
Approximating the Minimum Chain Completion problem

Tomás Feder∗ Heikki Mannila† Evimaria Terzi‡

Abstract

A bipartite graph G = (U, V, E) is a chain graph [9] if there is a bijection π : {1, . . . , |U |} → U such

that Γ (π (1)) ⊇ Γ (π (2)) ⊇ . . . ⊇ Γ (π (|U |)), where Γ is a function that maps a node to its neighbors.

We give approximation algorithms for two variants of the Minimum Chain Completion problem, where

we are given a bipartite graph G(U, V, E), and the goal is find the minimum set of edges F that need to

be added to G such that the bipartite graph G′ = (U, V, E′) (E′ = E ∪ F) is a chain graph.

Keywords: approximation algorithms, chain graphs, vertex cover, min cut, max flow

1 Introduction

A chain graph is a bipartite graph G(U, V, E) where the sets of neighbors of nodes form a chain. That is,

for any two nodes u, v ∈ U (or u, v ∈ V) we have Γ(u) ⊆ Γ(v) or vice versa. Here Γ(u) denotes the set of

neighbors of node u. The concept of chain graphs has been introduced by Golumbic [4] and Yannakakis [9].

Moreover, Yannakakis [9] showed that it is NP-hard to find the minimum number of edges that have to be

added to an input bipartite graph to transform it into a chain graph.

The concept of chain graphs has – somewhat unexpectedly – applications in ecology. Namely, bipartite

graphs can be used to describe the presence-absence relations of, say, species and islands, or foodweb inter-

actions (predator and prey). The nestedness hypothesis of [7] states that species composition on sites with

less species richness is a proper subset of those on sites with greater species richness. If this holds without

exception, then the presence-absence matrix is said to be fully nested. This definition is equivalent to a

chain graph. See [5] for more references on nestedness and its applications.

In this paper we consider the problem of transforming an input bipartite graph G(U, V, E) to a chain

graph by edge additions. There are two natural optimization measures: (a) the total number of edges in

the resulting chain graph, and (b) the number of edges that have been added to the input graph in order

to transform it into a chain graph. We call the corresponding optimization problems the Total Minimum

Chain Completion problem (T-mcc) and the Additional Minimum Chain Completion problem (A-

∗268 Waverley Street, Palo Alto, CA 94301. Email: tomas@theory.stanford.edu
†Helsinki Institute of Information Technology, University of Helsinki and Helsinki University of Technology, Finland. Email:

heikki.mannila@tkk.fi
‡IBM ARC, San Jose, CA 95120. Email: eterzi@us.ibm.com

1

mcc). We first give a polynomial-time approximation algorithm for the T-mcc problem. Then, we show

how we can use this algorithm as a subroutine in an approximation algorithm for the A-mcc problem.

We show that the T-mcc problem on graphs with maximum degree ∆ has a polynomial-time algorithm

with approximation factor (2−O (1/∆)). We then consider the A-mcc problem. If the incremental degree

(see Section 4) d of the input graph is a constant, we achieve an O(d) approximation ratio in polynomial

time.

Related Work: From the approximability point of view the A-mcc problem has been considered in [6].

In that paper a polynomial time approximation algorithm for the A-mcc problem is given. The algorithm

achieves an approximation ratio of 8k, where k is the cost of the optimal solution to the A-mcc problem.

Notice that the approximation ratio of the algorithm proposed in [6] is not fixed but it depends on the cost

of the optimal solution to the A-mcc problem. Chain graphs have also been investigated in [2]. However,

the graph-modification problem arising in [2] is different from the ones studied in this paper.

The rest of this paper is organized as follows. In Section 2 we give the necessary definitions and describe

the different ways of looking at the problem. Section 3 gives the basic algorithm for the T-mcc problem.

Section 4 investigates that more difficult A-mcc problem. We conclude in Section 5.

