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Abstract.

Publishing data for analysis from a table containing personal records, while maintaining individ-
ual privacy, is a problem of increasing importance today. The traditional approach of de-identifying
records is to remove identifying fields such as social security number, name etc. However, recent
research has shown that a large fraction of the US population can be identified using non-key at-
tributes (called quasi-identifiers) such as date of birth, gender, and zip code [16]. The k-anonymity
model protects privacy via requiring that non-key attributes that leak information are suppressed or
generalized so that, for every record in the modified table, there are at least k− 1 other records hav-
ing exactly the same values for quasi-identifiers [15, 17]. We propose a new method for anonymizing
data records, where quasi-identifiers of data records are first clustered and then cluster centers are
published. To ensure privacy of the data records, we impose the constraint that each cluster must
contain no fewer than a pre-specified number of data records. This technique is more general since
we have a much larger choice for cluster centers than k-Anonymity. In many cases, it lets us release a
lot more information without compromising privacy. We also provide constant factor approximation
algorithms to come up with such a clustering. This is the first set of algorithms for the anonymization
problem where the performance is independent of the anonymity parameter k. We further observe
that a few outlier points can significantly increase the cost of anonymization. Hence, we extend our
algorithms to allow an ε fraction of points to remain unclustered, i.e., deleted from the anonymized
publication. Thus, by not releasing a small fraction of the database records, we can ensure that
the data published for analysis has less distortion and hence is more useful. Our approximation
algorithms for new clustering objectives are of independent interest and could be applicable in other
clustering scenarios as well.

1. Introduction. With the rapid growth in database, networking, and com-
puting technologies, a large amount of personal data can be integrated and analyzed
digitally, leading to an increased use of data-mining tools to infer trends and patterns.
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This has raised universal concerns about protecting the privacy of individuals [18].

Age Place Disease
α β Flu

α + 2 β Flu
δ γ + 3 Hypertension
δ γ Flu
δ γ -3 Cold

(a) Original table

Age Place Points Disease
α +1 β 2 Flu

Flu
Hypertension

δ γ 3 Flu
Cold

(c) 2-gather clustering, with maximum radius 3

Age Place Disease
* β Flu
* β Flu
δ * Hypertension
δ * Flu
δ * Cold

(b) 2-anonymized version

Age Place Points Radius Disease
α +1 β 2 1 Flu

Flu
Hypertension

δ γ 3 3 Flu
Cold

(d) 2-cellular clustering, with total cost 11

Fig. 1.1. Original table and three different ways of achieving anonymity

Combining data tables from multiple data sources allows us to draw inferences
which are not possible from a single source. For example, combining patient data from
multiple hospitals is useful to predict the outbreak of an epidemic. The traditional
approach of releasing the data tables without breaching the privacy of individuals in
the table is to de-identify records by removing the identifying fields such as name,
address, and social security number. However, joining this de-identified table with a
publicly available database (like the voters database) on columns like race, age, and
zip code can be used to identify individuals. Recent research [16] has shown that for
87% of the population in the United States, the combination of non-key fields like date
of birth, gender, and zip code corresponds to a unique person. Such non-key fields
are called quasi-identifiers. In what follows we assume that the identifying fields have
been removed and that the table has two types of attributes: (1) the quasi-identifying
attributes explained above and (2) the sensitive attributes (such as disease) that need
to be protected.

In order to protect privacy, Samarati [15] proposed the k-Anonymity model, where
some of the quasi-identifier fields are suppressed or generalized so that, for each record
in the modified table, there are at least k− 1 other records in the modified table that
are identical to it along the quasi-identifying attributes. For the table in Figure 1.1(a),
Figure 1.1(b) shows a 2-anonymized table corresponding to it. The columns corre-
sponding to sensitive attributes, like disease in this example, are retained without
change. The aim is to provide a k-anonymized version of the table with the mini-
mum amount of suppression or generalization of the table entries. There has been
a lot of recent work on k-anonymizing a given database table [3, 12]. An O(k log k)
approximation algorithm was first proposed for the problem of k-Anonymity with
suppressions only [14]. This was recently improved to an O(k) approximation for the
general version of the problem [1].

In this paper, instead of generalization and suppression, we propose a new tech-
nique for anonymizing tables before their release. We first use the quasi-identifying
attributes to define a metric space (i.e., pairwise distances satisfying the triangle in-
equality) over the database records, which are then viewed as points in this space.
This is similar to the approach taken in [5], except that we do not restrict ourselves to
points in Rd; instead, we allow our points to be in an arbitrary metric space. We then
cluster the points and publish only the final cluster centers along with some cluster
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(a) Original points (b) r-gather clustering (c) r-cellular clustering

Fig. 1.2. Publishing anonymized data

size and radius information. Our privacy requirement is similar to the k-Anonymity
framework – we require each cluster to have at least r points1. Publishing the clus-
ter centers instead of the individual records, where each cluster represents at least r
records, gives privacy to individual records, but at the same time allows data-mining
tools to infer macro trends from the database.

In the rest of the paper we will assume that a metric space has been defined over
the records, using the quasi-identifying attributes. For this, the quasi-identifying at-
tributes may need to be remapped. For example, zip codes could first be converted to
longitude and latitude coordinates to give a meaningful distance between locations. A
categorical attribute, i.e., an attribute that takes n discrete values, can be represented
by n equidistant points in a metric space. Furthermore, since the values of different
quasi-identifying attributes may differ by orders of magnitude, we need to weigh the
attributes appropriately while defining the distance metric. For example, the attribute
location may have values that differ in orders of 10 miles with a maximum of 1000
miles, while the attribute age may differ by a single year with a maximum of 100
years. In this case we assume that the attribute location is divided by 10 and the
attribute age retained without change if both attributes are needed to have the same
relative importance in the distance metric. For the example we provide in Figure 1.1,
we assume that the quasi-identifying attributes have already been scaled. We assume
that appropriate steps have been taken to map the data so that a metric is defined
by choosing the scale factors carefully.

