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Abstract

The advent of database services has resulted in privacy
concerns on the part of the client storing data with third
party database service providers. Previous approaches to
enabling such a service have been based on data encryp-
tion, causing a large overhead in query processing. A dis-
tributed architecture for secure database services is pro-
posed as a solution to this problem where data is stored
at multiple servers. The distributed architecture provides
both privacy as well as fault tolerance to the client. In this
paper we provide algorithms for (1) distributing data: our
results include hardness of approximation results and hence
a heuristic greedy algorithm for the distribution problem (2)
partitioning the query at the client to queries for the servers
is done by a bottom up state based algorithm. Finally the
results at the servers are integrated to obtain the answer at
the client. We provide an experimental validation and per-
formance study of our algorithms.

1. Introduction

Database service providers are becoming ubiquitous
these days. These are companies which have the necessary
hardware and software setup (data centers) for storage and
retrieval of terabytes of data [8, 15, 25]. As a result of such
service providers, parties wanting to store and manage their
data may prefer to outsource data to these service providers.
The parties who outsource their data will be referred to as
clientshereafter. The service providers storing data will be
referred to asservers.

There is a growing concern regarding data privacy
among clients. Often, client data has sensitive information
which they want to prevent from being compromised. Ex-
amples of sensitive databases include a payroll database or
a medical database. To capture the notions of privacy in a

database, privacy constraints are specified by the client on
the columns of the sensitive database. We use the notion of
privacy constraints as described in [3, 23]. An example of a
privacy constraint is (age, salary) which states that age and
salary columns of a tuple must not be accessible together
at the servers. The clients also have a set of queries also
known as the workload that need to executed on a regular
basis on their outsourced database.

Most existing solutions for data privacy rely on encrypt-
ing data at the server, so that only the client can decrypt it
(see for example [16, 17]). Unfortunately, it is hard to run
general queries on encrypted data efficiently. If the server
cannot execute parts of a query, it sends a fraction of the en-
crypted database back to the client for further filtering and
processing, clearly an expensive proposition.

Instead, Reference [3] suggests using two (multiple) ser-
vice providers in order to store the data. The advantage of
using two servers is that the columns can be split across the
two servers to satisfy privacy constraints without encrypt-
ing the split columns. Thus, in order to satisfy privacy con-
straints, columns can either be split across servers or stored
encrypted. Thus the goal of any decomposition algorithm is
to partition the database to satisfy the following.

• None of the privacy constraints should be violated.

• For a given workload, minimum number of bytes should
be transferred between the servers and the client.

We explain both of the above points in detail in the next sec-
tion. The problem of finding the optimal partition structure
for a given set of privacy constraints and query workload
can be shown to be intractable. We apply heuristic search
techniques based on Greedy Hill Climbing to come up with
nearly optimal solutions.
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Figure 1. Distributed Architecture for a Se-
cure Database Service

2 System Architecture

The general architecture of a distributed secure database
service, as illustrated in Figure 1, is described more in [3].
It consists of a trusted client as well as two or more servers
that provide a database service. The servers provide reliable
content storage and data management but are not trusted by
the client to preserve content privacy.
Some relevant terms are described here before going into
further details.

• Data SchemaThis is the schema of the relation the
client wishes to store on the server. As a running
example, consider a company desiring to store relation
R with the following schema.
R (Name, DoB, Gender, ZipCode,
Position, Salary, Email, Telephone)

• Privacy Constraints: These are described a collection
of subsets of columns of a relation which should not
be accessible together. The company may have the
following privacy constraints defined:
{Telephone}, {Email}, {Name, Salary},
{Name, Position},{Name, DoB},
{DoB, Gender, ZipCode},{Position,
Salary}, {Salary, DoB}

• Workload: A workloadW is a set of queries that will
be executed on a regular basis on the client’s data.

• Tuple ID (TID): Each tuple of the relation is assigned
a unique tuple ID. TheTID is used to merge data from
multiple servers when executing a query on the data.
The use ofTID will become more explicit in the query
plans described next.

