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Abstract

We have proved in an earlier paper that the complexity of the list
homomorphism problem, to a fixed graph H , does not change when
the input graphs are restricted to have bounded degrees (except in the
trivial case when the bound is two). By way of contrast, we show in
this paper that the extension problem, again to a fixed graph H , can,
in some cases, become easier for graphs with bounded degrees.

1 Background

We consider undirected graphs without multiple edges, but with loops al-
lowed. A graph without loops is called irreflexive, and a graph in which
each vertex has a loop is called reflexive. Note that a bipartite graph is, by
definition, irreflexive.

A homomorphism f : G → H is a mapping f : V (G) → V (H) such
that f(g)f(g′) is an edge of H for each edge gg′ of G. Every graph H

gives rise to a decision problem HOMH in which one is to decide whether
or not a given input irreflexive graph G admits a homomorphism to the
fixed graph H. Such a homomorphism is also called an H-colouring of G,
and the problem HOMH is referred to as the H-colouring problem or the
homomorphism problem to H. It is shown in [14] that each H-colouring
problem HOMH is polynomial-time solvable (if H is bipartite or contains a
loop), or NP -complete (if H is irreflexive and nonbipartite).

The problem LHOMH , known as the list H-colouring problem or the
list homomorphism problem to H, has each instance consist of an irreflexive
graph G together with lists, L(g) ⊆ V (H), g ∈ V (G), and the question

∗tomas@theory.stanford.edu
†School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada, V5A

1S6; pavol@cs.sfu.ca
‡Department of Mathematics and Statistics, University of Victoria, P.O. Box 3045,

Victoria, B.C., Canada, V8W 3P4; jing@math.uvic.ca

1



to decide is whether or not there exists a homomorphism f of G to H in
which each g ∈ V (G) has f(g) ∈ L(g). Such a homomorphism will be
called a list homomorphism (or a list H-colouring) with respect to the lists
L. In a sequence of papers [6, 7, 8], we have classified the complexity of
these problems. The problem LHOMH is polynomial-time solvable when
H is a ‘bi-arc graph’, and is NP -complete otherwise. Bi-arc graphs are
defined in [8]; they are common generalization of reflexive interval graphs
and (irreflexive) bipartite graphs whose complements are circular arc graphs.

Note that, unless stated otherwise, the input graphs G are always con-
sidered to be irreflexive.

A number of variants of these basic problems have been considered.

• EXTH , called the extension problem for H, is the restriction of LHOMH

to inputs with lists L(g), g ∈ V (G), which are either singletons (|L(g)| =
1), or the entire set (L(g) = V (H)). Thus the extension problem for
H asks whether or not a partial mapping of V (G) to V (H) can be
extended to a homomorphism of G to H.

• CLHOMH , the connected list homomorphism problem to H, is the re-
striction of LHOMH to inputs where each list L(g), g ∈ V (G), induces
a connected subgraph of H.

• BLHOMH , the balanced list homomorphism problem to H, is the re-
striction of LHOMH to inputs where each list L(g), g ∈ V (G), satisfies
|L(g)| ≥ degG(g).

When H = Kn, homomorphisms to H coincide with the usual notion of
n-colourings. In this case, the extension problem EXTKn

has been studied
by many authors under the name ‘pre-colouring extension’ [1, 18, 19]. To
conform to this interpretation, we shall call the vertices g with |L(g)| = 1
pre-coloured. A special case of the extension problem, when the input graph
G contains H as a subgraph, and the singleton lists are exactly L(h) =
{h}, h ∈ V (H) has been studied under the name of retraction problem [6, 11].
In fact, when there are no degree constraints, it is easy to see that the
retraction problem is equivalent to the retraction problem [6]. Of course,
our polynomial algorithms on degree restricted extension problems apply
also to retraction problems.