To publish the clustered database, we publish three types of features for each
cluster: (1) the quasi-identifying attribute values for the cluster center (age and lo-
cation in our example), (2) the number of points within the cluster, and (3) a set of
values taken by the sensitive attributes (disease in our example). We’ll also publish a
measure of the quality of the clusters. This will give a bound on the error introduced
by the clustering.

In this paper we consider two cluster-quality measures. The first one is the max-
imum cluster radius. For this we define the r-Gather problem, which aims to min-
imize the maximum radius among the clusters, while ensuring that each cluster has
at least r members. As an example, r-Gather clustering with minimum cluster size
r = 2, applied to the table in Figure 1.1(a) gives the table in Figure 1.1(c). In this ex-
ample, the maximum radius over all clusters is 3. As another example, Figure 1.2(b)
gives the output of the r-Gather algorithm applied to the quasi-identifiers, shown as
points in a metric space in Figure 1.2(a). Our formulation of the r-Gather problem
is related to, but not to be confused with, the classic k-Center problem [8]. The
k-Center problem has the same objective of minimizing the maximum radius among
the clusters, however, the constraint is that we can have no more than k clusters in
total. The r-Gather problem is different from k-Center problem in that instead

1We use r instead of k, as k is traditionally used in clustering to denote the number of clusters.
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of specifying an upper bound on the number of clusters, we specify a lower bound on
the number of points per cluster as part of the input. It’s also worth noting that the
constraint of at least r points per cluster implies that we can have no more than n/r
number of clusters, where n is the total number of points in our data set.

We also consider a second (more verbose) candidate for indicating cluster-quality,
whereby we publish the radius of each cluster, rather than just the maximum radius
among all clusters. For each point within a cluster, the radius of the cluster gives
an upper bound on the distortion error introduced. Minimizing this distortion error
over all points leads to the cellular clustering measurement that we introduce in this
paper. More formally, the cellular clustering measurement over a set of clusters, is
the sum, over all clusters, of the products of the number of points in the cluster and
the radius of the cluster. Using this as a measurement for anonymizing tables, we
define the r-Cellular Clustering problem as follows: Given points in a metric
space, the goal is to partition the points into cells, a.k.a. clusters, each of size at
least r, and the cellular clustering measurement is minimized. Consider again the
data in Figure 1.1(a). Figure 1.1(d) shows a r-cellular cluster solution with minimum
cluster size r = 2. The total cost is 2 × 1 + 3 × 3 = 11. Also, Figure 1.2(c) gives
the output of the r-Cellular Clustering algorithm applied to the quasi-identifiers
shown as points in a metric space in Figure 1.2(a). The total cost of the solution in
Figure 1.2(c) is: 50× 10 + 20× 5 + 8× 3 = 624. We study a more generalized version
of the problem: similar to the Facility Location problem [9], we add an additional
setup cost for each potential cluster center, associated with opening a cluster centered
at that point, but we don’t have the lower bound on number of points per cluster.
We call this the Cellular Clustering problem. In fact, we will use the setup costs
in the Cellular Clustering problem formulation to help us devise an algorithm
that solves r-Cellular Clustering.

Comparison with k-Anonymity. While k-Anonymity forces one to suppress or
generalize an attribute value even if all but one of the records in a cluster have the same
value, the above clustering-based anonymization technique allows us to pick a cluster
center whose value along this attribute dimension is the same as the common value,
thus enabling us to release more information without losing privacy. For example,
consider the table in Figure 1.3 with the Hamming distance metric on the row vectors.
If we wanted to achieve 5-Anonymity, we will have to hide all the entries in the table,
resulting in a total distortion of 20. On the other hand, a 5-Cellular Clustering

solution could use (1, 1, 1, 1) as the cluster center with a cluster radius of 1. This will
give a total distortion bound of 5 (the actual distortion is only 4).

Attr1 Attr2 Attr3 Attr4
Record 0 1 1 1 1
Record 1 0 1 1 1
Record 2 1 0 1 1
Record 3 1 1 0 1
Record 4 1 1 1 0

Fig. 1.3. A sample table where there is no common attribute among all entries.

Just like k-Anonymity, r-Gather and r-Cellular Clustering is sensitive to
outlier points, with just a few outliers capable of increasing the cost of the clustering
significantly. To deal with this problem, we generalize the above algorithms to allow
an ε fraction of the points to be deleted before publication. By not releasing a small
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fraction of the database records, we can ensure that the data published for analysis
has less distortion and hence is more useful. This can be done as long as our aim is
to infer macro trends from the published data. On the other hand, if the goal is to
find out anomalies, then we should not ignore the outlier points. There has been no
previous work for k-Anonymity with this generalization.

We note that, as in k-Anonymity, the objective function is oblivious to the sen-
sitive attribute labels. Extensions to the k-Anonymity model, like the notion of
l-diversity [13], can be applied independently to our clustering formulation.

We provide constant factor approximation algorithms for both the r-Gather and
r-Cellular Clustering problems. In particular, we first show that it is NP -hard
to approximate the r-Gather problem better than 2 and provide a matching upper
bound. We then provide extensions of both these algorithms to allow for an ε fraction
of unclustered points, which we call the (r, ε)-Gather and (r, ε)-Cellular Clus-

tering, respectively. These are the first constant factor approximation algorithms for
publishing an anonymized database. The best known algorithms [1, 14] for previous
problem formulations had an approximation ratio linear in the anonymity parameter
r.

The rest of the paper is organized as follows. First, in Section 2, we present a
tight 2-approximation algorithm for the r-Gather problem and its extension to the
(r, ε)-Gather problem, giving a 4-approximation for this case. We also present a
4-approximation for the (k, r, ε)-CENTER problem.