• Partitions:There are two servers to store the client
database. The schema and data is partitioned vertically
and stored at the two servers.
A partition of the schema can be described by three sets
R1 (attributes ofR stored on Server 1),R2 (attributes of
R stored on Server 2) andE(set of encrypted attributes

stored on both servers). It is important to note that
(R1

⋃

R2

⋃

E) = R and it is not necessarily the case
thatR1

⋂

R2 = φ . We denote a decomposition ofR as
D(R).An example decompositionD(R) of R is given
here.
Partition 1 (R1): (TID, Name, Email,
Telephone, Gender, Salary)
Partition 2 (R2): (TID, Position,
DoB, Email, Telephone, ZipCode)
Encrypted Attributes (E): Email,
Telephone

• Query Execution Plans in Distributed Environment:
When data is fragmented across multiple servers, there
are two plan types used frequently to execute queries on
data stored on these servers.
Centralized Plans: On execution of a query, data from
each server is transmitted to the client and all further
processing is done at the client side. In some cases, mul-
tiple requests can go the each server but data from one
server is never directly sent over to the other servers.
Semi join Plans:As an alternative to centralized plans,
it maybe more efficient to consider semi join plans.
Here,TIDs are passed from one server to the other to
reduce the amount of traffic flow to the client.

• Encryption Details: Encryption of columns can either
be deterministic or non-deterministic. A deterministic
encryption is one which encrypts a column valuek to
the same valueE(k) every time. Thus, it allows equal-
ity conditions on encrypted columns to be executed on
the server. Our implementation assumes encryption on
columns to be deterministic.

• Column Replication: When columns of a relation are
encrypted, then they can be placed in any of the two
servers since they will satisfy all privacy constraints.
It is beneficial to store the encrypted columns on both
servers to make query processing more efficient. Non
encrypted columns can also be duplicated as long as
privacy constraints are also satisfied. Replication will
result in lesser network traffic most of the time.

• Cost Overhead: We model the cost as the number of
bytes transmitted on the network assuming that this su-
persedes the I/O cost on the servers and processing cost
on the client. Cost overhead is the parameter used to
determine the best possible partitioning of a relation. It
measures the number of excess bytes transferred from
the server to the client due to the partition.
Cost Overhead(D(R)) = X − Y ,
whereX = Bytes transmitted when executing workload
W on a decompositionD(R) of R at two servers,
Y = Bytes transmitted when executing workloadW on
relationR at one server with no fragmentation.



The problem can now formally be defined as follows.
We are given: (1) A data schemaR; (2) A set of privacy
constraintsP over the columns of the schemaR; (3) A
workloadW defined as a set of queries overR.; We have to
come up with the best possible decompositionD(R) of the
columns ofR into R1, R2 andE such that:
(1) All privacy constraints inP are satisfied. These can
either be satisfied by encrypting one or more attributes in
the constraint or have at least one column of the constraint
at each of the servers. Encrypting columns has its disad-
vantages as discussed before so we give priority to splitting
columns as a way to satisfy privacy constraints.
(2)The cost overhead ofD(R) for the workloadW should
be the minimum possible over all decompositions ofR
which satisfyP . Space is not considered as a constraint
and columns of relations are replicated at both servers as
long as they satisfy privacy constraints.

3 Intractability of Schema Decomposition

In this section, we provide hardness of approximation re-
sults for the schema decomposition problem. These results
are not essential to understand the rest of the paper. They
provide a formal reasoning why simplified versions of the
schema decomposition problems are hard to approximate.
A standard framework to capture the costs of different de-
compositions, for a given workloadW , is the notion of the
affinity matrix [24] M , which we adopt and generalize as
follows:

• The entryMij represents the performance “cost” of
placing the unencrypted attributesi and j in different
fragments.

• The entryMii represents the “cost” of encrypting at-
tributei across both fragments.

We assume that the cost of a decomposition may be ex-
pressed simply by a linear combination of entries in the
affinity matrix. LetR = {A1, A2, . . . An} represents the
original set ofn attributes, and consider a decomposition
of D(R) = 〈R1, R2, E〉, whereR1 is at Server 1,R2 at
Server 2 andE the set of encoded attributes. Then, we as-
sume that the cost of this decompositionC(D) using [3]
is

∑

i∈(R1−E),j∈(R2−E) Mij +
∑

i∈E Mii. ( For simplic-
ity, we do not consider replicating any unencoded attribute,
other than the tupleID, at both servers.