In [12, 15] the authors investigated the effect of restricting the degrees of
the input graphs G. In particular, [15] sets up a common framework for all
these variants, which we use here, slightly adapted for the purposes of this
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paper. Namely, we put a superscript ∆ to indicate that the input graphs G

are restricted to have all degrees at most ∆. For instance, LHOM∆
H is the

restriction of LHOMH to graphs G with all degrees at most ∆.
We shall generally assume that ∆ ≥ 3, since graphs with degrees bounded

by 2 are unions of paths and cycles, and all the problems are polynomial-time
solvable by easy or standard techniques, cf. [4, 21]. When ∆ ≥ 3 restricting
the degrees can have a significant impact on the complexity of the problem.
For instance, it is well known [13] that the problem HOMH with H = K3

(the classical problem of 3-colourability) is NP -complete, while the problem
HOM∆

H with ∆ = 3 (the restriction to inputs with all degrees at most three)
is polynomial-time solvable, since, by the theorem of Brooks, a connected
graph with maximum degree three is either 3-colourable or isomorphic to
K4. In [12], there are more complex examples of hard HOMH problems that
become easy when a degree bound is imposed; it is also shown there that
when H is an odd cycle of length at least five, the problem HOM∆

H remains
NP -complete even for ∆ = 3.

In [15], the authors considered the problems LHOM∆
H . They observed

that it is of course still the case that LHOM∆
H is polynomial-time solvable

when H is a bi-arc graph, and posed as an open problem the question
of classifying the complexity of LHOM∆

H for other graphs. This problem
was solved in our earlier paper [9]; it turns out that the complexity of list
homomorphisms does not change when degree constraints are imposed.

Theorem 1 [9] Let ∆ ≥ 3 be fixed. The problem LHOM∆
H is polynomial-

time solvable when H is a bi-arc graph, and is NP -complete otherwise.

In [10] we have given a polynomial time algorithm for the problems
BLHOMH in case the graph H is nearly complete, in the sense that for
each vertex h of H there is at most one other vertex, possibly itself, to
which h is not adjacent. It is not difficult to see, cf. [10], that for a nearly
complete graph H, an instance of BLHOMH with at least one vertex g

having degG(g) < |L(g)| must have a list homomorphism to H. Thus we
may focus on instances in which all degG(g) = |L(g)|. In [10], we have shown
that such instances either admit a list homomorphism to H, or have a very
special structure. This yields a polynomial time algorithm for BLHOMH .

In this paper we will focus on the problems EXT∆
H and CLHOM∆

H . The
problem BLHOMH will play an auxiliary role.

It is clear that each CLHOM∆
H is a restriction of LHOM∆

H , and that, if H

is connected, EXT∆
H is a restriction of CLHOM∆

H . When ∆ ≤ |V (H)|, there
is a simple polynomial-time reduction from EXT∆

H to the problem BLHOMH
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- each pre-coloured vertex g of the input G is replaced by degG(g) vertices of
degree one, each attached to one neighbour of g, and all pre-coloured by the
same colour as g. It is also clear that HOMH is a restriction of EXTH (all
lists are V (H)). Figure 1 illustrates the containment of the problems, i.e., a
lower placed problem is a restriction of an adjacent higher placed problem.
Assuming ∆ ≤ |V (H)|, there is an analogous figure for the ∆-restricted
versions LHOM∆

H , CLHOM∆
H , EXT∆

H , and HOM∆
H . The inclusion (1) only

applies if H is connected (in both versions), and the dashed inclusion (2)
only applies to the ∆-restricted version EXT∆

H .

HOM

LHOM
H

CLHOMHBLHOM
H

EXTH

(1)(2)

H

Figure 1: Various list homomorphism problems (see the above explanations)

The results of [10] open the way to classifying the complexity of the
problems BLHOMH , and therefore of CLHOM∆

H , and EXT∆
H , for all reflexive

and irreflexive cycles H. Interestingly, in these situations restricting the
degree ∆ can have an important effect on the complexity of the problem.

In [6], the first two authors proved that, for a reflexive graph H, the
problem CLHOMH is polynomial-time solvable when H is a chordal graph
(contains no induced cycle of length greater than three), and is NP -complete
otherwise. As a byproduct of our results, we show that the complexity of
the same problems does not change when degree constraints are imposed.