In Section 3, motivated by the desire to reduce the sum of the distortions ex-
perienced by the points, we introduce the problem of Cellular Clustering. We
present a primal-dual algorithm for the problem without any cluster-size constraints
that achieves an approximation ratio of 3. We then study the additional constraint
of having a minimum cluster size of r, and for this case the approximation ratio is at
most 36. Finally, we relax the problem by allowing the solution to leave at most an ε
fraction of the points unclustered. We conclude in Section 4.

2. r-GATHER CLUSTERING. To publish the clustered database, we pub-
lish three types of features for each cluster: (1) the quasi-identifying attribute values
for the cluster center, (2) the number of points within the cluster, and (3) a set of val-
ues taken by the sensitive attributes. The maximum cluster radius is also published to
give a bound on the error introduced by clustering. This is similar to the traditionally
studied k-Center clustering. In order to ensure r-Anonymity, we don’t restrict the
total number of clusters, instead, we pose the alternative restriction that each cluster
should have at least r records assigned to it. We call this problem r-Gather, which
we formally define below.

Definition 2.1. The r-Gather problem is to cluster n points in a metric space

into a set of clusters, such that each cluster has at least r points. The objective is to

minimize the maximum radius among the clusters.

We note that the minimum cluster size constraint has been considered earlier in
the context of facility location [10].

We first show the reduction for NP -completeness and hardness proofs.
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2.1. Lower Bound. We show that this problem is NP -complete by a reduction
from the 3-Satisfiability problem, where each literal belongs to at most 3 clauses [6].

Suppose that we have a boolean formula F in 3-CNF form with m clauses and n
variables. Let F = C1 ∧ . . . ∧ Cm, be a formula composed of variables xi, i = 1 . . . n
and their complements xi.

From the boolean formula, we create a graph G = (V, E) with the following
property: There is a solution to the r-Gather problem with a cluster radius of 1,
with respect to the shortest distance metric on the graph G, if and only if F has a
satisfying assignment.

We create the graph as follows: For each variable xi, create two vertices vT
i and

vF
i , and create an edge (vT

i , vF
i ) between the two vertices; in addition create a set Si

of (r − 2) nodes and add edges from each node in Si to both vT
i and vF

i . Picking vT
i

(vF
i ) as a center corresponds to setting xi = T (F ). For each clause Cj , create a new

node uj that is adjacent to the nodes corresponding to the literals in the clause. For
example, if C1 = (x1 ∨ x2) then we add edges from u1 to vT

1 and vF
2 . (Note that we

cannot choose both vT
i and vF

i since there are not enough nodes in Si.)
If the formula is indeed satisfiable, then there is a clustering by picking vT

i as
a center if xi = T and picking vF

i otherwise. Each clause is true, and must have a
neighbor chosen as a center. Moreover by assigning Si to the chosen center, we ensure
that each center has at least r nodes in its cluster.

Now suppose there is an r-gather clustering. If r > 6 then both vT
i and vF

i

cannot be chosen as centers. In addition, the clause nodes uj have degree at most 3
and cannot be chosen as centers. If exactly one of vT

i or vF
i is chosen as a center, then

we can use this to find the satisfying assignment. The assignment is satisfying as each
clause node has some neighbor at distance 1 that is a chosen center, and makes the
clause true.

This completes the NP -completeness proof. Note that this reduction also gives
us a hardness of 2. We just showed that there is a solution to the r-Gather problem
with a cluster radius of 1 if and only if F had a satisfying assignment. The next
available cluster radius is 2 in the metric defined by the graph G.

2.2. Upper Bound. We first use the threshold method used for k-Center

clustering to guess R, the optimal radius for r-Gather. The choices for R are defined
as follows. We will try all values 1

2dij where dij is the distance between points i and
j. Note that this defines a set of O(n2) distance values. We find the smallest R for
which the following two conditions hold:

Condition (1) Each point p in the database should have at least r − 1 other points
within distance 2R of p.

Condition (2) Let all nodes be unmarked initially. Consider the following proce-
dure: Select an arbitrary unmarked point p as a center. Select all unmarked
points within distance 2R of p (including p) to form a cluster and mark these
points. Repeat this as long as possible, until all points are marked. Now we
try to reassign points to clusters to meet the requirement that each cluster
has size at least r. This is done as follows. Create a flow network as follows.
Create a source s and sink t. Let C be the set of centers that were chosen.
Add edges with capacity r from s to each node in C. Add an edge of unit
capacity from a node c ∈ C to a node v ∈ V if their distance is at most 2R.
Add edges of unit capacity from nodes in V to t and check to see if a flow of
value r|C| can be found (saturating all the edges out of s). If so, then we can
obtain the clusters by choosing the nodes to which r units of flow are sent by
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a node c ∈ C. All remaining nodes of V can be assigned to any node of C
that is within distance 2R. If no such flow exists, we exit with failure.

The following lemma guarantees that the smallest R that satisfies these conditions
is a lower bound on the value of the optimal solution for r-Gather. Suppose we have
an optimal clustering S1, . . . , S` with ` clusters. Let the maximum diameter of any of
these clusters be d∗ (defined as the maximum distance between any pair of points in
the same cluster).

Lemma 2.2. When we try R = d∗

2 , then the above two conditions are met.

Proof. By the definition of r-Gather, every point has at least r − 1 other points
within the optimal diameter, and hence within distance 2R. Consider an optimal r-
Gather clustering. For each point i, all points belonging to the same optimal cluster
c as the point i are within a distance 2R of i. Thus, in the procedure of Condition
(2), as soon as any point in c is selected to open a new cluster, all unmarked points
belonging to c get assigned to this new cluster. So at most one point from each
optimal cluster is chosen as a center and forms a new cluster. We would now like to
argue that the reassignment phase works correctly as well. Let S be the set of chosen
centers. Now consider an optimal solution with clusters, each of size at least r. We
can assign each point of a cluster to the center that belongs to that cluster, if a center
was chosen in the cluster. Otherwise, since the point was marked by the algorithm,
some center was chosen that is within distance 2R. We can assign this point to the
center that had marked it. Each chosen center will have at least r points assigned to
it (including itself).

