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Abstract database, privacy constraints are specified by the client on

the columns of the sensitive database. We use the notion of

The advent of database services has resulted in privacyprivacy constraints as described in [3, 23]. An example of a
concerns on the part of the client storing data with third privacy constraint is (age, salary) which states that age an
party database service providers. Previous approaches tosalary columns of a tuple must not be accessible together
enabling such a service have been based on data encrypat the servers. The clients also have a set of queries also
tion, causing a large overhead in query processing. A dis- known as the workload that need to executed on a regular
tributed architecture for secure database services is pro- basis on their outsourced database.
posed as a solution to this problem where data is stored

at multlple servers. The distributed architecture pI’O\H'de Most existing Soiutions for data privacy reiy on encrypt_
both privacy as well as fault tolerance to the client. In this ing data at the server, so that only the client can decrypt it
paper we provide algorithms for (1) distributing data: our (see for example [16, 17]). Unfortunately, it is hard to run
results include hardness of approximation results and Benc general queries on encrypted data efficiently. If the server
a heuristic greedy algorithm for the distribution proble®) ( cannot execute parts of a query, it sends a fraction of the en-
partitioning the query at the client to queries for the sesve  crypted database back to the client for further filtering and

is done by a bottom up state based algorithm. Finally the processing, clearly an expensive proposition.
results at the servers are integrated to obtain the answer at

the client. We provide an experimental validation and per-

) Instead, Reference [3] suggests using two (multiple) ser-
formance study of our algorithms. [3] sugg 9 ( ple)

vice providers in order to store the data. The advantage of
using two servers is that the columns can be split across the
two servers to satisfy privacy constraints without encrypt
1. Introduction ing the split columns. Thus, in order to satisfy privacy con-
straints, columns can either be split across servers adtor
Database service providers are becoming ubiquitousencrypted. Thus the goal of any decomposition algorithm is
these days. These are companies which have the necessal) partition the database to satisfy the following.
hardware and software setup (data centers) for storage and
retrie_zval of te_zrabytes o_f data [83 15, 25]. As aresult of such_ « None of the privacy constraints should be violated.
service providers, parties wanting to store and manage thei
data may prefer to outsource data to these service providers
The parties who outsource their data will be referred to as
clientshereafter. The service providers storing data will be
referred to aservers We explain both of the above points in detail in the next sec-
There is a growing concern regarding data privacy tion. The problem of finding the optimal partition structure
among clients. Often, client data has sensitive inforrmatio for a given set of privacy constraints and query workload
which they want to prevent from being compromised. Ex- can be shown to be intractable. We apply heuristic search
amples of sensitive databases include a payroll database aiechniques based on Greedy Hill Climbing to come up with
a medical database. To capture the notions of privacy in anearly optimal solutions.

e Foragiven workload, minimum number of bytes should
be transferred between the servers and the client.
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Figure 1. Distributed Architecture for a Se-
cure Database Service

System Architecture

The general architecture of a distributed secure database

service, as illustrated in Figure 1, is described more in [3]
It consists of a trusted client as well as two or more servers
that provide a database service. The servers provide leliab
content storage and data management but are not trusted by
the client to preserve content privacy.

Some relevant terms are described here before going into
further details.

Data SchemaThis is the schema of the relation the
client wishes to store on the server. As a running
example, consider a company desiring to store relation
R with the following schema.

R (Nanme, DoB, Gender, Zi pCode,

Position, Salary, Enmail, Tel ephone)

Privacy Constraints: These are described a collection
of subsets of columns of a relation which should not
be accessible together. The company may have the
following privacy constraints defined:

{Tel ephone}, {Emmil}, {Nanme, Sal ary},
{Nane, Position}, {Nane, DoB},

{DoB, Gender, ZipCode}, {Positi on,

Sal ary}, {Salary, DoB}

Workload: A workload W is a set of queries that will
be executed on a regular basis on the client’s data.

Tuple ID (TID): Each tuple of the relation is assigned
a unique tuple ID. Th@&'I D is used to merge data from
multiple servers when executing a query on the data.
The use ofl'1 D will become more explicit in the query
plans described next.

