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Abstract

We consider the problem of finding a homomorphism from an input digraph G to a
fixed digraph H. We show that if H admits a weak-near-unanimity polymorphism ¢
then deciding whether G admits a homomorphism to H (HOM(H)) is polynomial time

solvable. This confirms the conjecture of Bulatov, Jeavons, and Krokhin | ], in
the form postulated by Maroti and McKenzie [ ], and consequently implies the
validity of the celebrated dichotomy conjecture due to Feder and Vardi [ ]. We

transform the problem into an instance of the list homomorphism problem where ini-
tially all the lists are full (contain all the vertices of H). Then we use the polymorphism
¢ as a guide to reduce the lists to singleton lists, which yields a homomorphism if one
exists.

1 Introduction

We have prepared two video presentations for this result and we encourage the reader to
watch the videos first. We ask the community for help in checking the correctness of our
algorithm. We welcome any comments and suggestions.

https://youtu.be/PBX51Qvbwtw and https://youtu.be/vDE8km24Rh0

Our Result in Context For a digraph G, let V(G) denote the vertex set of G and let A(G)
denote the arcs (aka edges) of G. An arc (u,v) is often written as simply wv to shorten
expressions.
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A homomorphism of a digraph G to a digraph H is a mapping g of the vertex set of G
to the vertex set of H so that for every arc uv of G the image g(u)g(v) is an arc of H. A
natural decision problem is whether for given graphs G and H there is a homomorphism of
G to H. If we view undirected graphs as digraphs in which each edge is replaced by the two
opposite directed arcs, we may apply the definition to graphs as well. An easy reduction
from the k-coloring problem shows that this decision problem is N P-hard: a graph G' admits
a 3-coloring if and only if there is a homomorphism from G to K3, the complete graph on 3
vertices. As a homomorphism is easily verified if the mapping is given, the homomorphism
problem is contained in NP and is thus /N P-complete.

The following version of the problem has attracted much recent attention. For a fixed
digraph H the problem HOM (H) asks if a given input digraph G admits a homomorphism
to H. Note that while the above reduction shows HOM (K3) is NP-complete, HOM (H)
can be easy (in P) for some graphs H: for instance if H contains a vertex with a self-loop,
then every graph G admits a homomorphism to H. Less trivially, for H = K, (or more
generally, for any bipartite graph H), there is a homomorphism from G to K, if and only if
G is bipartite. A very natural goal is to identify precisely for which digraphs H the problem
HOM(H) is easy. In the special case of undirected graphs (when for each arc uv of H there
is also an arc vu of H) the classification has turned out to be this: if H contains a vertex with
a self-loop or is bipartite, then HOM (H) is in P, otherwise it is N P-complete | | (see
(305, S510] for shorter proofs). This classification result implies a dichotomy of possibilities for
the problems HOM (H) when H is an undirected graph, each problem being N P-complete
or in P. However, the dichotomy of HOM (H) remained open for general digraphs H. It
was observed by Feder and Vardi | | that this problem is equivalent to the dichotomy
of a much larger class of problems in NP, in which H is a fixed finite relational structure.
These problems can be viewed as constraint satisfaction problems with a fixed template H
[ ], written as C'SP(H). A constraint satisfaction problem C'SP(H) consists of (a) a
relational structure H that specifies a set V' of variables that each come from some domain
D and (b) a set C' of constraints giving restrictions on the values allowed on the variables.

The question is whether all constraints can be simultaneously satisfied. 3SAT is a proto-
typical instance of CSP, where each variable takes values of true or false (a domain size of
two) and the clauses are the constraints. Digraph homomorphism problems can also easily
be converted into CSPs: the variables V" are the vertices of G, each must be assigned a vertex
in H (meaning a domain size of |V (H)|), and the constraints encode that each arc of G must
be mapped to an arc in H.

Feder and Vardi argued in | ] that in a well defined sense the class of problems
CSP(H) would be the largest subclass of NP in which a dichotomy holds. A fundamental
result of Ladner [L.75] asserts that if P # NP then there exist N P-intermediate problems
(problems neither in P nor N P-complete), which implies that there is no such dichotomy
theorem for the class of all NP problems. Non-trivial and natural subclasses which do have
dichotomy theorems are of great interest. Feder and Vardi made the following Dichotomy
Congecture: every problem C'SP(H) is N P-complete or is in P. This problem has animated



much research in theoretical computer science. For instance the conjecture has been verified
when H is a conservative relational structure [B11], or a digraph with all in-degrees and
all-out-degrees at least one | .

