ≥ 2, there exists a connected
component K0 of G0 that contains a pair of antipodal vertices v, vT ∈ V (the antipodal connected
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component KT
0 of G1 then also contains v, vT ).

Proof. Let P be a path from v to the antipodal vertex vT , and let P T be the antipodal path to
P from vT back to v. Consider the cycle Q consisting of P followed by P T . The cycle Q consists
of k sequences of edges labelled 0 and k sequences of edges labelled 1 in alternation. The cycle Q
can thus be viewed as an alternation of components A1, B1, A2, B2, . . . , Ak, Bk, where the Ai are
labelled 0 and the Bi are labelled 1. We have that A1 is antipodal to Bℓ, for ℓ = (k + 1)/2, so k
must be odd.

Suppose two Ai are the same. We may assume without loss of generality that these Ai are
A1 and Ai for i ≤ ℓ. The sequence can then be replaced by A1 = Ai, Bi, Ai+1, Bi+1, . . . , Aℓ, Bℓ =
Bℓ+i−1, Aℓ+i, Bℓ+i, . . . , Ak, Bk, thus reducing k to k′ = k − 2(i − 1). Repeating this reduction
enough times we eventually have that all components in the alternation A1, B1, A2, B2, . . . , Ak, Bk,
are distinct.

Suppose k ≥ 2, and consider the statement of Theorem 1. Letting K0 = A1, we can choose
K1 containing the union of B1, A2, B2, . . . Ak, Bk. Letting v, v′ be vertices in V (A1) ∩ V (B1) and
V (A1)∩ V (Bk) respectively, we infer that v and v′ are in the same connected component of G1, so
B1 = Bk, contrary to distinctness. Therefore k = 1, the alternation is A1, B1 with A1, B1 antipodal,
so there is a pair v, vT of antipodal vertices contained in both K0 = A1 and KT

0 = B1.

Theorem 3 Every (not necessarily antipodal) simple labelling of Hn has a pair of antipodal vertices
joined by a monochromatic path.

Proof. We proceed by induction on n. Suppose the result is true for Hn, and consider Hn+1. The
cube Hn+1 can be decomposed into two subcubes 0Hn and 1Hn, and by inductive hypothesis 0Hn

has a pair of antipodal vertices 0x and 0xT joined by a monochromatic path P . Say the edges of
P have label 0. If either of the edges (0x, 1x), (0xT , 1xT ) has label 0, then we obtain antipodal
vertices 1x, 0xT or 0x, 1xT joined by a monochromatic path labelled 0, by extending P . So sup-
pose both of these edges have label 1 for the remaining case. These two edges are in components
joined by edges of label 1, call these components C and D respectively. If C and D are the same
component of label 1, then 0x, 1xT are antipodal vertices joined by a path of label 1, and the result
follows. Otherwise by Theorem 1 we have that every path from C to D must traverse an edge in
the component E labelled 0 of the path P , otherwise components C and D in the boundary of E
would have to be the same component. Let P T be the path from 1xT to 1x antipodal to P . The
path P T joins C and D, and therefore must go through an edge of E. In particular, P T contains
a vertex yT of E, with y in P and thus also in E. But then a path labelled 0 joins the antipodal
vertices y and yT through E, completing the proof.

From Theorem 3 we obtain the following general class satisfying the conjecture.

Corollary 1 Even labellings of Hn induce simple labellings, so the conjecture follows for labellings
induced by even labellings (that are not necessarily antipodal).

Proof. If the labelling is not simple, then it contains a square xyzt with xy, zt having label 0 and
yz, tx having label 1, contrary to the assumption that every vertex with an even number of 1s in
the string has all edges coming out of it with the same label. Thus the labelling is simple and the
conjecture follows in this case from Theorem 3.

4



4 On the Occurrences of the Special Square

We earlier proved the conjecture in the case where the square xyztx with edges 0101 in that order
was forbidden. We refer to an ocurrence of this square as a special square. We first prove a
preliminary result.

Proposition 1 Suppose the conjecture is not true in n dimensions. Then it is also not true in
n + 1 dimensions, and so on by induction.

Proof. Suppose we have a counterexample of a labelled n-dimensional hypercube Hn. Making
two copies of the labelled Hn and joining them arbitrarily but antipodally gives a counter example
Hn+1, as an antipodal 1-edge path in Hn+1 would induce such a path in Hn.