Theorem 2 Let ∆ ≥ 3 and a reflexive graph H be fixed. The problem
CLHOM∆

H is polynomial-time solvable when H is a chordal graph, and is
NP -complete otherwise.
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The following two tables summarize our results about the degree re-
stricted homomorphism problems for reflexive and irreflexive cycles – show-
ing the gradation of complexity of the various homomorphism problems, in
terms of maximum degrees of the input graphs. (We omitted the super-
scripts ∆ from the problem names in the table headings.) In each table,
the last row (∆ ≥ 4 respectively ∆ ≥ 5) also describes the situation for
unrestricted degrees.

Table I: Irreflexive cycles

MAXIMUM DEGREE ∆ LENGTH k HOM EXT CLHOM LHOM

∆ = 3 k = 3 P P NP -c NP -c
k = 4 P P P P

k ≥ 5 odd NP -c NP -c NP -c NP -c
k = 6 P P NP -c NP -c
k ≥ 8 even P NP -c NP -c NP -c

∆ ≥ 4 k = 3 NP -c NP -c NP -c NP -c
k = 4 P P P P

k ≥ 5 odd NP -c NP -c NP -c NP -c
k = 6 P P NP -c NP -c
k ≥ 8 even P NP -c NP -c NP -c

Table II: Reflexive cycles

MAXIMUM DEGREE ∆ LENGTHS k HOM EXT CLHOM LHOM

∆ = 3 k = 3 P P P P

k = 4, 5 P P NP -c NP -c
k ≥ 6 P NP -c NP -c NP -c

∆ = 4 k = 3 P P P P

k = 4 P P NP -c NP -c
k ≥ 5 P NP -c NP -c NP -c

∆ ≥ 5 k = 3 P P P P

k ≥ 4 P NP -c NP -c NP -c

2 Extension Problems

As noted above, the extension problem EXT 4
H for the reflexive four-cycle

H can be reduced to the problem BLHOMH , which is solved in polynomial
time, since the reflexive four-cycle is a nearly complete graph [9].
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Corollary 1 The problem EXT 4
H for the reflexive four-cycle H can be solved

in polynomial time.

We also introduce a different tool.

Theorem 3 Let H be a graph (with loops allowed) such that any two ver-
tices a, b have a common neighbor c in H. Then the problem EXT 3

H can be
solved in polynomial time.

Proof. Let G be a connected instance of EXT 3
H . As before, we may

assume that all pre-coloured vertices g of G have degree one. (Otherwise we
may replace a pre-coloured vertex g of degree k by k vertices of degree one,
pre-coloured by the same colour, adjacent to the k different neighbours of g.)
Now we have a balanced instance, and so we may assume there are no other
(not pre-coloured) vertices of degree smaller than three. Indeed, if g of degree
one or two is not pre-coloured, then a list homomorphism (extension) exists
by the following argument. We can assign colours G greedily in the order of
decreasing distance to g - whenever a vertex x 6= g is being coloured, it has at
most two previously coloured neighbors, and, by assumption, whatever two
colours a, b occur on the neighbours of x, some colour c will be suitable for x.
To complete the colouring we note that since degG(g) ≤ 2, the vertex g also
has at most two previously coloured neighbours and so the same argument
applies.

Suppose first that G is a block. It could be an edge uv with pre-coloured
vertices u, v, which may or may not be legally coloured. On the other hand,
if G has three vertices, then none are pre-coloured, and all have degree three.
If G has four vertices, then it is a K4, which may or may not be H-colourable.
(Recall that all lists are V (H), thus this only depends on whether or not H