2 Preliminaries

Definition 1 A bipartite graph G = (U, V, E) is a chain graph ([9]) if there is a bijection π : {1, . . . , |U |} →
U (an ordering of U) such that Γ (π (1)) ⊇ Γ (π (2)) ⊇ . . . ⊇ Γ (π (|U |)), where Γ is a function that maps a

node to its neighbors.

An equivalent definition of a chain graph is the following.

Definition 2 A bipartite graph G(U, V, E) is a chain graph if and only if it does not contain a pair of

independent edges. In other words, a chain graph is 2K2 free.

For a fixed permutation of the nodes in U and V , πU and πV respectively, we may represent G(U, V, E) on

the 2-dimensional plane so that node u ∈ U with rank πU (u) corresponds to the interval
[
(0, πU (u)− 1),

(0, πU (u))
]

on the y-axis. Similarly, node v ∈ V with rank πV (v) corresponds to interval
[
(πV (v)− 1, 0),

(πV (v), 0)
]

on the x-axis. Every possible edge (u, v) corresponds to a unit square defined by the points

(πV (v)− 1, πU (u)− 1), (πV (v)− 1, πU (u)), (πV (v), πU (u)), (πV (v)− 1, πU (u)). Visually, existing edges in

G(U, V, E) will correspond to shaded unit squares and absent edges to white unit squares. We call this

representation of G a grid representation. We call this 2-dimensional representation of the bipartite graph

G as MG. We will often resort to this representation when explaining our algorithm. We can use the G and

MG representations interchangeably to represent graph G. In fact, MG can also be represented as a matrix,

where the square with its top right corner being at point (i, j) is represented by MG(i, j) and MG(i, j) = 1

if the corresponding square is black and MG(i, j) = 0 otherwise. We additionally use MG[u, :] to denote the

u-th row of MG and MG[:, v] to denote the v-th column of MG.

2

Definition 3 A 0–1 matrix M is nested if for any two rows i and j we have M [i, :] ⊆ M [j, :] or M [j, :] ⊆
M [i, :].

Problem 1 (Minimum Chain Completion (Mcc)) Given a bipartite graph G (U, V, E), find the mini-

mum cardinality set of edges F that need to be added to G such that the bipartite graph G′ = (U, V, E′),

where E′ = E ∪ F , is a chain graph.

In terms of the 0–1 matrix MG Problem 1 can be rephrased as the optimal number of 0-entries that

need to be transformed into 1’s so that the MG matrix becomes nested. Different cost functions define

optimization problems with different approximation properties. In this paper we discuss the following two.

Problem 2 (Total Minimum Chain Completion (T-mcc)) Given a bipartite graph G (U, V, E), find

the minimum set of edges F that need to be added to G such that the bipartite graph G′ = (U, V, E′), where

E′ = E ∪ F , is a chain graph. The value of the solution is |E′|.

Problem 3 (Additional Minimum Chain Completion (A-mcc)) Given a bipartite graph G (U, V,E),

find the minimum set of edges F that need to be added to G such that the bipartite graph G′ = (U, V, E′),

where E′ = E ∪ F , is a chain graph. The value of the solution is |F |.

Since the A-mcc problem is NP-hard ([9]) so is the T-mcc problem; it is easy to see that the optimal

solution of the two problems are identical. However, the two problems have different approximation proper-

ties. Since our algorithms will connect the Mcc problem with vertex covers of bipartite graphs we give the

following definition that will prove useful.

Definition 4 Consider bipartite graph G(U, V, E) and a sequence of vertex covers of G, C1 = (U1, V1), . . . , Ck =

(Uk, Vk), with Ui ⊆ U and Vi ⊆ V . We say that C1, . . . , Ck are nested sequence of vertex covers if Ui+1 ⊆ Ui

and Vi+1 ⊇ Vi for all 1 ≤ i < k.

3 Approximating the T-mcc problem

In this section we give a constant factor polynomial time approximation algorithm for the Total Minimum

Chain Completion problem. We have the following result.