Since we find the smallest R, we will ensure that R ≤ d∗/2 ≤ R∗ where R∗ is the
radius of the optimal clustering. In addition, our solution has radius 2R. This gives
us a 2-approximation.

Theorem 2.3. There exists a polynomial time algorithm that produces a 2-

approximation to the r-Gather problem.

2.3. (r, ε)-Gather Clustering. A few outlier points can significantly increase
the clustering cost under the minimum cluster size constraint. We consider a relax-
ation whereby the clustering solution is allowed to leave an ε fraction of the points
unclustered, i.e., to delete an ε fraction of points from the published k-anonymized
table. Charikar et al. [4] studied various facility location problems with this relaxation
and gave constant factor approximation algorithms for them.

For the (r, ε)-Gather problem, where each cluster is constrained to have at least
r points and an ε fraction of the points are allowed to remain unclustered, we modify
our r-Gather algorithm to achieve a 4-approximation. We redefine the condition to
find R. We find the smallest R that satisfies the following condition: There should
be a subset S of points containing at least 1− ε fraction of the points, such that each
point in S has at least r − 1 neighbors within distance 2R in S.

This condition can be checked in O(n2) time by repeatedly removing any point
in S that has fewer than r − 1 other points in S within distance 2R of itself, with
S initially being the entire vertex set. It is clear that the smallest R we found is no
more than R∗, the optimal radius.

Let R be the value that we found. Let N(v) denote the set of points in S within
distance 2R of v, including v itself. We know then N(v) ≥ r. We then consider the
following procedure: Select an arbitrary point p from S. If there are at least r − 1
other points within distance 2R of p, then form a new cluster and assign p and all
points within distance 2R of p to this cluster. Remove all these points from further
consideration and repeat this process until all remaining points have fewer than r− 1
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other points within distance 2R of them. Let U be the set of points left unclustered
at the end of this process. For each u ∈ U , there exists a point p ∈ N(u) such that
p is assigned to some cluster c in the procedure of forming clusters. We can see this
as follows. Since u was left unassigned at the end of the procedure, there are fewer
than r unassigned points remaining in N(u). This implies that there is at least one
point p in N(u) which is already assigned to some cluster c. We assign u to c, which
already has at least r points.

Thus, we have assigned all points to clusters, such that each cluster has at least
r points. Note that the radius of each cluster is no more than 4R. This gives us the
following theorem.

Theorem 2.4. There exists a polynomial time algorithm that produces a 4-

approximation to the (r, ε)-Gather problem.

We note that in the problem formulation of (r, ε)-Gather, if we require the
cluster centers to be input points, instead of arbitrary points in the metric, then we
can improve the approximation factor to 3 as follows. In the filtering step we define
“candidates” as the set of points that have at least r points within radius R. The total
number of points within distance R of the candidates should contain at least 1 − ε
fraction of the points. Call this set S. Each point in S has at least r − 1 neighbors
within distance 2R in S. In the initial phase we greedily pick clusters of radius R
(instead of 2R) that have at least r points and mark those points covered. If a point
in S is now uncovered, it must have a candidate within distance R that was unable to
form a cluster. This is because some of the points within distance R of the candidate
were covered in the first phase by disks of radius R. Hence each point in S can reach
such a cluster center within distance 3R (through the candidate).

2.4. Combining r-Gather with k-Center. We can combine the r-Gather

problem with the k-Center problem and have the two constraints present at the
same time. That is, we minimize the maximum radius, with the constraint that we
have no more than k clusters, each must have at least r members. We call this the
(k, r)-Center problem.

It is worth mentioning that a similar problem has been studied before in the k-
Center literature. That is, instead of having a lower bound r on the cluster size as an
additional constraint to the original k-Center formulation, an upper bound on the
cluster size is specified. This is called the Capacitated k-Center problem [11]. Bar-
Ilan, Kortsarz, and Peleg [2] gave the first constant approximation factor of 10 for this
problem. The bound was improved subsequently to 5 by Khuller and Sussmann [11].
In this subsection though we only concentrate on the (k, r)-Center problem defined
above.

We note here that the algorithm developed for r-Gather in Subsection 2.2 can
be extended to provide a 2-approximation for the (k, r)-Center problem. We just
have to add to Condition (2) the extra criteria that if the number of centers chosen
exceeds k then exit with failure, i.e., try a different value for R. We can show that
Lemma 2.2 holds for the modified conditions, hence an approximation factor of 2.

We also consider the outlier version of this problem, namely, the (k, r, ε)-Center

problem.
We show that the following algorithm is a 4-approximation algorithm for the

(k, r, ε)-Center problem.
Fix a guess for the optimal radius R (choose the smallest R that succeeds). For

each such guess, we apply the following algorithm. Let D(v, δ) be the set of points
within distance δ of v (including v).
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Algorithm:

(Filtering Step) Let S be the set of points v such that |D(v, 2R)| ≥ r. Check to see
if |S| ≥ (1− ε)n, otherwise exit with failure. From now on we only consider points in
S.

(Greedy Step) We now choose up to k centers. We put the centers in the set Q.
Initially Q is empty. All points are uncovered to start with. Let N(v, δ) be the
set of uncovered points within distance δ of v (including v itself). Points are either
uncovered, or covered. Once a point is covered it is removed from consideration. At
each step i, we choose a center ci that satisfies the following criteria:
(a) ci is uncovered.
(b) |N(ci, 2R)| is maximum.
All uncovered points in N(ci, 4R) are then marked as covered.