itself contains a loop or a K4.) Otherwise, G has at least five vertices. It is
easy to argue that in this case G contains a vertex g such that G−g is also a
block. (According to a theorem of Kaugars, every critical block other than
an edge contains a vertex of degree two, cf. [2], page 49.) Since G is cubic
and has more than four vertices, we can find vertices u, v be such that u is a
neighbor of g, and v is a neighbor of u, but v is not a neighbor of g. We now
note that G − g − v is connected, since G − g is a block. We colour g and
v by the same colour a (recalling that all lists are V (H)), and colour the
remaining vertices greedily in order of decreasing distance to u in G− g− v.
Every vertex other than u has at most two previosuly coloured neighbours,
and u has only two previously assigned colours on its three neighbours (as
the colours of v and g are the same), whence we can apply our assumption.
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If G is not a block, then the blocks may not contain internal (noncut-
point) vertices of degree two, but a cutpoint could have degree two in some
of its incident blocks. Suppose first that no block of G has a vertex of degree
three in the block. Then every block B is either a single edge or a cycle.
We may repeatedly consider a leaf block B with cutpoint w, and determine
which colours of w can be extended to a colouring of all vertices u in B, by
traversing the cycle B in one direction starting from w, or examining the
single edge B. The problem then reduces to a problem for G − (B − w).
Repeatedly removing leaf blocks B′ in this way leads to the situation where
G is a block which is solved in the previous paragraph. Finally, assume that
at least one block B contains at least one vertex v of degree three in B.
Then we may assume v has a neighbour w that is a cutpoint. Let G′ be
the component containing w of the subgraph of G obtained by removing the
neighbors of w in B. We may greedily colour the vertices of G′ −w in order
of decreasing distance from w. Let a be the colour assigned to a neighbor
u of w in G′. Colour v by a, and colour the vertices of G − (G′ − w) − v

greedily in order of decreasing distance from w.

The algorithm can declare that an extension exists unless the instance
has the very special structure described in the proof above. Specifically, we
don’t have to check anything unless G is an edge with both vertices pre-
coloured, or a four-clique, or has only pre-coloured vertices of degree one
and non-pre-coloured vertices of degree three and consists of blocks which
are either edges or cycles. In these instances, it is a simple matter to check
whether or not an extension exists.

Let H be a reflexive graph of diameter at most two. Then the condition
in Theorem 3 is satisfied and hence EXT 3

H can be solved in polynomial time.

Corollary 2 The problem EXT 3
H for the reflexive five-cycle H can be solved

in polynomial time.

If H is an irreflexive graph of diameter at most two and each edge belongs
to a triangle, the condition in Theorem 3 is also satisfied, and hence EXT 3

H

can be solved in polynomial time.

Corollary 3 The problem EXT 3
H for the irreflexive three-cycle H can be

solved in polynomial time.

Recall that the extension problems EXT, being special list homomor-
phism problems LHOM, were formulated for instances with irreflexive graphs
G. For the list homomorphism problems, this is a natural restriction, since
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we can accommodate loops in G by modifying the lists. (If g ∈ V (G) has a
loop, delete the loop and remove from L(g) any vertices h ∈ V (H) without
loops.) For the extension problems, we have the following result. We note
that a loop in G contributes only one to the degree of its vertex.

Corollary 4 Let H be a graph with loops allowed such that any two vertices
a, b have a common neighbor c in H, and any vertex u in H has a neighbor
v that has a loop. Then EXT 3

H can be solved in polynomial time even for
graphs G with loops allowed.

Proof. If a connected G has a vertex v of degree two we may greedily
assign colours to the vertices of G, in the order of decreasing distance to v.
If G is a block then either it is an edge or it has no pre-coloured vertices; in
the latter case it can be mapped to a loop.

If G is not a block but has a block B that contains a vertex v without
loop of degree three in B, then we may choose such v so that some neighbor
u of v has a loop or has an edge e = uw incident to u that belongs to a
different block B′. In the latter case we may greedily colour the subgraph
G′ attached at u via the edge e in the order of decreasing distance to u.
Once we have coloured G′ − u, we may assign to v the same colour as to w,
and finally colour G − G′ + u − v greedily by decreasing distance to u. If u

has a loop, then v has a neighbor z in B different from u such that z has
degree three, where z may have a loop (with two other incident edges) or
not, such that G− u − z is connected. We then assign the same colour s to
both u and z, where s is a loop in H, and colour G − u − z in the order of
decreasing distance to v.

We are thus left with the case where each block B of G is either an edge
or a cycle, possibly with some loops. This case is solved as before.