Theorem 1 The Total Minimum Chain Completion problem on bipartite graphs of maximum degree

∆ has a polynomial-time algorithm that achieves a 2−O (1/∆) approximation ratio.

The key idea of our algorithm is in defining a permutation πu of the nodes in U and a permutation πv of

the nodes in V , such that when the rows in MG are rearranged according to πu and the columns according

to πv, then in this permuted version of MG we only need to convert 0’s to 1’s if MG[i, j] = 0 and there exists

an i′ > i such that MG[i′, j] = 1. Therefore, the problem is in finding good permutations πu and πv. Could

3

we find the best such permutations, our algorithm would optimal for T-mcc problem. However, we are only

able to find bucket orders of the nodes rather than total orders1.

We construct the bucket orders bU and bV , on the nodes of U and V , respectively, by constructing a

sequence of consecutive and nested vertex covers of the input graph G. Let there be k such vertex covers

(U1, V1), . . . , (Uk, Vk) such that for every 1 ≤ i < k it holds that Ui ⊇ Ui+1 and Vi ⊆ Vi+1. Then, in bucket

order bU the i-th bucket consists of the nodes Ui \ Ui+1 and in bucket order bV the i-th bucket contains the

nodes Vi+1 \ Vi. Our algorithm arranges the rows and the columns of MG according to the bucket orders bU

and bV and then converts 0’s to 1’s so that the rearranged MG becomes nested.

Vertex covers of bipartite graphs: Consider a vertex cover (U ′, V ′) of the input bipartite graph

G (U, V, E), where U ′ ⊆ U and V ′ ⊆ V . If we permute the nodes in U such that the nodes in U ′ are

in the beginning of the ordering of U and also permute the nodes in V such that all nodes in V ′ are in the

beginning of the ordering of V , then the grid representation of G will be as in Figure 1(a). Since (U ′, V ′) is

a vertex cover, all the edges in G have at least one of their endpoints either in U ′ or in V ′.

Therefore, knowing about vertex cover (U ′, V ′), we know that there do not exist edges in the rectangle

defined by lines x = |V ′|, y = |U ′|, x = |V | and y = |U |. Let this rectangle be A′.

Now assume another vertex cover (U ′′, V ′′) of G and let vertex covers (U ′, V ′) and (U ′′, V ′′) be nested,

so that U ′′ ⊆ U ′ and V ′ ⊆ V ′′. If we rearrange the entries in U ′ so that the first |U ′′| elements are the ones

in U ′′ and elements in V ′′ so that the first |V ′| elements are the ones in V ′, then for this rearrangement

the grid representation of G will look as in Figure 1(b). Due to (U ′, V ′) there are no shaded squares in the

rectangle defined by the lines x = |V ′′|, y = |U ′′|, x = |V | and y = |U |. Let this rectangle be A′′.

Then, the combined knowledge of the nested vertex covers (U ′, V ′) and (U ′′, V ′′) allows us to conclude

that all the unit squares in area defined by the union of A′ and A′′ will be white, and thus the corresponding

edges do not exist in G. This is illustrated in Figure 1(c).

Vertex covers and min-cuts: Computing the vertex covers of bipartite graphs is central for our algo-

rithm. The minimum vertex cover of the input graph can be computed using flow techniques. Given an input

bipartite graph G(U, V,E) construct the extended graph Hα (x ∪ U, y ∪ V, E ∪ EH). Graph Hα is directed.

The set of directed edges EH consists of the following edges: The edges (u, v) ∈ E become directed edges

(u → v). These edges are assigned weight ∞. The edges (x → u) for all u ∈ U . These edges are assigned

weight α. Finally, the edges (v → y) for all v ∈ V . Those edges are assigned weight 1 − α. The following

proposition is a straightforward result of this construction.

Proposition 1 Let U ′ ⊆ U and V ′ ⊆ V . Additionally, let X = {x}∪(U \ U ′)∪V ′ and Y = {y}∪(V \ V ′)∪
U ′. We have that (U ′, V ′) is a vertex cover of G (U, V,E) if and only if (X, Y) is a cut of finite capacity in

the extended graph Hα, for fixed α ∈ [0, 1].