After Q is completely decided, check that the total points covered is at least
(1 − ε)n, otherwise exit with failure.

(Assignment step): Form clusters as follows. For each ci ∈ Q, form a cluster Ci

centered at ci. Each covered point is assigned to its closest cluster center.

For each ci, we denote Gi = N(ci, 2R) and Ei = N(ci, 4R), which are uncovered
points within distance 2R and 4R of ci, when ci is chosen.

O1

O2

O3
E1

E2

O1

O2

O3
E1

Gi

Ei

Oi

ci

G2

c1 G1 G1
c1

c2

Fig. 2.1. Optimal Clusters and the Greedy Step

In Figure 2.1 we illustrate this algorithm via an example. Let’s start from the
Greedy Step and assume for a moment that R is indeed the optimal radius just for
illustration purposes. Let the optimal solution have clusters O1, . . . , Ok . In the figure,
we only show cluster centers to be picked and omit the rest of the points. The left side
illustrates the situation when we are picking c1. Note that G1 includes O1 completely,
and overlaps with O2. Because of this, all points in O1 and O2 are in E1 and marked
covered and cannot be chosen as a center later. Note that E1 in fact will cover points
in other optimal clusters as well. For example, when we choose c1 and cover all points
in E1, we also cover some points in O3. However, we may still pick a remaining point
in O3 as the next cluster center c2, as shown in the right side. Note that in the Greedy
Step, we completely ignore the constraint of r, as we are not forming any clusters but
only picking cluster centers. In fact, G2 now could have fewer than r uncovered points.
The key is that the Gi’s are far apart. Hence in the Assignment Step, all the points in
D(c2, 2R) that were initially covered by E1 will eventually be assigned to the center
c2, giving the whole cluster C2 at least r points. Detailed proofs are below.

Lemma 2.5. After the assignment step, each cluster formed has at least r points,

and radius at most 4R.
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Proof. Every time a center ci is selected, we only cover points within distance
4R, thus the maximum radius is at most 4R. In the end, each point is assigned to
its closest chosen center in Q. Observe that the cluster centers are more than 4R
apart. Thus for each center ci and its corresponding cluster Ci, all the points within
distance 2R of ci are assigned to the same cluster Ci. By the filtering step, we know
that |Ci| ≥ |D(ci, 2R)| ≥ r.

Lemma 2.6. The optimal solution on set S is the same as the optimal solution

on set V .

Proof. This is simply true by the filtering step, since every point in the optimal
solution belongs to S.

Lemma 2.7. Consider the guess R = d∗

2 , where d∗ is the maximum distance

between any two points in the same optimal cluster, our algorithm covers no less

points than the optimal solution on set S.

Proof. We are going to prove a stronger statement, we’ll show that our algorithm
covers no less points than the following optimal solution OPT on set S: it has at most
k clusters, and the maximum distance between any two points in the same optimal
cluster is at most d∗, but there is no requirement on the number of points per cluster.
Let O1, O2, . . . , Ok denote the set of optimal clusters in OPT . We claim that:

|E1 ∪ . . . ∪ Ek| ≥ |O1 ∪ . . . ∪ Ok|(2.1)

The proof is by induction on k. The claim is true for k = 1, since |E1| ≥ |G1| ≥
|O1|. Assume that k > 1. Clearly,

k⋃

i=1

(E1 ∩ Oi) ⊆ E1.

Assume that G1 intersects one of the disks O1, . . . , Ok (say, O1). Then O1 ⊆ E1 and
the following inequality is satisfied.

|E1| ≥ |O1| +

k∑

i=2

|E1 ∩ Oi|.(2.2)

The above inequality is satisfied even if G1 does not intersect any of the disks
O1, . . . , Ok, since then

k⋃

i=1

(E1 ∩ Oi) ∪ G1 ⊆ E1.

Now since |G1| ≥ max{|O1|, |O2|, . . . , |Ok|} ≥ |O1|, we have

|E1| ≥ |G1| +

k∑

i=1

|E1 ∩ Oi| ≥ |O1| +

k∑

i=2

|E1 ∩ Oi|.

In either case, inequality (2.2) is satisfied.

Now consider the (k − 1)-center problem on the set S − E1. On this set, our
algorithm could have picked the sets E2, E3, . . . , Ek. Also, for S −E1, it is clear that
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O2 −E1, O3 −E1, . . . , Ok −E1 is a solution, although it is not necessarily an optimal
one. By induction, we know that

|E2 ∪ . . . ∪ Ek| ≥ |

k⋃

i=2

(Oi − E1)|(2.3)

Combining inequalities (2.2) and (2.3) proves (2.1).
Combining the above three lemmas we have the following theorem.
Theorem 2.8. Our algorithm gives a 4-approximation for the (k, r, ε)-Center

problem.

3. Cellular Clustering. As mentioned in the introduction, a second approach is
to publish the radius of each cluster in addition to its center and the number of points
within it. In this case, for each point within a cluster, the radius of the cluster gives
an upper bound on the distortion error introduced. The Cellular Clustering

problem aims to minimize the overall distortion error, i.e., it partitions the points
in a metric space into cells, each having a cell center, such that the sum, over all
cells, of the products of the number of points in the cell and the radius of the cell is
minimized. We even allow each potential cluster center to have a facility (setup) cost
fc associated with opening a cluster centered at c. This will later allow us to solve
the problem in the case when each cluster is required to have at least r points within
it.

Definition 3.1. A cluster consists of a center along with a set of points assigned

to it. The radius of the cluster is the maximum distance between a point assigned to

the cluster and the cluster center. To open a cluster with cluster center c and radius

r incurs a facility cost fc. In addition, each open cluster incurs a service cost equal

to the number of points in the cluster times the cluster radius. The sum of these two

costs is called the cellular cost of the cluster. The Cellular Clustering problem

is to partition n points in a metric space into clusters with the minimum total cellular

cost.