Numerous special cases of this conjecture have been verified | , , )

It should be remarked that constraint satisfaction problems encompass many well known
computational problems, in scheduling, planning, database, artificial intelligence, and consti-
tute an important area of applications, in addition to their interest in theoretical computer
science | , , , ].

While the paper of Feder and Vardi | ] did identify some likely candidates for the
boundary between easy and hard C'SP-s, it was the development of algebraic techniques
by Jeavons [J9%] that lead to the first proposed classification [ ]. The algebraic ap-
proach depends on the observation that the complexity of C'SP(H) only depends on certain
symmetries of H, the so-called polymorphisms of H. For a digraph H a polymorphism ¢
of arity k on H is a homomorphism from H* to H. Here H* is a digraph with vertex set
{(a1,as,...,ar)|a1,as,...,ar € V(H)} and arc set {(aq,aq, ..., ax)(b,ba,..., b)) | aib; €
A(H) for all 1 <i < k}. For a polymorphism ¢, ¢(aq, as, ..., ar)d(by, ba, ..., b) is an arc of
H whenever (ay,as, ..., a;)(by, b, ..., b) is an arc of HE.

Over time, one concrete classification has emerged as the likely candidate for the di-
chotomy. It is expressible in many equivalent ways, including the first one proposed in
[ ]. There were thus a number of equivalent conditions on H that were postulated to
describe which problems C'SP(H) are in P. For each, it was shown that if the condition
is not satisfied then the problem CSP(H) is NP-complete (see also the survey | ])-
One such condition is the existence of a weak near-unanimity polymorphism (Maroti and
McKenzie | ). A polymorphism ¢ of H of arity k is a k near unanimity function (k-
nuf) on H, if ¢(a,a,...,a) = a for every a € V(H), and ¢(a,a,...,a,b) = ¢(a,a,...,b,a) =
oo =¢(b,a,...,a) = a for every a,b € V(H). If we only have ¢(a,a,...,a) = a for every
a€V(H) and ¢(a,a,...,a,b) =d¢(a,a,...,b,a)=---=¢(b,a,...,a) [not necessarily a] for
every a,b € V(H), then ¢ is a weak k-near unanimity function (weak k-nuf).

Given the N P-completeness proofs that are known, the proof of the Dichotomy Conjecture
reduces to the claim that a relational structure H which admits a weak near-unanimity
polymorphism has a polynomial time algorithm for C'SP(H). As mentioned earlier, Feder
and Vardi have shown that is suffices to prove this for HOM (H) when H is a digraph. This
is the main result of our paper.

Note that the real difficulty in the proof of the graph dichotomy theorem in | | lies in
proving the N P-completeness. By contrast, in the digraph dichotomy theorem proved here
it is the polynomial-time algorithm that has proven more difficult.

While the main approach in attacking the conjecture has mostly been to use the highly
developed techniques from logic and algebra, and to obtain an algebraic proof, we go in the
opposite direction and develop a combinatorial algorithm.

Our main claim is the following.



Theorem 1.1 (Main Claim) Let H be a digraph that admits a weak near-unanimity func-
tion. Then HOM (H) is in P.

Together with the N P-completeness result of | |, this settles the C'SP Conjecture in
the affirmative.

Our Methods, Very High Level View We start with a general digraph H and a weak k-nuf
¢ of H. We turn the problem HOM (H) into a related problem of seeking a homomorphism
with lists of allowed images. The list homomorphism problem for a fixed digraph H, denoted
LHOM(H), has as input a digraph G, and for each vertex x of G an associated list (set)
of vertices L(z) C V(H), and asks whether there is a homomorphism g of G to H such
that for each z € V(G), the image g(z) is in L(x). Such a homomorphism is called a list
homomorphism of G to H with respect to the lists L. List homomorphism problems are
known to have nice dichotomies. For instance when H is a reflexive undirected graph (each
vertex has a loop), the problem LHOM (H) is polynomial when H is an interval graph

and is N P-complete otherwise | ]. Similar list homomorphism dichotomies were proved
for general graphs | , |, and more recently also for digraphs | ]. In fact,
motivated by the results in | : |, Bulatov [311] proved that the list version of

constraint satisfaction problems has a dichotomy for general relational systems.