1Recall that in a bucket order there is a specific ordering of the buckets but not of the nodes in the same bucket. That is,
every node in the i-th bucket is ordered before any node in the j-th bucket, for j > i, but there is no ordering for the nodes
that belong in the same bucket.

4

|U’|

|U|

|V||V’|

(a) Arrangement of pos-
sible edges and definite
non-edges G given vertex
cover (U ′, V ′)

|U|

|V||V’|

|U’|

|U’’|

|V’’|

(b) Arrangement of pos-
sible edges and definite
non-edges in G given
two nested vertex covers
(U ′, V ′) and (U ′′, V ′′)

|V||V’|

|U’|

|U’’|

|V’’|

|U|

(c) Arrangement of pos-
sible edges and definite
non-edges in G given
two nested vertex covers
(U ′, V ′) and (U ′′, V ′′).

Figure 1: Arrangement of possible edges (shaded squares) and definite non-edges (white squares) in MG, given

(nested) vertex covers.

Notice that graph Hα has a single parameter α. The following lemma is an immediate consequence of Lemma

2.4 in [3].

Lemma 1 [Nested sequence of vertex covers] Let G(U, V, E) be a bipartite graph and α1, . . . , αk a sequence

of values for parameter α, such that α1 < α2 < . . . < αk. Assume the min-cut algorithm from Proposition 1

that for each value αi computes vertex cover (Ui, Vi). Then, this sequence of vertex covers is nested, that is,

Ui ⊇ Ui+1 and Vi+1 ⊇ Vi for all 1 ≤ i < k.

Remark: Even when the values of αi’s are not known in advance, but we know that for every i, αi ∈ [0, 1],

then the results of [3] allow us to compute a sequence of at most n− 1 nested cuts in polynomial time. Let

f(α) be the function that gives the capacity of the minimum cut as a function of α. Due to Proposition 1

this is also the cost of the minimum vertex cover in G(U, V,E). Additionally, the capacities of the edges in

Hα satisfy conditions (i)–(iii) of Section 2.3 in [3]. Therefore, f(α) is a linear concave function. That is, if

n = |U | + |V |, then f(α) has at most n − 2 breakpoints, see [1, 3, 8]2. The n − 1 or fewer line segments

forming the graph of f(α) correspond to n − 1 distinct cuts (and thus distinct vertex covers). Using the

results of [3] we can compute these breakpoints in polynomial time.

We can now prove Theorem 1. Using the results of [3] and Proposition 1, for all values of α ∈ [0, 1]

we can produce a linear number of vertex covers (U1, V1), . . . , (Uk, Vk) with Ui+1 ⊆ Ui and Vi ⊆ Vi+1. By

Lemma 1 we know that this sequence of vertex covers is a nested sequence. We may rearrange the nodes in

U and in V so that all nodes in Ui are grouped together and the first |Ui+1| nodes of the group correspond

to the nodes in Ui+1. Similarly, the nodes in V are rearranged so that all nodes in Vi+1 are grouped together

and the first |Vi| nodes of the group are the nodes in Vi. Due to this rearrangement, the marked points in

Figure 2(a) correspond to the vertex covers of G.

Proposition 2 Define a curve CM by joining (|Vi|, |Ui|) to (|Vi+1|, |Ui+1|) with a straight line for all i. This

curve is convex up, and no vertex cover (U ′, V ′) has (|U ′|, |V ′|) strictly underneath the curve.

2By a breakpoint we mean a value of α at which the slope of f(α) changes.

5

|U|

|V|

|Uk|
|Vk||V1| |V2|

|U1|

|U2|

(a) Vertex covers of G

|U|

|V|

|Uk|
|Vk||V1| |V2|

|U1|

|U2|

(b) Curve CM

|U|

|V|

|Uk|
|Vk||V1| |V2|

|U1|

|U2|

(c) Curve C¤

Figure 2: Figure 2(a): A sequence of optimal nested vertex covers for bipartite graph G(U, V, E). Figure 2(b): Curve

CM obtained by connecting successive vertex-cover points by lines. Figure 2(c): Curve C¤ obtained by constructing

the rectangles in which the lines forming CM are used as diagonals.