Theorem 4 Consider a counter example to the conjecture with a minimal number of special squares
in an even dimension n. Let xyztx be a special square in such a counter example of the conjecture,
with edges labelled in turn 0101. Then the 1-edge components of yz and tx contain some antipodal
vertices u and uT respectively. Furthermore each component of 0-edges must contain along its
boundary some special square if we consider counter examples that have a minimal number of 0-
components with respect to those having a minimal number of special squares.

Proof. If no antipodal u, uT occur, then we can change the label of xy from 0 to 1, joining the two
components. If this flip produces one or more extra special squares, we may flip again the opposite
sides, from 1 to 0, and so on. As n is even, the parities of the flips from 0 to 1 and from 1 to 0
are different, so the process will eventually end, with one less special square. In the end, all special
squares will join components that contain an antipodal pair of vertices u, uT respectively.

Suppose a component A1 of 0-edges does not contain a special square along its boundary. Sup-
pose we flip A1 to a component of 1-edges and it is no longer a counter example. Then there must
be two 1-components B1 and B3 sharing at least one vertex with A1 and containing antipodal
vertices u, uT respectively. Then as in Theorem 2 we obtain an antipodal cycle of components
A1, B1, A2, B2, A3, B3. If A1 is A2 or A3, say A2, then the sequence v,A1, B1, A1, v

T , B2, A3, B2

shows that A1 contains a pair of antipodal vertices v, vT , contrary to having a counter example. If all
Ai are distinct, then as in Theorem 2 by the proof of Theorem 1, we must have B1 = B3, since there
is no special square in the boundary of A1. This gives the sequence A1, B1, w,A2, B2, A2, w

T , B1,
showing that A2 contains a pair of antipodal vertices w,wT , contrary to having a counter example.
So we may flip the component A0 to 1-edges, reducing the number of components.

This proof indicates that a counter example for n ≥ 6 would have to have at least four 1-
edge components. Our attempt to construct such a counter example with n = 6 and four 1-edge
components with 16 vertices each failed, so the cases with n ≥ 6 remain open. It can be shown by
similar methods that any counter example with n even must have at least two antipodal pairs of
special squares.

5 1-Switch Path Joining Antipodal Vertices

Consider a labelled n-dimensional hypercube, where the labelling is not necessarily antipodal, and
a path P in it joining antipodal vertices. We say that P is a k-switch path for some k ≥ 0 if P
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is the concatenation of at most k + 1 monochromatic paths (so that the path P switches colors at
most k times).

We restate the main conjecture of [1], and a new conjecture that implies it.

Conjecture 1 Any antipodal labelling of the n-dimensional hypercube always has a 0-switch path
joining antipodal vertices.

Conjecture 2 Any labelling of the n-dimensional hypercube always has a 1-switch path joining
antipodal vertices.

Theorem 5 If the labelling is antipodal, then the existence of a 2k+1-switch path joining antipodals
for some k ≥ 0 implies the existence of a 2k-switch path joining antipodals as well. In particular,
Conjecture 2 implies Conjecture 1.

Proof. If the path starts with the monochromatic path x, y and ends with the monochromatic
path z, xT , then these two paths have different colors, so we can remove the path x, y and extend
an antipodal path to obtain z, xT , yT , thus reducing the number of switches by one.

Theorem 6 The 1-switch conjecture holds for arbitrary labelings of the n-dimensional hypercube if
n ≤ 5, and via isometric paths (a path is isometric if all of its edges traverse different dimensions).
Consequently, the 0-switch conjecture for antipodal labelings of the n-dimensional hypercube if n ≤ 5,
and via isometric paths.

Proof. The 0 switch conjecture If n ≤ 2 then a shortest antipodal path has at most 2 edges
and thus at most 1 switch. If n = 3, then any vertex, with three incident edges, has two of these
edges of the same label, so we obtain a monochromatic path of length 2 that can be extended to
an antipodal isometric path of length 3 with at most one switch.

If n = 4, consider first the case where the label at each vertex is two 0s and two 1s. If one of
these cycles of 0s or 1s is of length 6 or more then we obtain a monochromatic path of length 3 in
the cycle joining two vertices at distance 3, and this path can be extended to an antipodal isometric
path of length 4 with only one switch. Otherwise we have four 0-squares and four 1-squares, and
we obtain an antipodal isometric path consisting of two 0-edges followed by two 1-edges, with only
one switch.