Partitions: There are two servers to store the client
database. The schema and data is partitioned vertically
and stored at the two servers.

A partition of the schema can be described by three sets
R, (attributes ofR stored on Server 1R, (attributes of

R stored on Server 2) antl(set of encrypted attributes

stored on both servers). It is important to note that
(Ri UR2UE) = R and it is not necessarily the case
thatR; () R2 = ¢ . We denote a decomposition Bfas
D(R).An example decompositioP(R) of R is given
here.

Partition 1 (Ry):
Tel ephone, Cender,
Partition 2 (Rg): (TID, Position,
DoB, Enmmil, Tel ephone, Zi pCode)
Encrypted Attributes (E): Email,
Tel ephone

Query Execution Plans in Distributed Environment:
When data is fragmented across multiple servers, there
are two plan types used frequently to execute queries on
data stored on these servers.

Centralized Plans: On execution of a query, data from
each server is transmitted to the client and all further
processing is done at the client side. In some cases, mul-
tiple requests can go the each server but data from one
server is never directly sent over to the other servers.
Semi join Plans: As an alternative to centralized plans,

it maybe more efficient to consider semi join plans.
Here,TIDs are passed from one server to the other to
reduce the amount of traffic flow to the client.

Encryption Details: Encryption of columns can either
be deterministic or non-deterministic. A deterministic
encryption is one which encrypts a column valuéo

the same valu& (k) every time. Thus, it allows equal-
ity conditions on encrypted columns to be executed on
the server. Our implementation assumes encryption on
columns to be deterministic.

Column Replication: When columns of a relation are
encrypted, then they can be placed in any of the two
servers since they will satisfy all privacy constraints.
It is beneficial to store the encrypted columns on both
servers to make query processing more efficient. Non
encrypted columns can also be duplicated as long as
privacy constraints are also satisfied. Replication will
result in lesser network traffic most of the time.

Cost Overhead: We model the cost as the number of
bytes transmitted on the network assuming that this su-
persedes the I/O cost on the servers and processing cost
on the client. Cost overhead is the parameter used to
determine the best possible partitioning of a relation. It
measures the number of excess bytes transferred from
the server to the client due to the partition.

Cost Overhead?(R)) =X - Y,

whereX = Bytes transmitted when executing workload
W on a decompositio®(R) of R at two servers,

Y = Bytes transmitted when executing workloddon
relation R at one server with no fragmentation.

(TID, Name, Enail,
Sal ary)



The problem can now formally be defined as follows.

We are given: (1) A data scheni& (2) A set of privacy
constraintsP over the columns of the schenfg (3) A
workloadW defined as a set of queries over, We have to
come up with the best possible decompositiafRR) of the
columns ofR into R1, R2 andFE such that:

(1) All privacy constraints inP are satisfied. These can
either be satisfied by encrypting one or more attributes in

Given a set of privacy constrair C 2 and an affinity
matrix M, find a decompositioP(R) = (R;, Rs, E) such
that

(a) D obeys all privacy constraints iR, and

(©) X i juic(ri—E)je(ra—r) Mij + X icp Mi is mini-
mized.

We model the above problem with a graph theoretic ab-

the constraint or have at least one column of the constraintstraction. Each column of the relation is modeled as a ver-
at each of the servers. Encrypting columns has its disad-tex of the graphG(V, E), whose edges weights afd;;

vantages as discussed before so we give priority to spjittin
columns as a way to satisfy privacy constraints.