An example of such a curve is shown in Figure 2(b). The following lemma relates the area underneath

this curve with the cost of the optimal solution with respect to |E′|.

Lemma 2 If AM is the area underneath curve CM, and A∗ is the cost of the optimal solution with respect to

the total 1’s appearing in the nested matrix, then AM ≤ A∗.

Proof. The problem is equivalent to finding orderings of U and V so that the total number of 1’s in the

area is A∗. Such an ordering defines a sequence of vertex covers
(
U∗

j , V ∗
j

)
for j = 1, . . . , n∗ ≤ n. If A∗ ≤ AM,

then at least one of the points
(∣∣U∗

j

∣∣ ,
∣∣V ∗

j

∣∣) would have to be below CM, contradicting Proposition 2.

Now assume the curve C¤ defined by joining (|Vi|, |Ui|) to (|Vi+1|, |Ui|) and then (|Vi+1|, |Ui+1|), as in

Figure 2(c). We have the following.

Lemma 3 If A¤ is the area underneath curve C¤, then A¤ ≤ 2AM.

Proof. Compared to CM, the area underneath C¤ has extra triangles (|Vi| , |Ui|), (|Vi+1| , |Ui|), (|Vi+1| , |Ui+1|)
(see Figure 2(c)). These triangles have the same area as the corresponding triangles (|Vi| , |Ui|), (|Vi| , |Ui+1|),
(|Vi+1| , |Ui+1|). But these latter triangles are already included in CM. Thus A¤ ≤ 2AM.

The preceding analysis suggests the following 2-approximation algorithm for the T-mcc problem:

1. For input bipartite graph G(U, V, E) that is not a chain graph construct the extended graph Hα.

2. Apply the parametric min-cut max-flow algorithm of [3] on the extended graph Hα and obtain a

sequence (V1, U1) , . . . , (Vk, Uk) of nested vertex covers of G, for k ≤ n− 1.

3. Permute the nodes of V so that for every 1 ≤ i ≤ k the nodes in Vi are grouped together in the

beginning of the ordering of V . Similarly, permute the nodes of U so that for every 1 ≤ i ≤ k the

nodes in Ui are grouped together in the beginning of the ordering of U .

4. For this permutations of the nodes of U and V , construct matrix MG. Convert to 1 every entry

MG[i, j] = 0 for which there exists an i′ > i such that MG[i′, j] = 1.

6

Saving a factor of 1/∆: An additional O (1/∆) term can be saved as follows. Let yi = |Ui| − |Ui+1| and

xi = |Vi+1| − |Vi|, and assume xi ≥ yi (the case xi ≤ yi is similar). The line that moves xi forward and yi

down delineating A′ can be replaced with a line that repeatedly advances some distance x′ and then goes

down distance 1. The two sets Ui \ Ui+1 and Vi+1 \ Vi have sizes yi and xi respectively. Lets assume that

the first set has a vertex of degree ∆. We may start from point (|Vi|, |Ui|) and proceed ∆ units to the right

and one unit down, to obtain another vertex cover, by substituting the vertex of degree at most ∆ for its

neighbors. This reduces xi by ∆ and yi by 1. We repeat this operation until we get to the opposite side of

the rectangle at point (|Vi+1|, |Ui+1|). In that way we save area of size at least `xi− (`(`− 1)/2)∆ where ` is

the number of times the operation is repeated. For ` = xi/∆ we have that the total saving is x2
i / (2∆)+xi/2.

Therefore, the total area A′′′ covered by this improved algorithm is A′′′ ≤ xiyi−x2
i / (2∆) ≤ xiyi−xiyi/ (2∆).