In the remaining case for n = 4 we have a vertex that has three incident edges of the same
label, say (0000, 0001), (0000, 0010), (0000, 0100) are all labelled 0-edges. If we can also come out of
one of 0001, 0010, 0100 with a 0-edge, the we obtain a path of length 3 joining vertices at distance
3 with a 0-label, which can be extended to an antipodal isometric path of length 4 with only one
switch. Otherwise we have a path 1010, 0010, 0011, 0001, 0101 of 1-edges, that is, a monochromatic
antipodal path.

If n = 5, the proof follows from Lemma 1 and Lemma 2 below. We may by Lemma 1 as-
sume that 00000 and 11100 are joined by an isometric monochromatic path, say of label 0. This
path can be extended to an antipodal isometrc 1-switch path unless the edges (00000, 00010) and
(11100, 11110) have label 1 and the edges (00010, 00011) and (11110, 11111) have label 0. But
then, if 00010 and 11110 are joined by an isometric 1-switch path, say going from label 0 to label
1, then adding the edges (00010, 00011) of label 0 and (11110, 11100) gives an isometric antipodal
1-switch path from 00011 to 11100 (the case going from label 1 to label 0 uses the other two edges
that had to have label 1 and label 0). If 00010 and 11110 are not joined by an isometric 1-switch
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path, then we have three antipodal monochromatic paths in the 3-cube ∗ ∗ ∗10 by Lemma 2. But
then, we could have taken the 3-cube ∗ ∗ ∗00 to contain three antipodal isometric monochromatic
paths, not just the isometric monochromatic path joining 00000 and 11100, and only one of these
antipodal monochromatic paths in the 3-cube ∗ ∗ ∗00 can have a corresponding antipodal pair in
the 3-cube ∗ ∗ ∗10 that is not joined by an isometric 1-switch path by Lemma 2, so the proof when
the corresponding antipodalpair in the 3-cube ∗ ∗ ∗10 is joined by ann isometric 1-switch path is
completed as in the previous case.

Lemma 1 An arbitrary labelling of H5 has an isometric monochromatic path of length 3.

Proof. The degree of each vertex is 5, so the average degree of vertices in the graph of 0 labels or
in the graph of 1 labels is at least 2.5, say of 1 labels. In particular, some connected component G
of 1 labels has average degree at least 2.5. Then G must contain a vertex v of degree at least 3,
and G cannot be a star rooted at v (otherwise the average degree would be less than 2). Extending
in G a path of length 2 starting with v with one of the other two edges coming out of v gives an
isometric path of label 1 in G, namely u0, v, u1, u2.

Lemma 2 A labeling if H3 that does not have an isometric 1 switch path joining some antipodal pair
of vertices, has isometric monochromatic paths joining the other three antipodal pairs of vertices.

Proof. Suppose 000 and 111 are not joined by an isometric 1 switch antipodal path. If the two edges
(000, 001) and (000, 010) do not have the same label, then one of the two paths 000, 001, 011, 111
and 000, 010, 011, 111 is a 1-switch path. Therefore all edges coming out of 000 and 111 must
have the same label, and the remaining hexagon 001, 011, 010, 110, 100, 101 has the other label.
This hexagon gives isometric monochromatic paths joining the three antipodal pairs other than
000, 111.

We say that a labelling of the n-dimensional hypercube is (r, n − r)-regular for some 0 ≤ r ≤ n
if each vertex has r 0-edges and n − r 1-edges.

Lemma 3 Each 0-component of an (r, n − r)-regular labelling is either an r-dimensional subcube
or a component containing two vertices at distance at least r + 1.

Proof. We first show that the 0-component contains two vertices at distance r. If x, y in the 0-
component are at distance q less than r, then y has q < r neighbors closer to x, so some z neighbor
of y in the 0-component must be at distance q + 1 from x by (r, n − r)-regularity. The claim thus
follows by induction on q.