It is not difficult to see that there are digraphs H such that HOM (H) is polynomial
while LHOM (H) is N P-complete. For instance, the reflexive four-cycle H has loops and
so HOM(H) is trivial, while LHOM (H) is NP-complete since H is not an interval graph.
However, we transform the problem HOM (H) into a restricted version of LHOM (H) in
which the lists satisfy an additional property related to the weak k-nuf ¢.

One of the common ingredients in C'SP algorithms is the use of consistency checks to
reduce the set of possible values for each variable (see, for example the algorithm outlined
in | | for CSP(H) when H admits a near unanimity function). Our algorithm includes
such a consistency check as a first step. We begin by performing a pair consistency check of
the list of vertices in the input digraph G. For each pair (x,y) of V(G) x V(G) we consider
a list of possible pairs (a,b), a € L(x) (the list in H associated with x € G) and b € L(y).
Note that if zy is an arc of G and ab is not an arc of H then we remove (a,b) from the list
of (x,y). Moreover, if (a,b) € L(x,y) and there exists z such that there is no ¢ for which
(a,c) € L(z,z) and (c,b) € L(z,y) then we remove (a,b) from the list of (x,y). We continue
this process until no list can be modified. If there are empty lists then clearly there is no
list homomorphism.

After performing pair consistency checks (and repeating the consistency checks throughout
the algorithm), the main structure of the algorithm is to perform pairwise elimination, which
focuses on two vertices a, b of H that occur together in some list L(z),z € V(G), and finds
a way to eliminate a or b from L(z) without changing a feasible problem into an unfeasible
one. In other words if there was a list homomorphism with respect to the old lists L, there
will still be one with respect to the updated lists L. This process continues until either
a list becomes empty, certifying that there is no homomorphism with respect to L (and



hence no homomorphism at all), or until all lists become singletons, specifying a concrete
homomorphism of G to H. This technique, due to the lead author, has been successfully
used in several other papers | , , ]. In this paper, the choice of which a
or b is eliminated, and how, is governed by the given weak near-unanimity polymorphism
¢. In fact, we define a family of mappings f,,z € V(G) which are each polymorphisms
derived from ¢ and use these polymorphisms as a guide. The heart of the algorithm is a
delicate procedure for updating the lists L(z) and polymorphisms f, in such a way that (i)
feasibility is maintained, and (ii) the polymorphisms f, remain polymorphisms (which is key
to maintaining feasibility).

2 Algorithm

2.1 An introduction to the Algorithm

In this section we introduce the main parts of our algorithm. We encourage the reader to
take time to read and internalize as much of this section as possible, while consulting the
figures that are referenced.

1. We associate to each vertex z € V(G) a list L(z), with each L(x) initially V(H). We
also consider pair lists L(x,y), where (a,b) € L(z,y) means that it may be possible for
x and y to simultaneously map to a and b for the same homomorphism.

2. We let the polymorphism on H be specialized for each vertex in G. We define a
homomorphism f: G x H* — H,ie. f(z;a1,as,...,a;) for z € V(G) and ay, ..., a; €
V(H). Initially f(z;a4,...,ar) = ¢(aq, ..., a;) where ¢ is the weak k-nuf polymorphism
given to us. We call f a weak k-nuf homomorphism from G to H (see Def 2.1).

3. PreProcessing. We perform standard consistency checks that are done in CSP algo-
rithms to prune the lists L(x) for every x, and pair lists L(z,y) for each z and y.

4. We refine f and work towards building a homomorphism ¢ from G to H. The main
loop in the algorithm picks a vertex = € V(G) and tries to remove one of the vertices
a € V(H) from consideration for being g(x). At any given time, we have lists L(z) C H
for each x € V(G) that have the vertices in H that are being considered for g(z).