We first show that the problem is NP-complete via a reduction from set cover.
Theorem 3.2. The Cellular Clustering problem is NP-complete.

Proof. We can view the set cover problem as a bipartite graph (S, X, E) where
S contains a vertex corresponding to each set, X contains a vertex corresponding to
each element, and E is the set of (set,element) pairs denoting membership. We then
set up a Cellular Clustering problem as follows: Each vertex in the bipartite
graph corresponds to a point in the metric space. The distance between the points
is defined as follows: the points are adjacent to each other according to the edge
defined in E. In addition, the points in the set S form a clique, i.e., adjacent to each
other. All points adjacent to each other have distance 1. And we can assume that
the distance between any set si and a vertex xj ∈ X is 2 if xj /∈ si. The facility cost
for each point in S is 1, and the facility cost for each point in X is very high.

We observe that there is a collection of k sets covering all the elements, if and
only if there is a cellular clustering with cost k + |X | + |S|. If a collection of k sets
chosen from S exist that cover all elements in X , then those k sets are chosen as
clusters of radius 1, with each element belonging to such a cluster. We pay a total of
k facility cost, while every point also incurs a radius cost of 1.

We now show that a cellular clustering cost of |X |+ |S|+ k also corresponds to a
set cover of size k. From the setup, it is obvious that cluster centers can only reside
on the points in S. Assume that in the solution, k′ such clusters centers are chosen.
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Without loss of generosity, we can assume that each of the k′ clusters have radius
at least 1, thus each point has to pay a radius cost of at least 1. Otherwise we can
perform the following modification for each cluster of radius 0. Such a cluster has a
single member, which corresponds to a point in S. We close down this cluster, saving
a facility cost of 1. And assign this point to a cluster of radius 1, encountering a
radius cost of 1. A cluster of radius 1 has to exist. Otherwise the total cost of the
solution would be at least 2|X |+ k′ + 2(|S| − k′), where each point in X has to pay a
radius of cost 2, and each point in S has to either pay a facility cost of 1 or a radius
cost of 2. We can rewrite it as |X | + |S| + |X | + (|S| − k′) to see that obviously this
can’t happen.

Obviously if k′ > k, then the total cluster cost will be at least k′ + |X | + |S|.
Assume k′ < k. We’ll modify the solution without increasing the cost so that each
cluster has a radius of 1, which will yield a set cover solution. Consider any cluster
of radius 2, centered at si. Let Y denote the set of points in X that belongs to this
cluster and is of distance 2 away from si. For each point xj ∈ Y , we simply find a
set sij such that xj ∈ sij , and assign xj to the cluster centered at sij . If sij was
already chosen, then xj only has to pay a radius cost of 1, and we don’t incur any
additional facility cost. Otherwise, we save 1 on the radius cost for sij , and we pay
for an additional facility cost of 1 at sij .

We present a primal-dual algorithm for the Cellular Clustering problem that
achieves an approximation factor of 3.

Let c = (vc, dc) denote a cluster c whose cluster center is the node vc and whose
radius is dc. By definition, the setup cost fc for a cluster c = (vc, dc) depends only on
its center vc; thus f(c) = f(vc). For each possible choice of cluster center and radius
c = (vc, dc), define a variable yc, a 0/1 indicator of whether or not the cluster c is
open. There are O(n2) such variables. For a cluster c = (vc, dc), any point pi within
a distance of dc of its center vc is said to be a potential member of the cluster c. For
all potential members pi of a cluster c, let xic be a 0/1 indicator of whether or not
point pi joins cluster c. Note that the pair (i, c) uniquely identifies an edge between
pi and the center of cluster c. We relax the integer program formulation to get the
following linear program:

Minimize:
∑

c(
∑

i xicdc + fcyc)
Subject to:

∑
c xic ≥ 1 ∀i

xic ≤ yc ∀i, c
0 ≤ xic ≤ 1 ∀i, c
0 ≤ yc ≤ 1 ∀c

And the dual program is:

Maximize:
∑

i αi

Subject to:
∑

i βic ≤ fc ∀c
αi − βic ≤ dc ∀i, c
αi ≥ 0 ∀i
βic ≥ 0 ∀i, c

The above formulation is similar to the approach used for facility location [9].
However, since the assignment of additional points to clusters increases the service
cost incurred by existing members of the cluster, we need a slightly different strategy
to form clusters and assign points to clusters.

The procedure of raising the dual variables until we find a feasible dual solution
is identical to the procedure for facility location given by Jain and Vazirani [9]. For
completeness we present the procedure here. In this procedure, each point will raise
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its dual variable αi until it is connected to an open cluster.

Initially, each point is unconnected, and its dual variables αi and βic’s are set at
zero. The algorithm will raise the dual variable αi for all unconnected points uniformly.
For convenience, we introduce the notion of time, the dual variables increase by 1 per
time unit. When αi = dc for some edge (i, c), the edge (i, c) is declared to be tight.
At this point, the dual variable βic is raised at the uniform rate with the rest of the
α’s. βic goes towards paying for fc.

Cluster c is said to be paid for when
∑

i βic = fc. The algorithm then checks
to see if there are any unconnected points that have a tight edge to c. If so, then
c is declared temporarily open and all unconnected points with a tight edge to c are
declared connected. Cluster c is said to be the connecting witness for each of these
points. Notice that the dual variables αi and βic’s for points with tight edges to c are
no longer growing.

We now show how to construct a primal solution with cost at most 3 times the
value of the dual solution found above. For this, we note the following properties:

(1) At any time, the value of αi for all unconnected points i is the same. Moreover,
this value is no less than the value of αj for any connected point j.

(2) Once a point has a tight edge to a particular cluster c, all unconnected potential
members of that cluster (i.e., points within a distance dc of the cluster center
vc) have tight edges to it.