In other words, we add up all matrix entries correspond-
ing to pairs of attributes that are separated by fragmenta-
tion, as well as diagonal entries corresponding to encoded
attributes, and consider this sum to be the cost of the de-
composition.

Given this simple model of the cost of decompositions,
we may now define an optimization problem to identify the
best decomposition:

Given a set of privacy constraintsP ⊆ 2R and an affinity
matrixM , find a decompositionD(R) = 〈R1, R2, E〉 such
that

(a)D obeys all privacy constraints inP , and
(c)

∑

i,j:i∈(R1−E),j∈(R2−E) Mij +
∑

i∈E Mi is mini-
mized.

We model the above problem with a graph theoretic ab-
straction. Each column of the relation is modeled as a ver-
tex of the graphG(V, E), whose edges weights areMij

and vertex weights areMii. We are also given a collec-
tion of subsetsP ⊆ 2R, sayS1, . . . , St which model the
privacy constraints. Given this graphG(V, E) with both
vertex and edge non-negative weights, our goal is to parti-
tion the vertex setV into three subsets -E (the encrypted
attributes),R1 (the attributes at Server 1) andR2 (the at-
tributes at Server 2). The cost of such a partition is the total
vertex weight inE, plus the edge weight of the cut edges
from R1 to R2. However, the constraint is that none of the
subsetsS1, . . . , St can be fully contained inside eitherR1

or R2. The closely related minimum graph homomorphism
problem was studied in [5].

3.1 Minimum Cut when there are Few
Sets Si

There is an algorithm that solves the general problem,
but this algorithm is efficient only in special cases, as fol-
lows. The proof for this theorem and all other theorems that
follow can be found in [11], the extended version of the
paper.

Theorem 1 The general problem can be solved exactly in
time polynomial in

∏

i |Si| = nO(t) by a minimum cut algo-
rithm, so the general problem is polynomial if theSi consist
of a constant number of arbitrary sets, a logarithmic num-
ber of constant size sets,O(log n/ log log n) sets of poly-
logarithmic size, and(log n)

ǫ sets of sizee(log n)1−ǫ

for a
constant number of distinct0 < ǫ < 1.

3.2 Minimum Hitting Set when Solutions
do not Use R2

When edges have infinite weight, no edge may joinR1

andR2 in a solution.
In thehitting set problemwe are asked to select a setE

of minimum weight that intersects all the sets in a collection
of setsSi.

Theorem 2 For instances whose edges form a complete
graph with edges of infinite weight the problem is equivalent
to hitting set, and thus hasΘ(log n) easiness and hardness
of approximation.



3.3 The case |Si| = 2 and Minimum Edge
Deletion Bipartition

When vertices have infinite weight, no vertex may go to
E.

In theminimum edge deletion bipartition problemwe are
given a graph and the aim is to select a set of edges of min-
imum weight to remove so that the resulting subgraph after
deletion is bipartite. This problem is constant factor hard
to approximate even when the optimum is proportional to
the number of edges, as shown by Hastad [19], can be ap-
proximated within a factor ofO(log n) as shown by Garg,
Vazirani, and Yannakakis [12], and within an improved fac-
tor of O(

√
log n) as shown by Agarwal et al. [2].

The next three results compare the problem having
|Si| = 2 to minimum edge deletion bipartition.

Theorem 3 If all vertex weights are infinite (so thatE may
not be used), the setsSi are disjoint and have|Si| = 2,
and all edge weights are1, then the problem encodes the
minimum edge deletion bipartition problem and is thus con-
stant factor hard to approximate even when the optimum
has value proportional to the number of edges.

Theorem 4 If all vertex weights are infinite (so thatE may
not be used), the setsSi have |Si| = 2, then the prob-
lem may be approximated in polynomial time by a minimum
edge deletion bipartition instance giving anO(

√
log n) ap-

proximation.