5. For a,b € L(x), if f(x;b,b,....b,a) = a we say this is the minority case. The minority
case is similar to a case of the homomorphism problem that is already solved, namely
the setting where the underlying polymorphism is Maltsev (see subsection 2.4). We
thus have our main loop choose x,b,a where f(z;b,b,....,b,a) # a and attempt to
remove a from consideration. If f(z;b,b,...,b,a) = a then we leave it alone.

6. The main procedure, then, is to take an x € V(G), a,b € L(x) such that f(x;b,b,...,b,a) #
a and remove a from consideration — that is, remove a from L(z). We would like f(z;...)



change

f(x,b,b.a) =c¢
H o »oe— @ f(y.a1,a2,03) = ay
b a2 by F(2, by, b by) = by

Figure 1: The solid lines are arcs, dotted lines are missing arcs, and no line means either could
be true. In the first column, initially f(x;e1,e2,e3) = a but we set f(x;e1,ea,e3) = ¢
where ¢ = f(z;b,b,a). In the second column, initially f(y;a},al,as) = asz but we change
it to f(y;a},ah,as) = as where as = f(y;a1,a2,a3). The change in the first column
is so we can remove a from L(x); the change in the second column is to preserve the
homomorphism property (this change is only needed if there is a missing arc from ¢ to
a neighbor as of a).

to align with a possible homomorphism ¢ : G — H (if one exists), so if we remove
a from L(z) (meaning we will not have g(z) = a) then we would also prefer if it is
not the case that f(z;eq,eq,...,ex) = a for any eq, ey, ..., e, € L(x). Since we are con-
sidering a because f(z;b,b,...,b,a) = ¢ # a, we decide to take ¢ as the new value for
flx;eq,eq, ... ex).

7. This change to set f(z;eq, ..., ex) = ¢ could break the homomorphism property of f (if
(y; ay, ab, ay) exists with xy € A(G), e;a; € A(H) and cf(y; a},ab, as) ¢ A(H)). If so,
we update the values of f on these neighbors of x. See Figure 1.

8. DFS of updates to f. We begin by changing f values from a to something else (¢) on z,
and this forces some changes for f on y’s that are neighbors of x, which in turn forces
some changes for f on neighbors of 4. This results in a DFS through G x H*. We can
imagine a subgraph Gy of G x H* where the vertices are the columns in Figure 1 (for
k = 3) and there is a connection between (y;ay, as, az) and (z; by, by, b3) if a change to
f occurs on the DFS.

9. Cycles in DFS and weak k-nuf property. The DFS of updates to f should be careful
of difficulties such as cycles. We leverage the weak k-nuf property to make the DFS of
updates consistent. An almost cycle is a near cycle in the DFS of updates from some
vertex (x;0,0,..,b,a) to (z;b,...,b,a,b, ..., b) where the only change in the vertex is the
coordinate of the a (see Figure 3). The value of f on the two endpoints is the same,
due to the weak k-nuf property. This gives the DFS a definite ending point (once the



end of an almost cycle is reached, any neighbors in the DFS from the ending point
would also be neighbors of the beginning point).

10. At each step in the DFS, one of the coordinates (e.g., az in the second column of
Figure 1) is forced due to a missing arc (the dotted lines in the figures). The remaining
coordinates (e.g., a; and asy in the second column of Figure 1) are more free, and these
are chosen to ensure that the DFS of updates to f always moves in the direction of
a shortest almost cycle (Figure 3). Different choices for the "more free” coordinates
result in different paths through G because they use different values for updating f.

11. The hope is that the DFS can complete, and we have fixed any places the homomor-
phism property for f was broken. If we can fix all the problems, then f would still
be a homomorphism after the procedure is done. Further, for the proof of correctness
we need to make sure that if we had a correct homomorphism ¢ in mind, then after
removing a from L(z) we could change ¢ to remain a homomorphism with respect to
the lists L and set g(x) to something other than a.

Outline We have given most of the main ideas that are part of the algorithm and proofs.
We give definitions to setup the algorithm in Section 2.2, precisely define the algorithm in
Section 2.3, and give the correctness proof in Section 3. We encourage the reader to begin
by reading Section 2.3 and consult back to Section 2.2 as needed. We also encourage the
reader to look forward to Section 3 to keep in mind the main structure of the proofs.