3 Irreflexive Cycles

The graphs in this section are restricted to be irreflexive (but not necessarily
bipartite). We shall focus on the the problems LHOM∆

H and EXT∆
H , in the

case when H is the irreflexive cycle of length k. Both the unrestricted
versions LHOMH and EXTH have the same time complexity - polynomial
when k = 4, and NP -complete otherwise (when k = 3 or k ≥ 5). Indeed,
when k = 4, LHOMH (and hence also EXTH) is obviously polynomial-time
solvable. If the input is not bipartite, no (list) homomorphism can exist;
otherwise, we may assume that black vertices of the input graph have black
lists and white vertices have white lists. In the four-cycle any black vertex
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is adjacent to any white vertex - thus we can simply assign to each vertex
of G any vertex of its list. On the other hand, when k is odd, HOMH is
NP -complete [14], and hence so is EXTH and LHOMH . (HOMH is the
list homomorphism problem in which all lists are V (H).) It was proved
independently by Gary MacGillivray (personal communication) and Tomas
Feder, see for instance [7], that EXTH (and thus also LHOMH) is NP -
complete for k = 2q > 4.

This classification remains unchanged for LHOM∆
H :

Proposition 1 Let H be the irreflexive cycle of length k, and let ∆ ≥ 3.
If k = 4, then the problem LHOM∆

H is polynomial-time solvable.
Otherwise (k = 3 or k ≥ 5), the problem LHOM∆

H is NP-complete.

Proof. The case of k = 4, follows from the general remarks above. When
k is odd, k 6= 3, this follows from the fact that HOM∆

H is NP -complete [12].
The cases of k even, k ≥ 6, are covered by Propositions 1 and 2 of [9].
The NP -completeness of LHOM∆

H when k = 3 follows from Proposition
2 of [9], which proves the NP-completeness of LHOM∆

H when H is an ir-
reflexive six-cycle. Indeed, there is a natural transformation which changes
an arbitrary graph H into a bipartite graph H∗ in such a way that H is
a bi-arc graph if and only if the complement of H∗ is a circular arc graph,
[8]. The graph H∗ is called the associated bipartite graph of the graph H,
and is defined to have the vertex set {nh, sh : h ∈ V (H)} and the edge set
{nhsh′ , shnh′ : hh′ ∈ E(H)}. It is immediate from the definitions that a
bi-arc representation of H is a circular arc representation of the complement
of H∗. It is shown in [8] that if LHOMH∗ is NP -complete then LHOMH

is also NP -complete, and it is easy to see that the proof given there also
implies that if LHOM∆

H∗ is NP -complete then so is LHOM∆
H , for any ∆. It

now only remains to note that when H is the irreflexive three-cycle, then
H∗ is the irreflexive six-cycle.

However, restricting the degrees has an effect on the complexity of ex-
tension:

Proposition 2 Let H be the irreflexive cycle of length k, and let ∆ = 3.
If k = 3, 4, 6, then EXT∆

H is polynomial-time solvable.
Otherwise (k = 5 or k ≥ 7), EXT∆

H is NP -complete.

Proof. For k = 4 we note that EXT∆
H is a restriction of LHOM∆

H which is
polynomial-time solvable by the preceding proposition. For k = 3, we apply
Corollary 3. A similar algorithm takes care of the problem EXT∆

H when k =
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6: assume that H is the six-cycle with consecutive vertices 1, 2′, 3, 1′, 2, 3′.
We may assume that the input graph G is bipartite (with, say, black and
white vertices), and that all pre-coloured vertices are either black with lists
{i}(i = 1, 2, 3), or white, with lists {j′}(j = 1, 2, 3). Replacing each pre-
coloured vertex with three vertices of degree one, each adjacent to one of
the neighbours, and all of the same colour, again reduces the problem to an
instance of BLHOMH . Although H is not nearly complete in the standard
definition, we can view it as nearly complete in the bipartite sense - each
white vertex is nonadjacent to just one black vertex and conversely. (By
adding all loops and edges except for 11′, 22′, 33′ we obtain a nearly complete
graph.) It can be easily checked that the polynomial algorithm for BLHOM
still applies in this context.