Therefore, the approximation factor of this improved algorithm is A′′′
A ≤ 1

2

(
1− 1

2∆

)
.

The following corollary is an application of the techniques described above and thus its proof is omitted.

Corollary 1 In the special case where the input bipartite graph G(U, V, E) is a forest, the T-mcc problem

can be approximated in polynomial time within a factor of 1 + (
√

2− 1)
2

< 1.1716.

Proof. (Sketch) As before let r = |U | and s = |V | and let r ≥ s. The total number of edges in the forest is

at most r+s−1. Let x out of the r vertices of U have degree at least 2, and the remaining r−x have degree 1.

Then the total number of edges is 2x+(r−x) = r+x ≤ r+s−1, or r−x ≥ r−s+1. Thus, at least one of the

s vertices is adjacent to at least k = d(r−s+1)/sie = br/sc vertices of degree 1 (leaves). Thus, if we move k

units to the right and one unit down from the upper left corner, we find another vertex cover. More generally,

if r = ks+` with 0 ≤ ` < s we can proceed s−` times with k and ` times with (k+1) units to the right. The re-

sulting area underneath this curve is r/2+(s−`)(k+1)`+`(k+1)`/2+(s−`)k(s−`)/2 = r/2+rs/2+`(s−`)/2.

The ratio `(s− `)/(rs) is maximized at k = 1, ` = (
√

2− 1)s, where it equals (
√

2− 1)
2

< 0.1716.

4 Approximating the A-mcc problem

In this section we give a polynomial time factor O(d) approximation algorithm for the A-mcc problem. Here

d is the incremental degree of the input bipartite graph G. The incremental degree of a graph G is the least

d such that every subgraph of G has a vertex of degree at most d; forests are the graphs G of incremental

degree 1.

Let |E| be the total number of edges in the input bipartite graph, |E′| the total number of edges in

the optimal solution of Problem 3 and |E′′| the total number of edges in the chain graph created by an

approximation algorithm to the A-mcc problem. Then, if there exist α > 1, β > 1 such that |E| =

α(|E′| − |E|) and |E′′| = β|E′|, then we have that the A-mcc problem can be approximated with ratio

(|E′′| − |E|)
(|E′| − |E|) = β + α(β − 1). (1)

7

We can now prove the following approximation result for the A-mcc problem.

Theorem 2 Consider bipartite graphs G(U, V,E) with constant incremental degree d. The optimal solution

to the A-mcc problem can be approximated in polynomial time within 8d + 2.

Proof. Let r = |U | and s = |V |, and r ≥ s. Now consider the following algorithm: Consider all possible

permutations of nodes in U that have degree at most r/4 and nodes in V that have degree at least r/2. For

each such permutation of vertices, start removing those vertices from the original graph in the order given

by this permutation. Stop the vertex-removal process and call the 2-approximation algorithm of Theorem 1

on the remaining graph when one of the following two cases occur: (a) A vertex with degree less than (or

equal to) r/4 is removed while a vertex with degree greater than (or equal to) r/2 still remains. (b) The

remaining graph does not have r/4 isolated vertices and at the same time there is no remaining vertex of

degree at least r/2. Note that the case where there are r/4 isolated vertices simply goes into the recursion

and these vertices are simply removed.

Consider case (a) above: if we remove a vertex of degree at most r/4, while a vertex of degree at least

r/2 remains, then we must add at least r/4 ≥ n/8 edges3. Since |E| ≤ nd we have that |E′| − |E| ≥ n/8 ≥
|E|/ (8d) and therefore |E| = 8d (|E′| − |E|). Since in the last step we call the 2-approximation algorithm of

Theorem 1 we also have that |E′′| = 2 |E′|. Using Equation (1) for α = 8d and β = 2 we get approximation

factor 8d + 2.