(2)The cost overhead d?(R) for the workloadW should

be the minimum possible over all decompositions iof
which satisfy P. Space is not considered as a constraint

and vertex weights ard/;;. We are also given a collec-
tion of subsets®? C 27, sayS,,...,S; which model the
privacy constraints. Given this graghi(V, E) with both
vertex and edge non-negative weights, our goal is to parti-
tion the vertex seV into three subsets £ (the encrypted

and columns of relations are replicated at both servers asattributes),R; (the attributes at Server 1) ari@h, (the at-

long as they satisfy privacy constraints.
3 Intractability of Schema Decomposition

In this section, we provide hardness of approximation re-

tributes at Server 2). The cost of such a partition is thd tota
vertex weight inE, plus the edge weight of the cut edges
from Ry to R,. However, the constraint is that none of the
subsetsSy, . .., .S; can be fully contained inside eithét;

or Ry. The closely related minimum graph homomorphism
problem was studied in [5].

sults for the schema decomposition problem. These results
are not essential to understand the rest of the paper. The)f,) 1 Minimum Cut when there are Few

provide a formal reasoning why simplified versions of the
schema decomposition problems are hard to approximate.
A standard framework to capture the costs of different de-
compositions, for a given worklodd’, is the notion of the
affinity matrix[24] M, which we adopt and generalize as
follows:

e The entry M;; represents the performance “cost” of

placing the unencrypted attributésand ;5 in different
fragments.

e The entryM;; represents the “cost” of encrypting at-
tribute: across both fragments.

We assume that the cost of a decomposition may be ex

pressed simply by a linear combination of entries in the
affinity matrix. LetR = {41, Ao,... A, } represents the
original set ofn attributes, and consider a decomposition
of D(R) = (R, Ro, E), whereR; is at Server 1R, at
Server 2 andv the set of encoded attributes. Then, we as-
sume that the cost of this decompositioitD) using [3]
IS > ie(r,—B) je(ro—m) Mij * 2 icp Mii- (For simplic-
ity, we do not consider replicating any unencoded attripute
other than the tuplelD, at both servers.

In other words, we add up all matrix entries correspond-

Sets S;

There is an algorithm that solves the general problem,
but this algorithm is efficient only in special cases, as fol-
lows. The proof for this theorem and all other theorems that
follow can be found in [11], the extended version of the
paper.

Theorem 1 The general problem can be solved exactly in
time polynomiali{ ], |Si| = n°® by a minimum cut algo-
rithm, so the general problem is polynomial if teeconsist

~of a constant number of arbitrary sets, a logarithmic num-

ber of constant size set§)(log n/loglogn) sets of poly-
logarithmic size, andlogn)® sets of size(°e™' ™ for a
constant number of distinft< ¢ < 1.

3.2 Minimum Hitting Set when Solutions
do not Use R,

When edges have infinite weight, no edge may jgin
andR- in a solution.
In the hitting set problenwe are asked to select a g6t

ing to pairs of attributes that are separated by fragmenta-of minimum weight that intersects all the sets in a collattio
tion, as well as diagonal entries corresponding to encodedof setsS;.
attributes, and consider this sum to be the cost of the de-

composition.

Given this simple model of the cost of decompositions,
we may now define an optimization problem to identify the
best decomposition:

Theorem 2 For instances whose edges form a complete
graph with edges of infinite weight the problem is equivalent
to hitting set, and thus ha®(log n) easiness and hardness
of approximation.



3.3 The case |S;| = 2 and Minimum Edge We examine the tractability when the sétsare disjoint.

Deletion Bipartition Theorem 8 If all vertex weights are infinite (so th& may

not be used), the sef$; are disjoint and haves;| = 3,
and all edge weights ar&, then the problem encodes not-
E all-equal 3-satisfiability and it is thus hard to distinghis

_ Intheminimum edge deletion bipartition probleme are j,5tances of zero cost from instances of cost proportianal t
given a graph and the aim is to select a set of edges of miny,o number of edges.

imum weight to remove so that the resulting subgraph after

deletion is bipartite. This problem is constant factor hard Theorem 9 The problem with vertices of infinite weight
to approximate even when the optimum is proportional to @nd edges of weight 1, sefs with |S;| = 3 forming a par-
the number of edges, as shown by Hastad [19], can be apfition with no edges within ai;, the graphH, 25,17,/ 3
proximated within a factor o®(log n) as shown by Garg, ~ With no edges joining’ = {1,2,3} and S’ = {1’,2',3'}
Vazirani, and Yannakakis [12], and within an improved fac- allowed, can be classified as follows:

When vertices have infinite weight, no vertex may go to

tor of O(y/Tog 1) as shown by Agarwal et al. [2]. (1) If only additionalH from K are allowed, the prob-
The next three results compare the problem having!ém is constant factor approximable;
|S;| = 2 to minimum edge deletion bipartition. (2) If only additionalff from K and K, are allowed, the

problem isO(y/logn) approximable; furthermore as long
Theorem 3 If all vertex weights are infinite (so thd may as some graph fromk; is allowed, the problem is no easier
not be used), the sets; are disjoint and haves;| = 2, to approximate than minimum edge deletion bipartition, up
and all edge weights ar&, then the problem encodes the to constant factors.
minimum edge deletion bipartition problem and is thus con-  (3) If only additional # from K, K; and K, are al-
stant factor hard to approximate even when the optimum lowed, the problem i®(log n) approximable;
has value proportional to the number of edges. (4) If some additionald from K3 is allowed it is hard

to distinguish instances with cost zero from instances with
Theorem 4 If all vertex weights are infinite (so thd may cost proportional to the number of edges.
not be used), the setS; have|S;| = 2, then the prob-
lem may be approximated in polynomial time by a minimum
edge deletion bipartition instance giving &1{+/logn) ap-
proximation.

We finally note that for dense instances witlvertices,
m edges and setS; of constant size, we may apply the
techniques of Alon et al. [7] to solve the problem within an
additivee - m in time 20("*/(€m) O (n2) for m = |E(G)|.
Theorem 5 If all vertex weights ard, there are no edges,
and the setsS; have|S;| = 2, then the problem encodes 4 Cost Estimation
minimum edge deletion bipartition and is thus hard to ap-
proximate within some constant even for instances that have  Since algorithms with theoretical guarantees are hard to
optimum proportional to the number of vertices. obtain for our data partition problem (Section 3), we de-
velop instead a heuristic search strategy that finds goed, al
We now approximate the general problem with sgts  though not optimal, solutions.
having|S;| = 2. The performance is similar to the mini- Figure 2 illustrates our approach to finding good partitions
mum vertex deletion problem. At the core is a hill climbing module that tries to improve
on an existing partition. This module starts with an injtial
Theorem 6 The general problem with sets; having  simple partition (Section 5) that satisfies the privacy con-
|5i| = 2 can be solved with an approximation factor of strajnts, and then makes local changes to the partition that

O(y/n) by directed multicut. still satisfy the constraints. To decide if a partition igtbe
than the current one, the hill climbing module must com-
3.4 The case |S;| =3 and Intractability pare their costs. For this comparison, it uses two modules:

(1) the translation engine that given a workload query and a
The problem with S;| = 3 becomes much harder to ap- partition, determines the execution plan (what sub-gserie
proximate, compared to th@(,/n) factor for|S;| = 2. are sent to the servers); and (2) the query cost estimator tha
estimates the cost of a given plan.
Theorem 7 If all vertex weights ard, there are no edges,
and the set$; have|S;| = 3, then the problem encodesnot- 4.1 Query cost estimator
all-equal 3-satisfiability and it is thus hard to distinghis
instances of zero cost from instances of cost proportiamal t We limit the type of queries as define by the grammar in
the number of vertices. Figure 3. The grammar specifies the valid predicates that
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4.2 Translation and Execution Engine
Figure 2. Components of the Partitioning Al- The translation engine is the system component which
gorithm generates SQL queries for the decompositiafR?) of R,