Theorem 5 If all vertex weights are1, there are no edges,
and the setsSi have|Si| = 2, then the problem encodes
minimum edge deletion bipartition and is thus hard to ap-
proximate within some constant even for instances that have
optimum proportional to the number of vertices.

We now approximate the general problem with setsSi

having |Si| = 2. The performance is similar to the mini-
mum vertex deletion problem.

Theorem 6 The general problem with setsSi having
|Si| = 2 can be solved with an approximation factor of
O(

√
n) by directed multicut.

3.4 The case |Si| = 3 and Intractability

The problem with|Si| = 3 becomes much harder to ap-
proximate, compared to theO(

√
n) factor for|Si| = 2.

Theorem 7 If all vertex weights are1, there are no edges,
and the setsSi have|Si| = 3, then the problem encodes not-
all-equal 3-satisfiability and it is thus hard to distinguish
instances of zero cost from instances of cost proportional to
the number of vertices.

We examine the tractability when the setsSi are disjoint.

Theorem 8 If all vertex weights are infinite (so thatE may
not be used), the setsSi are disjoint and have|Si| = 3,
and all edge weights are1, then the problem encodes not-
all-equal 3-satisfiability and it is thus hard to distinguish
instances of zero cost from instances of cost proportional to
the number of edges.

Theorem 9 The problem with vertices of infinite weight
and edges of weight 1, setsSi with |Si| = 3 forming a par-
tition with no edges within anSi, the graphH1,2,3,1′,2′,3′

with no edges joiningS = {1, 2, 3} andS′ = {1′, 2′, 3′}
allowed, can be classified as follows:

(1) If only additionalH from K0 are allowed, the prob-
lem is constant factor approximable;

(2) If only additionalH fromK0 andK1 are allowed, the
problem isO(

√
log n) approximable; furthermore as long

as some graph fromK1 is allowed, the problem is no easier
to approximate than minimum edge deletion bipartition, up
to constant factors.

(3) If only additionalH from K0, K1 and K2 are al-
lowed, the problem isO(log n) approximable;

(4) If some additionalH from K3 is allowed it is hard
to distinguish instances with cost zero from instances with
cost proportional to the number of edges.

We finally note that for dense instances withn vertices,
m edges and setsSi of constant size, we may apply the
techniques of Alon et al. [7] to solve the problem within an
additiveǫ · m in time2Õ(n2/(ǫ2m))O(n2) for m = |E(G)|.

4 Cost Estimation

Since algorithms with theoretical guarantees are hard to
obtain for our data partition problem (Section 3), we de-
velop instead a heuristic search strategy that finds good, al-
though not optimal, solutions.
Figure 2 illustrates our approach to finding good partitions.
At the core is a hill climbing module that tries to improve
on an existing partition. This module starts with an initial,
simple partition (Section 5) that satisfies the privacy con-
straints, and then makes local changes to the partition that
still satisfy the constraints. To decide if a partition is better
than the current one, the hill climbing module must com-
pare their costs. For this comparison, it uses two modules:
(1) the translation engine that given a workload query and a
partition, determines the execution plan (what sub-queries
are sent to the servers); and (2) the query cost estimator that
estimates the cost of a given plan.

4.1 Query cost estimator

We limit the type of queries as define by the grammar in
Figure 3. The grammar specifies the valid predicates that
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we support as part of the WHERE clause of a SQL query.

S ::= 〈Σ, a, c〉
Σ ∈ P → Predicate

Predicate∋ F ::= (F1 ∧ F2) | (F1 ∨ F2) | a = c |
a ≤ c | c ≤ a | c1 ≤ a ≤ c2 |
a1 = a2

a ∈ A = { T.x, T.y, ... }
c ∈ Z = { ...,−1, 0, 1, ... }

Figure 3. Syntax of the Boolean Predicate

In order to perform cost estimation, we collect and main-
tain statistics of the data. For a given relationR, we main-
tain the following information.
T (R): Number of tuples inR
S(R, a): Size in bytes of attribute a inR
V (a): Number of distinct values of a inR
LetF be a boolean predicate which is given by the grammar
in Figure 3. We useρ(F ) to denote the selectivity of the for-
mulaF . ρ(F ) is computed recursively using the semantics
given in Figure 4.