Suppose x, y are at distance r in the same 0-component. Then the r neighbors of x, y in the
0-componenent must be the neighbors in the r-dimensional subcube containing x, y, otherwise we
have such neighbors of x at distance r + 1 of y or viceversa. Arguing similarly for the neighbors
of x and their antipodal neighbors of y at distance r in this r-dimensional subcube, we obtain all
the neighbors of neighbors of x or y in the same 0-component as well, until we obtain the whole
r-dimensional subcube containing x, y as the whole 0-component, or obtain distance r + 1 for the
0-componenent.
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Theorem 7 If a labelling is either (n−1, 1)-regular or (n−2, 2)-regular, then the 1-switch conjecture
holds.

Proof. For an (n−1, 1)-regular labelling, either we have a 0-component that is a (n−1)-dimensional
subcube, giving antipodal vertices at distance n − 1 in the 0-subcube that can be extended to
antipodal vertices in the whole cube by just one switch, or some 0-componenent already contains
vertices at distance n, thus antipodal.

For an (n − 2, 2)-regular labelling, either we have a 0-component with two vertices at distance
n− 1, which can be extended with just one switch to antipodal vertices at distance n, or with have
four (n − 2)-dimensional 0-cubes, in which case two aditional 1-edges give a 1-switch antipodal
path.

Note that the Lemma, the Theorem and their proofs also hold if we assume degrees at least
r instead of exactly r for the 0-component in the Lemma, and degrees at least n − 2 for the
0-components in the Theorem, so that the 1-components are either vertices, paths, or cycles.

We may extend the problem by considering labellings with r ≥ 2 possible labels (instead of
just r = 2 with labels 0 and 1). In that case, we may conjecture the existence of (r − 1)-switch
antipodal paths. Notice that if such antipodal paths exist, there necessarily exist monochromatic
paths joining vertices at distance ⌈n/r⌉.

The following bound shall be improved later.

Theorem 8 For any n, r, there exist monochromatic paths joining vertices at distance ⌈n/(2r)⌉.

Proof. Let N = 2n be the number of vertices. Then one of the r labels occurs in Nn/(2r) edges,
say label i. Then some i-component has K vertices and Kn/(2r) i-edges. If dimension j is used
sj times by this component, then

∑
1≤j≤n sj ≥ Kn/(2r) and

∑
1≤j≤n(sj/K) ≥ n/(2r). If we fix

a vertex x in this i-component and select a random vertex y in the same i-component, then with
probability at least sj/K dimension j will be flipped from x to y, since there are at least sj vertices
on either side of dimension j in this i-component. Summing this probability over all j we infer an
expected number of flipped dimensions at least n/(2r) from x to y, in particular some y achieves
⌈n/(2r)⌉ flips.

Notice that if we partition the dimensions almost evenly among the r labels, the bound above
on distance between vertices in monochromatic paths can only be improved from ⌈n/(2r)⌉ to ⌈n/r⌉.
We carry through this improvement in detail.

Let G be a connected induced subgraph of the n-dimensional hypercube Hn. Let h be the
maximum Hamming distance between vertices of G in Hn. Let d = 2e/v be the average degree of
vertices in G, where v and e are the number of vertices and edges in G.

Theorem 9 If G is a connected induced subgraph of Hn, then h ≥ d, with equality only if G is a
subcube Hd.

Note that if G is a subcube Hd, then h = d. We first prove the first statement of the theorem.
We say that x ≤ y for x, y ∈ V (Hn) if xi ≤ yi for 1 ≤ i ≤ n, and we say that x < y if x ≤ y and

x 6= y. We say that G as above is an ideal if whenever x ≤ y and y ∈ V (G), we have x ∈ V (G).

Lemma 4 We may assume w.l.o.g. that G is an ideal.
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Proof. If G is not an ideal, then for some 1 ≤ i ≤ n, there exist x ∈ V (G) and y ∈ V (Hn) \ V (G)
such that xi = 1, yi = 0, and xj = yj for j 6= i, 1 ≤ j ≤ n. Replacing every such x by the
corresponding y, we obtain a new G′ such that h′ ≤ h and d′ ≥ d. Repeating this for all 1 ≤ i ≤ n,
we obtain an ideal Gn such that if the theorem holds for Gn then it also holds for G, since h′ ≥ d′

implies h ≥ h′ ≥ d′ ≥ d.

Let |x| be the number of xi equal to 1. A maximal vertex in an ideal G is a vertex x ∈ V (G)
such that y /∈ V (G) for all y > x, y ∈ Hn.

Lemma 5 We may assume w.l.o.g. that if x is a maximal vertex in an ideal G, then |x| > d/2.