given a SQL query orR. The partitioned queries gener-

ated by the engine can now be fed to the query estimator

discussed in the previous section to obtain cost estimates
we support as part of the WHERE clause of a SQL query. for each query. The type of plan used is an important fac-
tor which decides the form of the resulting queries. For the
purposes of this paper, we generate querieséotralized
plans.
This problem of deciding which server to use to access data
is better known are data localization in distributed dasalsa
theory as discussed in [24]. Replication and encryption
add more complexity to the localization process. For exam-
ple, if an attribute is available at both servers, one denisi
to make is which copy must be accessed. Range queries
on encrypted attributes will require the entire column to be
transmitted to the client for decryption before determinin
Figure 3. Syntax of the Boolean Predicate the results of the query. Decisions like which copy to ac-
cess cannot be determined locally and individually for each
condition clause.
We propose a technique which computes the where clauses
tain statistics of the data. For a given relatiBpwe main- N the decomposed queries in two steps. We define two
tain the following information. types c_>f state vaIugsW and S each of which provide in-
T(R): Number of tuples ik forr_natlon as to which servers to access for the query exe-
S(R, a): Size in bytes of attribute a iR cution. We process the WHERE clause to _[zjétand then
V(a): Number of distinct values of a i process the SELECT clause to gét In the final step, we

Let " be a boolean predicate which is given by the grammar use bo.th these valges and the corresponding select and con-
in Figure 3. We usp(F) to denote the selectivity of the for- dition list to determine the decomposed queries. We use the

mulaF. p(F) is computed recursively using the semantics SChema/t and decompositioD (1) defined in section 2.
given in Figure 4. Most of the steps that follow are part of query localization

i ] _which is to decide which part of the query is processed by
The attributes in the SELECT clause of the query decide yhich server.

the size in bytes of each result tuple. Query c6xf}(q)
represents the size estimation for quergndSL(q) is the
set of attributes in the SELECT clause fpr The cost es-
timate for a partition is computed as the sum of the cost The basic units of the WHERE clause are conditional
estimate of the two queries. clauses where operators could be < or = as per the
QC(q) = Xiesr(q S,1) x T(R) x p(F) grammar defined above. Each of these basic units are

(3, a,c)

P — Predicate

(Fl/\Fg) | (F1VF2)|CL=C|
a<cle<al|leg<a<c]
ap = ag

A={TxTy,..}
Z=1{.,-1,0,1,..}

M
i mo

Predicate >

SIS
M M

In order to perform cost estimation, we collect and main-

4.2.1 WHERE clause processing



combined using the AND or the OR operator. The entire

clause itself can be effectively represented by a parse tree Table 1. AND operator state table

Such a parse tree has operators as non-leaf nodes and 0]1/2/3/4
operands as leaf nodes. 0/0/3]3]3]3
Bottom Up State Evaluation 1]3/1]3/3]1
Bottom up evaluation of the parse tree starts at the leaf 213|13]12|3]2
nodes. Each node transmits to its parent, its state informa- 3/3/3]3|3]3
tion. The parent operator (always a binary operator) will 413|11]2]3]4

combine the states of its left and right subtrees to generate
a new state for itself.

State Definitions Table 2. OR operator state table

Each node in the tree is assigned a state value.WiL dte 0|1/2]3]4

the state value of the root of the parse tree. The semantics 0/0]0]0]0]0

of the state value are as follows. 110]1]0]0 1
2/0(0|2|0]2

0: condition clause cannot be pushed to either servers; 1: 3/0]0]0|3]3

condition clause can be pushed to Server 1; 2: condition 410]1]2]3|4

clause can be pushed to Server 2; 3: condition clause can be

pushed to both servers; 4: condition clause can be pushed

to either servers. 4.2.2 SELECT clause processing

The select part of each query can be a set of attributes of the
updated relations in the schema. The select clause process-
ing generates a state S and two sets of attributes A1 and A2.