The attributes in the SELECT clause of the query decide
the size in bytes of each result tuple. Query cost,QC(q)
represents the size estimation for queryq andSL(q) is the
set of attributes in the SELECT clause forq. The cost es-
timate for a partition is computed as the sum of the cost
estimate of the two queries.
QC(q) = (

∑

i∈SL(q) S(R, i)) ∗ T (R) ∗ ρ(F )

ρ(F ) =















































1
V (a) if a = c

c−min(a)+1
max(a)−min(a)+1 if a ≤ c

max(a)−c+1
max(a)−min(a)+1 if c ≤ a

c2−c1+1
max(a)−min(a)+1 if a1 ≤ c ≤ a2

1
max(V (a1),V (a2))

if a1 = a2

1 − (1 − ρ(F1))(1 − ρ(F2)) if F = F1 ∨ F2

ρ(F1) × ρ(F2) if F = F1 ∧ F2

Figure 4. Semantics of the Boolean Predicate

4.2 Translation and Execution Engine

The translation engine is the system component which
generates SQL queries for the decompositionD(R) of R,
given a SQL query onR. The partitioned queries gener-
ated by the engine can now be fed to the query estimator
discussed in the previous section to obtain cost estimates
for each query. The type of plan used is an important fac-
tor which decides the form of the resulting queries. For the
purposes of this paper, we generate queries forcentralized
plans.
This problem of deciding which server to use to access data
is better known are data localization in distributed databases
theory as discussed in [24]. Replication and encryption
add more complexity to the localization process. For exam-
ple, if an attribute is available at both servers, one decision
to make is which copy must be accessed. Range queries
on encrypted attributes will require the entire column to be
transmitted to the client for decryption before determining
the results of the query. Decisions like which copy to ac-
cess cannot be determined locally and individually for each
condition clause.
We propose a technique which computes the where clauses
in the decomposed queries in two steps. We define two
types of state values,W andS each of which provide in-
formation as to which servers to access for the query exe-
cution. We process the WHERE clause to getW and then
process the SELECT clause to getS. In the final step, we
use both these values and the corresponding select and con-
dition list to determine the decomposed queries. We use the
schemaR and decompositionD(R) defined in section 2.
Most of the steps that follow are part of query localization
which is to decide which part of the query is processed by
which server.

4.2.1 WHERE clause processing

The basic units of the WHERE clause are conditional
clauses where operators could be>, < or = as per the
grammar defined above. Each of these basic units are



combined using the AND or the OR operator. The entire
clause itself can be effectively represented by a parse tree.
Such a parse tree has operators as non-leaf nodes and
operands as leaf nodes.
Bottom Up State Evaluation:
Bottom up evaluation of the parse tree starts at the leaf
nodes. Each node transmits to its parent, its state informa-
tion. The parent operator (always a binary operator) will
combine the states of its left and right subtrees to generate
a new state for itself.
State Definitions:
Each node in the tree is assigned a state value. LetW be
the state value of the root of the parse tree. The semantics
of the state value are as follows.

0: condition clause cannot be pushed to either servers; 1:
condition clause can be pushed to Server 1; 2: condition
clause can be pushed to Server 2; 3: condition clause can be
pushed to both servers; 4: condition clause can be pushed
to either servers.

As we proceed to determine the state values for all nodes,
we need to consider nodes with state value 0 as a special
case. All child attributes for a node with state value 0 are
added to the select list of the query.

There are three cases we need to consider for a non-leaf
node.
Case 1: The parent node is one of the operators>, <, =.
For such a parent node, the child nodes are attributes of re-
lations or constant values. If the condition is an attribute-
value clause, the state of the parent is the state value of the
attribute. The state value of the attribute in turn is deter-
mined by the location of that attribute. If the condition is an
attribute-attribute clause (a1 = a2 or a1< a2 etc), the state
of the parent is:
0 if the state values of the attributes are (1,2) or if they are
on the same server but one of the attributes is encrypted.; 1
if the state values of the attributes are (1,1) or (1,4) ; 2 if the
state values of the attributes are (2,2) or (2,4) ; 4 if the state
values of the attributes are (4,4)
Case 2: The parent node is the AND operator
Table 1 represents the state determination of an AND par-
ent node given the state values of its two children. The row
in the table is the state of the first child, the column is the
state of the second child and the table entry is the state of
the parent. For example, (4,3) implies a state 3 for the par-
ent using the AND table.
Case 3: The parent node is the OR operator. Table 2 rep-
resents the state determination of an OR parent node given
the state values of its two children.