(3) Examine any temporarily opened cluster c. All points for which c is a connecting

witness have the largest α values among all points that have tight edges to c.

Property (1) follows from the definition of our procedure. Property (2) follows
from property (1) and the fact that the edge (i, vc) becomes tight when the dual
variable αi equals dc. Property (3) then follows from (2).

We construct a primal solution as follows: initially all points are unassigned.
Order the temporarily open clusters in decreasing order of radius. Consider the clusters
one by one, we will permanently open a cluster c if all points with tight edges to c are
still unassigned. Once c is open, all points with tight edges to c are directly assigned

to c. On the other hand, if the cluster c being considered has a point i, such that i is
already assigned elsewhere and i has a tight edge to c, we’ll shut down c, and consider
the next cluster.

After all the clusters are considered, we might have some points still left unas-
signed. Consider any such a point i, and consider the cluster c′ that is the connecting

witness for i. If i is still unassigned, then c′ was shut down. There must exist a point
j with tight edges to c′, such that j was directly assigned to some cluster c, which
has a larger radius compared to c′. We will have i join c, and i becomes indirectly

assigned to c. Notice that after i joins c, the cluster c may now have a new radius,
since i could be potentially more than dc away from c. Rename c as c◦ instead. The
radius of the new cluster c◦ can be bounded as follows:

Lemma 3.3. For a specific cluster c◦, dc◦ ≤ 3dc. Recall that dc is the original

cluster radius of cluster c = (vc, dc).

Proof. We inherit the notation of i, j, c′, and c◦ as above. we have: d(i, vc) ≤
d(i, vc′) + d(vc′ , j) + d(j, vc) ≤ 2dc′ + dc ≤ 3dc.

We now bound the cost of the primal solution. Let C be the set of open centers.
Some of the points are directly assigned, and others are indirectly assigned to a cluster
centered at c◦. We consider the set of points Pc◦ assigned to a particular open cluster
c◦.

The following lemma gives a bound on the service cost of all points assigned to
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c◦ and three times its facility cost.
Lemma 3.4. (

∑
i∈P

c
◦

xic◦dc◦ + 3fc◦yc◦) ≤ 3 ×
∑

i∈P
c
◦

αi.

Proof. Consider the cluster c◦ to which point i is indirectly assigned. By property
(3), αi ≥ αj for some j with tight edges to vc and αj ≥ dc. Combined with Lemma
3.3, we have 3αi ≥ 3αj ≥ 3dc ≥ xic◦dc◦ . Consider the point j which is directly

assigned to c◦, 3αj = 3dc + 3βjc ≥ 3xic◦dc◦ + 3βjc◦ . Since we only permanently open

the cluster c◦ when we have all the points with tight edges to vc directly assigned to
c◦, 3

∑
j βjc◦ = 3fc◦yc◦ .

Summing over all open clusters in C gives the bound. We thus obtain the following
theorem. Note that we are actually paying 3 times of the original cluster cost for each
of the original cluster c. And the final clusters constructed have radius at most 3 times
that of the original clusters. These facts will become important for the r-Cellular

Clustering problem discussed in Subsection 3.1.
Theorem 3.5. The primal-dual method described above produces a 3-appro-

ximation solution to the Cellular Clustering problem.

3.1. r-Cellular Clustering. We now extend the above primal-dual algorithm
to get an approximation algorithm for the r-Cellular Clustering problem which
has the additional constraint that each cluster is required to have at least r members.
The notation (r, C) is used to denote a solution having a total cost of C, and having
at least r members in each cluster.

Comparison with prior clustering work. Since our algorithm can be viewed
as an extension of facility location, we briefly discuss related results. The facility
location (and k-median) problems have been studied with the minimum cluster size
constraint [10], as well as in the context of leaving an ε fraction of the points un-
clustered [4]. Let OPTr be the optimal facility location cost with minimum cluster
size r. Recall that (r, C) denotes a solution with minimum cluster size r and solu-
tion cost C. Bi-criteria approximations for the facility location problem of the form
(α · r, 1+α

1−α
β · OPTr) were achieved independently by Guha, Meyerson and Munagala

and by Karger and Minkoff [7, 10]. Here, β refers to the best approximation factor for
facility location, and α is an adjustable parameter between 0 and 1. It is not known
whether it is possible to achieve a one-sided approximation on facility location cost
alone. In contrast, for the r-Cellular Clustering problem, we provide an one-
sided approximation algorithm, specifically we obtain a (r, 36OPTr) solution, where
OPTr is the cost of the optimal solution with cluster size at least r,

To achieve this, we first study a sharing variant of this problem, where a point is
allowed to belong to multiple clusters, thus making it easier to satisfy the minimum
cluster size constraint. Interestingly, allowing sharing changes the value of the optimal
solution by at most a constant factor. We note that this observation does not hold for
facility location, where a shared solution might be arbitrarily better than an unshared
one. The algorithm consists of three main steps:

1. Augmenting with Setup Costs. Given an instance of r-Cellular Cluster-

ing, we first construct an instance of Cellular Clustering as follows: augment
the cluster cost fc of a cluster c by r×dc. In addition, if a cluster c = (vc, dc) has fewer
than r points within distance dc of its center vc, this cluster is eliminated from the
instance. If the original r-Cellular Clustering instance has an optimal solution
with cost OPTr, it is not hard to see that the same solution works for the Cellular

Clustering instance constructed above with a total cost of at most 2OPTr. We in-
voke the 3-approximation algorithm for Cellular Clustering on this new instance
to find a solution with cost at most 6OPTr.
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2. Sharing Points between Clusters. We now describe the notion of a shared

solution for r-Cellular Clustering. In a shared solution, points are allowed to be
assigned to multiple clusters, as long as they pay the service cost for each cluster they
are assigned to. A shared solution is feasible if all clusters have at least r (potentially
shared) members. We modify the solution obtained above to get a feasible shared
solution for r-Cellular Clustering as follows: for each open cluster c with center
P , assign the r closest neighbors of P to c as well, regardless of where they are initially
assigned. The extra service cost of at most r×3dc for these r points can be accounted
for by the extra 3 times the cluster cost of r × dc being paid by the open cluster c in
the Cellular Clustering solution. Thus, we have obtained an (r, 6OPTr) shared
solution for the r-Cellular Clustering instance.