As we proceed to determine the state values for all nodes,

we need to consider nodes with state value 0 as a specia§ represents the following cases.

case. All child attributes for a node with state value 0 are - Requwesla.ccc.ass to Server 1 only; 26 Rr:aquwes a.ccgss o
added to the select list of the query. Server 2 only; 3: Requires access to both servers; 4. Re-

quires access to any of the two servers.
Al and A2 are the attributes in the select clause that are

There are three cases we need to consider for a non-leaPresent on Server 1 and Server 2 respectively. If the at-
node. tribute is present on both servers, it will be contained in Al
Case 1 The parent node is one of the operators<, =. and A2.
For such a parent node, the child nodes are attributes of re-
lations or constant values. If the cor_1dition is an attribute 4 5 3 Final Query Decomposition step
value clause, the state of the parent is the state value of the
attribute. The state value of the attribute in turn is deter- The final step is to generate the two queries Query 1 (to
mined by the location of that attribute. If the conditionis a be sent to Server 1) and Query 2(to be sent to Server 2).
attribute-attribute clause (al = a2 or @1a? etc), the state  We use the state value of the root node obtained from the
of the parentis: WHERE clause processing W and the SELECT clause state
0 if the state values of the attributes are (1,2) or if they are value S.There are five cases depending on the state value of
on the same server but one of the attributes is encrypted.; the root node .
if the state values of the attributes are (1,1) or (1,4) ; Béft W =0:
state values of the attributes are (2,2) or (2,4) ; 4 if thieesta There are no where clauses in Query 1 and Query 2 since
values of the attributes are (4,4) none of the conditions can be pushed to the servers.
Case 2 The parent node is the AND operator W=1lor2:
Table 1 represents the state determination of an AND par-For state value 1, Query 2 does not contain any where
ent node given the state values of its two children. The row clause.Similarly, for state value 2, Query 1 does not have
in the table is the state of the first child, the column is the any where clause.
state of the second child and the table entry is the state ofW = 3 - Top Down processing of Clauses
the parent. For example, (4,3) implies a state 3 for the par-We perform a top-down processing of the tree. We start
ent using the AND table. at the root operator and proceed downwards as long as we
Case 3 The parent node is the OR operator. Table 2 rep- encounter state 3. We thus stop when we are sure whether
resents the state determination of an OR parent node giverto include the clause as part of Query 1 (state value 1),
the state values of its two children. Query 2(state value 2) , Query 1/Query 2 (state value 4) or



not to include it at all(state value 0). PROJECTIN,D,S](T5)
W =4:
The where clauses can be pushed completely to any one of

the two servers. T5<—(T2 JOIN[T2.T=T4.T] T4)

Let us work with an example to see how all this fits in ‘
to solve the problem as a whole. Consider a slightly more
complicated client query. T2 <- PROJECT]T,N,S](T1) T4<-PROJECTI[T,D,Z|(T2)
SELECT Nanme, DoB, Salary FROM R
VWHERE (Narme = Tomi AND
Position="Staff’) AND (Z pcode =
'94305" OR Sal ary > 60000)
Let the predicates in the query be assigned P1 (Name =
"Tom’), P2(Position="Staff"), P3(Zipcode="94305")
and P4(Salary60000) The parse tree and the correspond-
ing state values are shown in Figure 5.

T1<- SELECT[P1](R1) T3<-SELECT[P2](R2)

Figure 6. Distributed Query Plan

An initial fragmentation of the database is considered

/ which satisfies all the privacy constraints.

Initial Guess: The initial state is obtained using the
weighted set cover . Refer [27] for details of the algorithm.

Algorithm for Weighted Set Cover: - Assign a weight to
each attribute based on the number of privacy constraints
it occurs in. - Encrypt attributes one at a time starting with
the one which has the highest weight till all the privacy con-
straints are satisfied.

Hill Climbing Step: Then, all single step operations are

Figure 5. State Computation for the Predicate tried out (1) Decrypting an encrypted column and placing it
at Server 1. (2) Decrypting an encrypted column and plac-
ing it at Server 2. (3) Decrypting an encrypted column and

Queryl: SELECT TID, name, salary placing it at both servers (4)Encrypting an decrypted col-
FROM R1 WHERE Nane=" Tomi umn and placing it at both servers.
Query2: SELECT TID, dob, zipcode
FROM R2 WHERE Posi tion="Staff’ From these steps, the one which satisfies privacy con-