The NP -completeness of EXT∆
H for cycles of odd length k ≥ 5 follows

from [12]. Thus it remains to show NP -completeness of EXT∆
H for cycles H

of even length k ≥ 8.
In [7] (Theorem 3.1) we have shown a simple reduction of the problem

of r-colourability to EXTH , where H is the 2r-cycle. We now explain a
similar, but more elaborate, reduction which also ensures that all degrees
are at most three, i.e., reduce r-colourability to EXT∆

H . Let H be the cycle
01 . . . (2r)0, with r ≥ 4. For any graph F , we shall construct (in polynomial
time) a graph G with lists L(v) ⊆ V (H), v ∈ V (G), each of which is either
a singleton or the whole set V (H), in such a way that F is r-colourable if
and only if G admits a list homomorphism to H with respect to the list L.

Assume first that r is even, i.e., 2r divisible by four. The first step in
the reduction is to replace each edge xy of F with a separate copy Z(x, y)
of the following gadget Z. In Z there is a 2r-cycle Z1 = H with vertices
0, 1, . . . , 2r − 1. There are also additional 2r-cycles Z2, Z3, . . . , Zr (each
isomorphic to Z1), with edges joining corresponding odd vertices between
Z2i and Z2i+1 and joining corresponding even vertices between Z2i+1 and
Z2i+2. Two opposite vertices x′, y′ of degree two are chosen in Zr, an edge
xx′ and a path from y to y′ of length r− 3 are attached. We now define the
lists for the resulting graph G′ - each vertex v of Z1 has the list L(v) = {v}
and all other vertices have the list V (H).

The connections between the consecutive cycles Zi assure that in any
list homomorphism the vertex j of Zi can only be identified (have the same
image) with the vertex (j − 1) or (j + 1) of Zi−1. This is clear if j is
adjacent to Zi−1, and follows easily if j is not adjacent to Zi−1 because its
two neighbours are adjacent to Zi−1 and so if j didn’t map to j − 1 or j + 1
it would not be adjacent to the image of one of these neighbours. (Here we
use the fact that r is at least 4.)
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Thus each Zi must rotate one step clockwise or one step counterclockwise
to Zi−1. Therefore x′ and y′ can only map to even vertices of H, and any
two opposite even vertices of H are possible images of x′, y′. It follows that
any two distinct odd vertices are possible images of x and y. Hence F is
r-colourable if and only if G′ admits a list homomorphism.

When r is odd we do not have two opposite vertices x′, y′ of degree two
in Zr. It is not difficult to find other ways to interconnect the consecutive
cycles Zi, to obtain two opposite vertices of degree two in Zr, which assure
that each Zi must rotate one step clockwise or counterclockwise to Zi−1.
For instance we may connect vertices 1, r − 1, r + 1 and r + 3 between Zi

and Zi+1 when i is even, and vertices 2, r, r + 2 and r + 4 when i is odd.
We note that G contains all the vertices of F , and that all other vertices

of G′ have degree at most three. The second step in the reduction makes
sure all the degrees are at most three. Thus we again replace in G′ each
vertex v of F by its own gadget Y (v) described below. Suppose the degree
of v in G′ is d. Then Y (v) is contains a cycle Y1 with 2rd vertices and
consecutive lists {0}, {1}, . . . , {2r − 1}, {0}, {1}, . . . , {2r − 1}, . . . ⊆ V (H).
Isomorphic copies Y2, Y3, . . . , Yr of the cycle Y1 are joined to Y1 in the same
way as cycles were joined in the first part of the proof. The vertices of all
these cycles have lists V (H). It is easy to see that the vertices of degree two
that are 2r apart in Yr all must map to the same even (respectively odd)
vertex of H, and any even (respectively odd) vertex of H is a possible image.
Thus we may construct G by attaching each of the edges of G′ at v to a
different vertex of degree two in Yr of Y (v). Then F admits an r-colouring
if and only if G admits a list homomorphism, and all degrees in G are at
most three.