3. Making the Clusters Disjoint. Finally we show how to convert a shared
solution to a valid solution where each point is assigned to only one cluster, with
only a constant blowup in cost. We note that for the corresponding facility location
problem, it is not feasible to do this “unsharing” without a large blowup in cost in
the worst case.

Initially, all points are labeled unassigned. We consider the clusters in order of
increasing cluster radius dc. If a cluster c has at least r unassigned members, then
it is opened and all its unassigned members are assigned to c and labeled assigned.
We stop this process when all the remaining clusters have fewer than r unassigned

members each. The remaining clusters are called leftover clusters. We temporarily
assign each of the unassigned points arbitrarily to one of the leftover clusters it belongs
to. Since each cluster had at least r members in the shared solution, each leftover
cluster c′ must have a member in the shared solution, which is now assigned to an
open cluster o, s.t. dc′ ≥ do. We thus have the situation illustrated in Figure 3.1.

Member

Leftover Cluster

Center

Assigned members
Shared members

m ≥ r

VmV2V1

m′ < r
U1

U2
Um′

(weight m′)

Open Cluster o

Fig. 3.1. Structures of open and leftover clusters

The points are organized in a forest structure, where each tree has two “levels”.
We can regroup points into clusters, on a per tree basis. It is obvious that each
tree has at least r points, since it contains at least one open cluster o. We further
simplify the structure into a true two-level structure as in Figure 3.1, by collapsing
each leftover cluster into a single node with weight equal to the number of points
temporarily assigned to it. Nodes in the first level of the tree have weight 1. We
apply the following greedy grouping procedure: first consider only the nodes at the
second level of the tree and collect nodes until the total weight exceeds r for the first
time. We group these nodes (belonging to leftover clusters) into a cluster, and repeat
the process. Notice that since we did not touch the first-level nodes, the total weight
of remaining nodes in the tree is at least r. If the total weight of remaining nodes in
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the second level, Ws, is less than r, then we extend the grouping into the first level
nodes. Let m denote the total weight of nodes in the first level. If Ws + m ≥ 2r,
then we group the nodes in the second level with r − Ws first level nodes together
into a cluster; the remaining nodes in the first level form a cluster. Otherwise, all the
remaining nodes (both the first and second level) are grouped into a cluster. If we
break up the tree using the procedure above, each resulting cluster has size at least r.

Lemma 3.6. For a cluster that contains any second-level nodes, the total number

of points in the cluster is no more than 2r − 1.
Proof. Since a single second-level node has weight less than r, a cluster containing

only second-level nodes has at most 2r − 1 members. If the cluster contains both the
first and second-level nodes, then we must have reached the case where the total weight
of remaining nodes in the second level is less than r. In that case, by definition, the
cluster formed containing these second-level nodes has size either r or less than 2r−1.

There could be a cluster that only contains the first level nodes, and its entire
cost (both the service and cluster cost) can be accounted for by its cost in the original
(r, 6OPTr) shared solution. We now bound the cost of clusters containing the second-
level nodes.

Lemma 3.7. For each cluster c formed that contains second level nodes, there

exists a leftover cluster c′ unique to c, such that the following holds: let p be the

center of the initial open cluster o at the first level, if we center the cluster c at p,
then the radius of cluster c, dc ≤ 3dc′ .

Proof. Among all the leftover clusters that contributed to c, let c′ be the one
with the maximum radius. By definition, all nodes assigned to a leftover cluster get
assigned to a single cluster, guaranteeing the uniqueness of c′. Let do be the radius
of the open cluster at level 1 of this tree. Consider a point q ∈ c. If q is a first-level
node, then d(q, p) ≤ do ≤ dc′ . If q is a second-level node, then let c′′ be the leftover
cluster that q was assigned to, then d(q, p) ≤ 2dc′′ + do ≤ 3dc′ .

The above lemma implies that by choosing p as the cluster center, the service
cost of each point in c is no more than 3dc′ and the total facility cost incurred within
our solution is no more than that of the shared solution. Together with Lemma 3.6,
we conclude that the service cost of points in c is no more than 6r × dc′ . Notice that
in the shared solution, points in cluster c′ are paying a total service cost of at least
r × dc′ . We thus have the following theorem.

Theorem 3.8. The above procedure produces a solution with minimum cluster

size r and total cost no more than 36OPTr, i.e., a (r, 36OPTr) solution, where OPTr

is the value of the optimal solution with a minimum cluster size of r.
We note that the above algorithm and analysis can be combined with the tech-

nique developed in [4] to give a constant approximation to the (r, ε)-Cellular Clus-

tering problem.

4. Conclusions. Publishing data about individuals without revealing sensitive
information is an important problem. The notion of privacy called k-Anonymity has
attracted a lot of research attention recently. In a k-anonymized database, values
of quasi-identifying attributes are suppressed or generalized so that for each record
there are at least k−1 records in the modified table that have exactly the same values
for the quasi-identifiers. However, the performance of the best known approximation
algorithms for k-Anonymity depends linearly on the anonymity parameter k. In this
paper, we introduced clustering as a technique to anonymize quasi-identifiers before
publishing them. We studied r-Gather as well as a newly introduced clustering

16



metric called r-Cellular Clustering and provided the first constant factor ap-
proximation algorithms for publishing an anonymized database table. Moreover, we
generalized these algorithms to allow an ε fraction of points to remain unclustered.
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