The query plan is also shown here in Figure 6 detailing out straints and results in minimum network traffic is consid-
the steps that need to be performed for executing this queryered as the new fragmentation and the process repeats. The
In the plan,I",N,S and D stand for TID, Name, Salary and iterations are performed as long as we get a decomposition
DoB attributes of schemaR respectively. At the client side, at each step which improves over the existing decomposi-
results of Queryl and Query2 are joined on attribute TID. tion using the cost metric discussed before.
The predicates P3 and P4 are then applied to the results fol-
lowed by a projection on the select attributes. In order to compare the results produced by our hill
climbing strategy with the optimal solution, we also imple-
mented a brute force algorithm. This algorithm considers
all possible partitions that satisfy the privacy constisand
selects the one with minimal cost. Note that for a relation
Hill-climbing is a heuristic in which one searches for with n columns there aré™ possible fragmentations pos-
an optimum combination of a set of variables by varying sible and very few of them will satisfy all the privacy con-
each variable one at a time as long as the objective valuestraints. (The “4” arises because there are 4 choices for eac
increases. The algorithm terminates when no local step de-attribute: store decrypted at server 1 or 2 or both, or store
creases the cost. The algorithm convergesto a local minimaencrypted at both servers.)

5 Partitioning Algorithms



6 Experimental Results similar to the previous experiment, we have 5 queries per
workload.

Figure 7 shows the number of workloads for which
the hill climbing converged . We note that the number of
workloads requiring more than 10 iterations is less than 2
percent of the workloads.

6.1 Details of Experimental Setup:

We execute our code on a single relati®nn all exper-
iments. The number of attributes i was varied from 1

to 30. The number of tuples iR was between 1000 and 50
10,000. Note that for our experiments we do not actually -
need the data, only the statistics that describe the dates, Th wl —

the results we obtain for this setting are applicable to-rela
tions of a larger (or smaller) size.

As we vary the number of attributes, we generate privacy
constraints over it randomly with the following properties
We generate as many privacy constraints as the number of
attributes in the relation. Privacy constraints vary iresiz H

nils

30 [

Number of workloads

20

from one to the number of attributes in the relation. The r

attributes that are part of each constraint are selectexhat r

dom from the available attributes without replacement. 0
Another important parameter is the workload. We gen- umber o erations

erated 25 workloads containing a fixed number of queries(

5 in our case) for different number of attributes of the re-

lations. So, for a relation with fixed number of attributes,

we generate about 125 queries (25*5) divided into twenty We now show the improvements achieved by the hill

five workloads. For each query, the parts that were variedclimbing over the initial partition. The improvement

were the attribute set in the SELECT clauses and the con-fercentage is defined as:

ditions in the WHERE clause.We selected a subset of SQLPerc. I nprovenent = (Cy, — Ciy)/Ciyp * 100

which mapped to our grammar defined in Section 4. Eachwhere Cy, = Cost estimate for the final partition o

condition claus€' was of the form £O Py) whereO P was returned by Hill Climbing for a given workloatd” and set

chosen at random to he, < or =. x’s were chosen from of privacy constraints”’; and C;, = Cost estimate of the

the columns ofR while y was chosen from the domain of initial partition given as input to the hill climbing algdnim

x after choosing.. The(C’s themselves were combined by for the same workloadl” and set of privacy constraint3.

choosing one of OR, AND. The other parameters that wereFigure 8 illustrates that the number of workloads with

randomly chosen were the number of condition clauses, thegreater than 20 percent difference from the initial solutio

number of attributes in the SELECT clause and the actualkeeps decreasing with increasing percentages. Despite

attributes in the SELECT clause itself. this fact, more than 50 percent of the workloads have a

percentage improvement of over 25 percent.