However, when the degree restriction is even slightly weaker, ∆ ≥ 4, the
classification reverts back to the one enjoyed by unrestricted degrees:

Corollary 5 Let H be the irreflexive cycle of length k, and let ∆ ≥ 4.
If k = 4, then EXT∆

H is polynomial-time solvable.
Otherwise (k = 3 or k ≥ 5), EXT∆

H is NP -complete.

Proof. Only the case when H is the irreflexive three-cycle and the
irreflexive six-cycle require an explanation: When H is the three-cycle, then
already the problem HOM∆

H is NP -complete [12]. When H is the six-cycle
the result follows from the proof in the previous section, because we can
assume all vertices in a list have the same parity, and a vertex with list of
size two given by i− 1, i + 1 can be represented by including an edge to i.
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4 Reflexive Cycles

We now consider the case of reflexive cycles:

Proposition 3 Let H be the reflexive cycle of length k, and let ∆ ≥ 3.
If k = 3, then CLHOM∆

H is polynomial-time solvable.
Otherwise (k ≥ 4), CLHOM∆

H is NP -complete.

The lists used in the NP -completeness proof are either a single vertex,
two adjacent vertices, or all the vertices of H; lists of three vertices are also
used in the case k = 4.

Proof. For a reflexive triangle every instance has a solution. We show
NP-completeness for k ≥ 4.

We shall give a polynomial reduction from the NP -complete problem
3-SAT. Thus assume we have an instance of 3-SAT with d clauses. We take
a cycle C of length dk for each Boolean variable xi. We shall consider each
vertex with list i, i + 1 as describing a Boolean variable with corresponding
values 0, 1, with i corresponding to 0 and i+1 corresponding to 1. A cycle of
length dk whose ith vertex has list i, i+1 (modulo k) allows us to represent
a vertex with list i, i + 1 of degree d and establishes the correspondence
between such lists for different i.

We shall encode a clause x∨y∨z on these boolean variables. Analogously,
we can obtain a clause x∨y∨z on these boolean variables. Combining these
two types of clauses with the single literal clauses x and x encodes the 3SAT
problem, which is NP-complete.

For k = 2r or k = 2r − 1, we use x with list 0, 1, y with list 1, 2, and z

with list r, r + 1. We add a vertex t adjacent to both x and y, with t joined
by a path of length r − 1 to z. These added vertices have full lists, with
the following exceptions: For k = 4 the list of t is 0, 1, 2 (3 is excluded); for
k = 2r − 1, the list of the vertex u adjacent to t on the path from t to z

excludes the value 0 (we can represent this with a path of length r − 2 from
u to a vertex v with list r − 1, r). The effect of this gadget is to forbid the
assignment x = 0, y = 2, z = r + 1, and only this assignment. In terms of
boolean variables, the forbidden assignment is xyz = 011; thus the clause
x ∨ y ∨ z is obtained.

The problems CLHOMH for reflexive graphs H were considered by the
first two authors [6], where it is shown that CLHOMH is polynomial-time
solvable when H is a chordal graph, and is NP -complete otherwise. Com-
bining it with the above proposition, we see that Theorem 2 holds.
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We now settle in detail the complexity of EXT∆
H , when H is the reflexive

cycle of length k. It was shown independently by MacGillivray and Feder
that without degree restrictions EXTH is polynomial-time solvable when
k = 3, and is NP -complete otherwise (k ≥ 4), cf. [6, 7]. Here the effect of
restricting the degree is quite pronounced:

Proposition 4 Let H be the reflexive cycle of length k.
If ∆ = 3, then EXT∆

H is polynomial-time solvable when k = 3, 4, 5 and
NP -complete otherwise (k ≥ 6).

If ∆ = 4, then EXT∆
H is polynomial-time solvable when k = 3, 4 and

NP -complete otherwise (k ≥ 5).
If ∆ ≥ 5, then EXT∆

H is polynomial-time solvable when k = 3 and NP -
complete otherwise (k ≥ 4).

The proposition will follow from the following smaller pieces:

Proposition 5 Let H be the reflexive cycle of length k.
Then EXT∆

H is NP -complete if k = 4 and ∆ ≥ 5, if k = 5 and ∆ ≥ 4,
and if k ≥ 6 and ∆ ≥ 3.