Table 1. AND operator state table
0 1 2 3 4

0 0 3 3 3 3
1 3 1 3 3 1
2 3 3 2 3 2
3 3 3 3 3 3
4 3 1 2 3 4

Table 2. OR operator state table
0 1 2 3 4

0 0 0 0 0 0
1 0 1 0 0 1
2 0 0 2 0 2
3 0 0 0 3 3
4 0 1 2 3 4

4.2.2 SELECT clause processing

The select part of each query can be a set of attributes of the
updated relations in the schema. The select clause process-
ing generates a state S and two sets of attributes A1 and A2.
S represents the following cases.
1: Requires access to Server 1 only; 2: Requires access to
Server 2 only; 3: Requires access to both servers; 4: Re-
quires access to any of the two servers.
A1 and A2 are the attributes in the select clause that are
present on Server 1 and Server 2 respectively. If the at-
tribute is present on both servers, it will be contained in A1
and A2.

4.2.3 Final Query Decomposition step

The final step is to generate the two queries Query 1 (to
be sent to Server 1) and Query 2(to be sent to Server 2).
We use the state value of the root node obtained from the
WHERE clause processing W and the SELECT clause state
value S.There are five cases depending on the state value of
the root node .
W = 0:
There are no where clauses in Query 1 and Query 2 since
none of the conditions can be pushed to the servers.
W = 1 or 2:
For state value 1, Query 2 does not contain any where
clause.Similarly, for state value 2, Query 1 does not have
any where clause.
W = 3 - Top Down processing of Clauses:
We perform a top-down processing of the tree. We start
at the root operator and proceed downwards as long as we
encounter state 3. We thus stop when we are sure whether
to include the clause as part of Query 1 (state value 1),
Query 2(state value 2) , Query 1/Query 2 (state value 4) or



not to include it at all(state value 0).
W = 4:
The where clauses can be pushed completely to any one of
the two servers.

Let us work with an example to see how all this fits in
to solve the problem as a whole. Consider a slightly more
complicated client query.
SELECT Name, DoB, Salary FROM R
WHERE (Name =’Tom’ AND
Position=’Staff’) AND (Zipcode =
’94305’ OR Salary > 60000)
Let the predicates in the query be assigned P1 (Name =
’Tom’), P2(Position=’Staff’), P3(Zipcode=’94305’)
and P4(Salary>60000) The parse tree and the correspond-
ing state values are shown in Figure 5.

AND

AND

2 2

3

3

  OR

  P4 P3 P2 P1

0

  11

Figure 5. State Computation for the Predicate

Query1: SELECT TID, name, salary
FROM R1 WHERE Name=’Tom’
Query2: SELECT TID, dob, zipcode
FROM R2 WHERE Position=’Staff’
The query plan is also shown here in Figure 6 detailing out
the steps that need to be performed for executing this query.
In the plan,T ,N ,S andD stand for TID, Name, Salary and
DoB attributes of schemaR respectively. At the client side,
results of Query1 and Query2 are joined on attribute TID.
The predicates P3 and P4 are then applied to the results fol-
lowed by a projection on the select attributes.

5 Partitioning Algorithms

Hill-climbing is a heuristic in which one searches for
an optimum combination of a set of variables by varying
each variable one at a time as long as the objective value
increases. The algorithm terminates when no local step de-
creases the cost. The algorithm converges to a local minima.

T1<− SELECT[P1](R1)

T4<−PROJECT[T,D,Z](T2)

T5<−

T2 <− PROJECT[T,N,S](T1)

T3<−SELECT[P2](R2)

(T2 JOIN[T2.T=T4.T] T4)

PROJECT[N,D,S](T5)

Figure 6. Distributed Query Plan

An initial fragmentation of the database is considered
which satisfies all the privacy constraints.