Figure 7. Hill Climbing Iterations

6.2 Synthetic Data Generation
6.3 Personal Data Example

We conduct experiments to demonstrate how well hill
climbing compares with brute force. For each algorithm, we  We run experiments for the real world example discussed
vary the number of attributed” from 1 to 6. We generate  earlier in the paper in Section 2. The schefis the same
ten different workloads for eacN and each workload was  with 8 attributes and 8 privacy constraints. The workloads
composed of 5 queries.While we can obtain results for hill are generated at random as discussed in the previous sub-
climbing for larger N, the brute force approach starts to section. Figure 9 depicts that for about 50 percent of the
get intractable. Hill climbing starts to move away from the workloads, the percentage difference of the final result of

optimal solution with increasingv. For 3 attributes, hill  hill climbing from the initial partition is about 5 percent.
climbing is around 20 percent away from brute force but for Thus, given privacy constraints of the form listed for this
6 attributes, this percentage goes up to around 140. example, it is easier to guess a reasonably valid and opti-

Next, we study the behavior of hill climbing in terms of mal decomposition for the schema. We also find that hill
the number of iterations it takes to converge. We vary the climbing terminates sooner ( fewer number of iterations as
number of attributes N for the relation from 1 to 30 for these compared to the synthetic data case) with close to 50 per-
experiments.The number of workloads for each N is 10 and cent of the workloads terminating in a single iteration.



70 we get to the final result in fewer number of iterations.
Fewer iterations are required because most of the privacy
constraints are concerned with these three attributes and
50— : are independent of the others so we have fewer options to
choose for these three attributes.
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There is a wide consensus that privacy is a corporate
responsibility [21]. In order to help and ensure corpo-
rations fulfill this responsibility, governments all ovéret
world have passed multiple privacy acts and laws, for exam-
ple, Gramm-Leach-Bliley (GLB)Act [14], Sarbanes-Oxley
(SOX) Act [26], Health Insurance Portability and Account-
6.4 Varying Distributions of Privacy Con- ability Act (HIPAA) [20], SB1386 [1] are some such well

straints Generation Task known U.S. privacy acts. In many use cases complying with
these laws require an organizationto encryptthe data i cas

We had previously generated a synthetic dataset for thelt is hosted by an external service provider.
privacy constraints and the workload where all parameters As discussed in the introduction, the outsourcing of data
were generated uniformly at random. For this experiment, management has motivated the model where a DBMS pro-
we use a relation with 8 columns and 1000 tuples. Therevides reliable storage and efficient query execution, while
are 8 privacy constraints generated for the relation. Therenot knowing the contents of the database [17]. Schemes
is a percentage weight parameter governing the generatiomroposed so far for this SaaS model [16] (Software as a
of constraints which applies to the first three columns of Service) encrypt data on the client side and then store the
the relation. For example, if percentage weight is set to 20,encrypted database on the server side [16, 18, 6]. However,
then 60 percent (20*3) of the time, one of the first three in order to achieve efficient query processing, all the above
columns will be selected as a participant in the generatedschemes only provide very weak notions of data privacy.
privacy constraint. So, setting this weight to around 12 In fact a server that is secure under formal cryptographic
results in a uniform distribution and as it goes above 33, we notions can be proved to be hopelessly inefficient for data
get a heavily biased set of privacy constraints on these thre processing [22].
columns. We generate 30 workloads for each weight value  After our original work [3] on using a combination of
that we desire to test. Figure 10 shows the average numbedistribution and encryption for secure databases, our col-
of iterations as we vary the weight from 10 to 34 percent. It leagues at Stanford University have developed partially [9
can be seen that as the bias on the three attributes increaseand complete homomorphic encryption algorithms [13].

Figure 9. Personal Data Example - Perfor-
mance Gain using Hill Climbing



This allows arithmetic operations on ciphertext without de [12] N. Garg, V. Vazirani, and M. Yannakakis.

crypting to plaintext. Homomorphic encryption along with
deterministic hashing primitives drastically improvesLSQ

processing on encrypted data in the SaaS model.
[3, 23, 10] define privacy constraints and describe the

[13]

architecture for secure database services. In this pajger, w14
build on this architecture and develop algorithms to spét t
schema among the servers and perform distributed quer)hs]
processing for a subset of SQL (both are absent in [23]).
K-anonymity [4] maintains aggregates while changing mi-
crodata for data publishing. This scheme maintains micro- [16]
data intact for OLTP workloads also.
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