Proof. If k = 4 and the maximum degree is five, then for a vertex of
degree at most three in Proposition 3, a list i, i+1 can be replaced with two
edges to i and to i + 1, and a list i− 1, i, i + 1 can be replaced with an edge
to i; the degree increases by two.

If k ≥ 5, consider the cycle of length kd with lists i, i + 1. Only one of
these kd lists needs to be represented with two edges to i and to i + 1, and
thus have degree 4 if we count the two edges of the cycle as well. The next
vertex with list i + 1, i + 2 need only have an edge to i + 2, because the fact
that it is adjacent to a vertex with list i, i + 1 and to i + 2 implies that it is
adjacent to i + 1 as well. The degree two for these elements from the cycle
increases thus only to three (increases by one) for the kd − 1 vertices that
will be used elsewhere in the instance.

If k ≥ 7, we only need to be able to simulate a vertex of degree d = 4
with degree 3. We use a construction similar to the one in Proposition 2,
and construct a gadget with d vertices of degree two that must all map to
the same vertex (any vertex) H. The gadget starts with a cycle D1 of length
2dk whose vertices are viewed as integers 0, 1, 2, . . . , dk − 1 modulo dk. A
vertex of D1 in position i is given a list of size 1 assigning to it the vertex of
H in position i modulo k. Add a cycle D2 of length dk so that a vertex in
position 2i of D1 is connected to the vertex in position 2i + 1 of D2. Thus

13



D2 can be mapped to H in three possible ways. Connect similarly D2 to a
cycle D3, so that D3 can now be mapped to H in five possible ways, and so
on all the way up to Dr for r = ⌈k+1

2
⌉, which can be mapped in all k possible

ways of the correct orientation and parity. The d vertices in positions 2ik
of Dr they all map to the same vertex of H, which can be any vertex, and
they all have degree two.

The remaining case is k = 6 with maximum degree 3. The reflexive cycle
of length 6 is −2,−1, 0, 1, 2, 3. We show that we can represent a vertex with
list −1, 1 and arbitrary degree. The gadget R consists of four paths 0a1b1c13,
0a2b2c23, 0d1c1, 0d2c2, and three additional edges a1e, a2e, e3. Inspection of
this gadget shows that a1, a2, d1, d2 can only have values −1, 1, that c1, c2, e

can only have values −2, 2, and that b1, b2 can only have values −1,−2, 1, 2.
Furthermore, the values for these nine vertices are either all from −1,−2 or
all from 1, 2.

We make copies Rj for 1 ≤ j ≤ d of the gadget R, and add edges b
j
1b

j+1

2 .
The result is 2d vertices of degree 2, namely d

j
1, d

j
2, that must all take value

−1 or all take value 1. This simulates a vertex x0 with list −1, 1 and of
degree 2d.

We encode not-all-equal SAT. We can use the above construction to
simulate vertices xi with list i − 1, i + 1 of arbitrary degree. A cycle
x−2x−1x0x1x2x3 forces the xi to all have value i− 1 or all have value i + 1.
We can then view the xi as boolean variables with i− 1, i+ 1 corresponding
to boolean values 0, 1. Now consider the vertices x−2 with list 3,−1, x0 with
list −1, 1, and x2 with list 1, 3. If these three vertices are made adjacent
to a vertex v, then v can be assigned a value unless x−2, x0, x2 have val-
ues 3,−1, 1 respectively or −1, 1, 3 respectively. This means in terms of the
corresponding boolean variables that the two assignments 000 and 111 are
forbidden. Thus not-all-equal SAT is represented.

In the companion paper [9] we have conjectured that all the homomor-
phism type problems HOMH , LHOMH , CLHOMH , EXTH , etc., have the
same classifications even when restricted to graphs with degrees at most
∆, as long as ∆ is chosen large enough. (In fact, this is true for LHOMH

because of the results in [9].) All results obtained in this paper support this
conjecture.

We have recently learned that Mark Siggers [20] has proved the conjec-
ture for the case of the problems HOMH .
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