Consider now case (b): we may assume that while removing vertices of degree at least r/2 we do not

remove any vertex of degree at most r/4 ≥ n/8. In a graph there are at most 8d vertices with degree at

least r/2. We thus remove at most 8d vertices. When we are done, the next vertex to be removed will be of

degree less than r/2, so unless we already have r/4 isolated vertices we will add r/4 ≥ n/8 edges as before.

By calling the 2-approximation algorithm of Theorem 1 we get the 8d + 2 factor as before.

Running Time: The algorithm thus reduces to producing all possible sequences of at most 8d vertices of

degree at least r/4, say f(d) such sequences, and then reducing r to 3r/4. The recurrence gives g(rs) =

f(d)g(3rs/4), which is nO(log f(d)), a polynomial running time.

As for the T-mcc problem, we have the following result for the approximability of the A-mcc problem for

input graphs that are forests.

Corollary 2 If the input bipartite graph G(U, V, E) is a forest (having incremental degree d = 1), the optimal

solution to the A-mcc problem can be approximated in polynomial time within factor 1 + 5(
√

2− 1)
2

+

O(1/|E|) < 1.8579.

Proof. (Sketch) Let r = |U | and s = |V |, and suppose r ≥ s. The set V contains at most one vertex

of degree at least 1 + r/2. If this vertex is not removed first, then the vertex removed will add at least

r/2 − 1 ≥ m/4 − 1 edges, giving the result by Theorem 2 with A = 4 + O(1/m) and β = 1 + (
√

2− 1)
2
.

The remaining case removes first the vertex of degree 1 + r/2 and proceeds inductively after removing the

3this is because n ≤ 2r

8

isolated vertices.

5 Concluding remarks

We have studied the approximation properties of the Minimum Chain Completion problem. More specif-

ically, we showed that when we want to minimize the total number of edges in the output chain graph there

is a polynomial time factor 2 − O (1/∆)-approximation algorithm, where ∆ is the maximum degree of the

graph. For the case where the goal is to minimize just the additional number of edges added to the input

graph so that it becomes a chain graph, we gave an polynomial time O(d)-approximation algorithm, where

d is the incremental degree of the input graph. The approximation algorithm for the A-mcc problem uses

as a subroutine the approximation algorithm for the T-mcc problem.

Several problems remain open. For example, the bipartite complement of a chain graph is also a chain

bipartite graph. Thus the problem that asks for the minimum number of edges to remove from a bipartite

graph so that it becomes a chain graph is as hard as the A-mcc problem. However, this problem seems

harder to approximate, just as independent set is harder to approximate than vertex cover. Only the case

of very dense graphs seems easier, just as sparse graphs were easier for the A-mcc problem. The case where

simultaneous additions and deletions are allowed in the input graph and the problem is to make the minimum

number of edge modifications in an input bipartite graph so that a chain graph is a subject of further study.

References

[1] M. J. Eisner and D. G. Severance. Mathematical techniques for efficient record segmentation in large shared

databases. J. ACM, 23(4):619–635, 1976.

[2] D. Fasulo, T. Jiang, R. M. Karp, and N. Sharma. Constructing maps using the span and inclusion relations. In

RECOMB, pages 64–73, 1998.

[3] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm and applications.

SIAM J. Comput., 18(1):30–55, 1989.

[4] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.

[5] H. Mannila and E. Terzi. Nestedness and segmented nestedness. In KDD, pages 480–489, 2007.

[6] A. Natanzon, R. Shamir, and R. Sharan. A polynomial approximation algorithm for the minimum fill-in problem.

SIAM J. Comput., 30(4):1067–1079, 2000.

[7] B. Patterson and W. Atmar. Nested subsets and the structure of insular mammalian faunas and archipelagos.

Biological Journal of the Linnean Society, 28(1-2), 1986.

[8] H. S. Stone. Critical load factors in two-processor distributed systems. IEEE Trans. Softw. Eng., 4(3):254–258,

1978.

[9] M. Yannakakis. Computing the Minimum Fill-In is NP-Complete. SIAM Journal on Algebraic and Discrete

Methods, 2(1):77–79, 1981.

9