Initial Guess: The initial state is obtained using the
weighted set cover . Refer [27] for details of the algorithm.

Algorithm for Weighted Set Cover: - Assign a weight to
each attribute based on the number of privacy constraints
it occurs in. - Encrypt attributes one at a time starting with
the one which has the highest weight till all the privacy con-
straints are satisfied.

Hill Climbing Step: Then, all single step operations are
tried out (1) Decrypting an encrypted column and placing it
at Server 1. (2) Decrypting an encrypted column and plac-
ing it at Server 2. (3) Decrypting an encrypted column and
placing it at both servers (4)Encrypting an decrypted col-
umn and placing it at both servers.

From these steps, the one which satisfies privacy con-
straints and results in minimum network traffic is consid-
ered as the new fragmentation and the process repeats. The
iterations are performed as long as we get a decomposition
at each step which improves over the existing decomposi-
tion using the cost metric discussed before.

In order to compare the results produced by our hill
climbing strategy with the optimal solution, we also imple-
mented a brute force algorithm. This algorithm considers
all possible partitions that satisfy the privacy constraints and
selects the one with minimal cost. Note that for a relation
with n columns there are4n possible fragmentations pos-
sible and very few of them will satisfy all the privacy con-
straints. (The “4” arises because there are 4 choices for each
attribute: store decrypted at server 1 or 2 or both, or store
encrypted at both servers.)



6 Experimental Results

6.1 Details of Experimental Setup:

We execute our code on a single relationR in all exper-
iments. The number of attributes inR was varied from 1
to 30. The number of tuples inR was between 1000 and
10,000. Note that for our experiments we do not actually
need the data, only the statistics that describe the data. Thus,
the results we obtain for this setting are applicable to rela-
tions of a larger (or smaller) size.

As we vary the number of attributes, we generate privacy
constraints over it randomly with the following properties.
We generate as many privacy constraints as the number of
attributes in the relation. Privacy constraints vary in size
from one to the number of attributes in the relation. The
attributes that are part of each constraint are selected at ran-
dom from the available attributes without replacement.

Another important parameter is the workload. We gen-
erated 25 workloads containing a fixed number of queries(
5 in our case) for different number of attributes of the re-
lations. So, for a relation with fixed number of attributes,
we generate about 125 queries (25*5) divided into twenty
five workloads. For each query, the parts that were varied
were the attribute set in the SELECT clauses and the con-
ditions in the WHERE clause.We selected a subset of SQL
which mapped to our grammar defined in Section 4. Each
condition clauseC was of the form (xOPy) whereOP was
chosen at random to be>, < or =. x’s were chosen from
the columns ofR while y was chosen from the domain of
x after choosingx. TheC′s themselves were combined by
choosing one of OR, AND. The other parameters that were
randomly chosen were the number of condition clauses, the
number of attributes in the SELECT clause and the actual
attributes in the SELECT clause itself.

6.2 Synthetic Data Generation

We conduct experiments to demonstrate how well hill
climbing compares with brute force. For each algorithm, we
vary the number of attributesN from 1 to 6. We generate
ten different workloads for eachN and each workload was
composed of 5 queries.While we can obtain results for hill
climbing for largerN , the brute force approach starts to
get intractable. Hill climbing starts to move away from the
optimal solution with increasingN . For 3 attributes, hill
climbing is around 20 percent away from brute force but for
6 attributes, this percentage goes up to around 140.

Next, we study the behavior of hill climbing in terms of
the number of iterations it takes to converge. We vary the
number of attributes N for the relation from 1 to 30 for these
experiments.The number of workloads for each N is 10 and

similar to the previous experiment, we have 5 queries per
workload.