Proof. If |x| ≤ d/2, then removing x from G to obtain G′ gives d′ = 2e′/v′ ≥ (2e − d)/(v − 1) =
(dv − d)/(v − 1) = d and h′ ≤ h, so if h′ ≥ d′ then h ≥ h′ ≥ d′ ≥ d.

Lemma 6 We may assume w.l.o.g. that if x is a vertex in an ideal G with x1 = 0 and xi = 1,
then y with y1 = 1, yi = 0 and yj = xj for j 6= 1, i, 1 ≤ j ≤ n is such that y is also in G.

Proof. If the condition in the lemma does not hold for some x, y, i then replacing all such x by
the corresponding y gives G′ satisfying d′ ≥ d and h′ ≤ h, so if h′ ≥ d′ then h ≥ h′ ≥ d′ ≥ d.

Let z = max(x, y) for x, y ∈ V (Hn) be given by zi = max(xi, yi).

Lemma 7 h is the maximum over all pairs x, y of maximal vertices in the ideal G of |max(x, y)|.

Proof. The maximum distance between vertices of G cannot be more than the number of 1s
in either of the two vertices, thus at most |max(x, y)| for some maximal vertices x, y. Con-
versely, if whenever xi = yi = 1 we change yi to y′i = 0, then the distance between x and y′

is |x| + |y′| = |max(x, y′)| = |max(x, y)|.

Lemma 8 We may assume w.l.o.g. that if x, y are maximal vertices, then xi = yi = 1 for some i.

Proof. If not, then |x|, |y| > d/2 by Lemma 5, so h ≥ |max(x, y)| = |x|+ |y| > d and the theorem
follows.

Lemma 9 We may assume w.l.o.g that x1 = 1 for every maximal vertex in an ideal G.

Proof. If x1 = 0, then switching x1 = 0, xi = 1 with y1 = 1, yi = 0, yj = xj for j 6= 1, i gives y
also in G for any such i by Lemma 6, and adding z with z1 = 1, zj = xj for j 6= 1 gives G′ with
d′ = 2e′/v′ > (2e+ d)/(v +1) = (dv + d)/(v +1) = d by Lemma 5, and h′ = h since for all maximal
vertices u, we have |max(z, u)| = |max(t, u)|, where t differs from z in just some i with zi = ui = 1
and ti = 0 by Lemma 8. So if h′ ≥ d′ then h = h′ ≥ d′ ≥ d.

Now by Lemma 9, G is the union of two identical graphs G′ with x1 = 0 and G′′ with x1 = 1,
and assuming inductively that the theorem holds for G′ in Hn−1 we have h = h′ + 1 ≥ d′ + 1 = d.
This completes the proof of the first statement of Theorem 9. For the second statement, note that
for each of the modifications applied in the lemmas, either d′ > d, in which case h ≥ h′ ≥ d′ > d,
or the resulting graph is not a subcube if the original graph was not a subcube. Finally, the result
follows by induction on the two identical G′ and G′′.
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Corollary 2 If the edges of Hn are colored with r different colors 0 ≤ i < r, and hi is the maximum
Hamming distance in components of the subgraph induced by color i, then

∑
0≤i<r hi ≥ n. In

particular, for some 0 ≤ i < r, hi ≥ ⌈n/r⌉.

Proof. If the number of edges of color i is αin2n−1 with
∑

0≤i<r αi = 1, then the average degree
for color i is αin, and in particular some component of color i has average degree di ≥ αin, so by
the theorem we have hi ≥ di and

∑

0≤i<r

hi ≥
∑

0≤i<r

di ≥
∑

0≤i<r

αin = n.

In particular, in the case with just two colors, we have h0 + h1 ≥ n. It has been conjectured for
this case that there always exists a pair of antipodal vertices joined by a path of color 0 followed
by a path of color 1, which implies, if the coloring gives opposite colors to antipodal edges, that
there exists a monochromatic path joining antipodal vertices. This can be verified if the number of
edges of color 1 is strictly less than 2n, since in this case d1 < 2 (because the total number of edges
is n2n−1), so d0 > n− 2 and therefore h0 ≥ n− 1, giving a path of color 0 of endpoint distance n-1
that can be extended by an edge of color 0 or 1 to a path joining antipodal vertices.
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