Figure 7 shows the number of workloads for which
the hill climbing converged . We note that the number of
workloads requiring more than 10 iterations is less than 2
percent of the workloads.
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Figure 7. Hill Climbing Iterations

We now show the improvements achieved by the hill
climbing over the initial partition. The improvement
percentage is defined as:
Perc. Improvement = (Cfp − Cip)/Cip * 100
where Cfp = Cost estimate for the final partition ofR
returned by Hill Climbing for a given workloadW and set
of privacy constraintsP ; andCip = Cost estimate of the
initial partition given as input to the hill climbing algorithm
for the same workloadW and set of privacy constraintsP .
Figure 8 illustrates that the number of workloads with
greater than 20 percent difference from the initial solution
keeps decreasing with increasing percentages. Despite
this fact, more than 50 percent of the workloads have a
percentage improvement of over 25 percent.

6.3 Personal Data Example

We run experiments for the real world example discussed
earlier in the paper in Section 2. The schemaR is the same
with 8 attributes and 8 privacy constraints. The workloads
are generated at random as discussed in the previous sub-
section. Figure 9 depicts that for about 50 percent of the
workloads, the percentage difference of the final result of
hill climbing from the initial partition is about 5 percent.
Thus, given privacy constraints of the form listed for this
example, it is easier to guess a reasonably valid and opti-
mal decomposition for the schema. We also find that hill
climbing terminates sooner ( fewer number of iterations as
compared to the synthetic data case) with close to 50 per-
cent of the workloads terminating in a single iteration.
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Figure 8. Performance Gain using Hill Climb-
ing
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Figure 9. Personal Data Example - Perfor-
mance Gain using Hill Climbing

6.4 Varying Distributions of Privacy Con-
straints Generation Task

We had previously generated a synthetic dataset for the
privacy constraints and the workload where all parameters
were generated uniformly at random. For this experiment,
we use a relation with 8 columns and 1000 tuples. There
are 8 privacy constraints generated for the relation. There
is a percentage weight parameter governing the generation
of constraints which applies to the first three columns of
the relation. For example, if percentage weight is set to 20,
then 60 percent (20*3) of the time, one of the first three
columns will be selected as a participant in the generated
privacy constraint. So, setting this weight to around 12
results in a uniform distribution and as it goes above 33, we
get a heavily biased set of privacy constraints on these three
columns. We generate 30 workloads for each weight value
that we desire to test. Figure 10 shows the average number
of iterations as we vary the weight from 10 to 34 percent. It
can be seen that as the bias on the three attributes increases,

we get to the final result in fewer number of iterations.
Fewer iterations are required because most of the privacy
constraints are concerned with these three attributes and
are independent of the others so we have fewer options to
choose for these three attributes.
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7 Related Work

There is a wide consensus that privacy is a corporate
responsibility [21]. In order to help and ensure corpo-
rations fulfill this responsibility, governments all over the
world have passed multiple privacy acts and laws, for exam-
ple, Gramm-Leach-Bliley (GLB)Act [14], Sarbanes-Oxley
(SOX) Act [26], Health Insurance Portability and Account-
ability Act (HIPAA) [20], SB1386 [1] are some such well
known U.S. privacy acts. In many use cases complying with
these laws require an organization to encrypt the data in case
it is hosted by an external service provider.

As discussed in the introduction, the outsourcing of data
management has motivated the model where a DBMS pro-
vides reliable storage and efficient query execution, while
not knowing the contents of the database [17]. Schemes
proposed so far for this SaaS model [16] (Software as a
Service) encrypt data on the client side and then store the
encrypted database on the server side [16, 18, 6]. However,
in order to achieve efficient query processing, all the above
schemes only provide very weak notions of data privacy.
In fact a server that is secure under formal cryptographic
notions can be proved to be hopelessly inefficient for data
processing [22].

After our original work [3] on using a combination of
distribution and encryption for secure databases, our col-
leagues at Stanford University have developed partially [9]
and complete homomorphic encryption algorithms [13].



This allows arithmetic operations on ciphertext without de-
crypting to plaintext. Homomorphic encryption along with
deterministic hashing primitives drastically improves SQL
processing on encrypted data in the SaaS model.

[3, 23, 10] define privacy constraints and describe the
architecture for secure database services. In this paper, we
build on this architecture and develop algorithms to split the
schema among the servers and perform distributed query
processing for a subset of SQL (both are absent in [23]).
K-anonymity [4] maintains aggregates while changing mi-
crodata for data publishing. This scheme maintains micro-
data intact for OLTP workloads also.
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