2.2 Definitions

This section contains definitions that are used in the algorithms in Section 2.3 and the proofs
in Section 3.

An oriented walk (path) is obtained from a walk (path) by orienting each of its edges. The
net-length of a walk W, is the number of forward arcs minus the number of backward arcs
following W from the beginning to the end. An oriented cycle is obtained from a cycle by
orienting each of its edges. We say two oriented walk X, Y are congruent if they they follow
the same patterns of forward and backward arcs.

Given graphs G and H, let G x H* be a graph on the vertices {(y;a1,aq,...,ax)|ly €
V(G),a; € V(H),i < i < k} with the arcs (y; a1, ag, ..., ax)(y'; b1, ba, ..., by) where yy’ is an
arc of G and each a;b;, 1 < i < k, is an arc of H. By convention, we shall further restrict the
use of the symbol G'x H* to the digraph induced on the vertices {(y; ay, as, ..., ax)|ly € V(G),
a; € L(y),1 < i < k} where L(y) is the set of vertices in H that are being considered as
images of a homomorphism from G to H.

Definition 2.1 (Homomorphism consistent with Lists) Let G and H be digraphs. For
each x € V(Q), let L(z) C V(H). Let k > 1 be a constant integer.
A function f: G x H* — H is a homomorphism consistent with L if the following hold.



e List property : for everyx € V(G) and every ay, as, ... ,a; € L(x), f(x;a1,a9,...,ax) €
L(z)

e Adjacency property: for every x,y € V(G) and every ay, ..., a € L(x), by, ...,bx € L(y),

if vy is an arc of G and a;b; is an arc of H for each 1 < i < k then f(x;aq,...,ax) f(y; by, ...

s an arc of H.
In addition if f has the following property then we say f has the weak nuf property.

e for every x € V(G),{a,b} C L(x), we have f(x;a,b,b,....b) = f(x;b,a,b,....0) = ... =
f(x;0,0,0,...a).

We note that this definition is tailored to our purposes and in particular differs from the
standard definition of weak k-nuf as follows.

(a) f is based on two digraphs G and H rather than just H (we think of this as starting
with a traditional weak k-nuf on H and then allowing it to vary somewhat for each
r € G),

(b) We do not require that f(x;b,b,b,...,b) = b (this is not required in our algorithm, and
in fact is more convenient to leave out).

Notation Let (b*|;,) = (b,b,...,a,...,b) be a k-tuple of all b’s but with an a in the 4
coordinate.

Digraph of Updates to f Let G; be a digraph where V(G;) = V(G x H*) and with
arcs (y;aq,ag, ..., ar)(y'; b1, ba, ..., b)) where yy' € A(G), (v'y € A(G)) and a;b; € A(H)
(bia; € A(H)) ,1<i<k, and f(y;ai1,as,...,a;)b; (b;f(y;a1,aq,...,a;)) is not an arc of H
for some 1 < j < k. In this case we say (y; ai, ag, ..., ai) avoids (y; by, ba, ..., by) in coordinate
Jj, or simply say the avoidance appears at the j-th coordinate. In Figure 1, (y; a1, aq,a3) is
a neighbor of (z;b1, b9, b3) in Gy with avoidance in the third coordinate.

Let B be a walk in H starting at some vertex a € V(H). We say a path W in G follows B
if whenever the i-th vertex of W, say wy = (y; a1, as, . . ., ax) avoids the (i+1)-th vertex of W,
say we = (2;b1,ba, ..., by) at coordinate j (f(wy)b; & A(H) if yz € A(G) or b, f(wy) & A(H)
if zy € A(G)) and a; is the i-th vertex of B and b; is the ¢ + 1-th vertex of B then a; = a;
(see Figure 2). We say W follows walk X in G when X is the walk induced by the first
coordinate of the vertices in W.

Let w = (y; a1, ag, ..., a;) and w' = (2; by, b, ..., by) be two vertices in Gy.

e We say a directed path P in Gy from w to w' is an (4, j)-path if there exists a walk in
H from a; to b; that P follows.

o Gy(w,i) is the set of vertices w' € Gy such that there exists an (¢, j)-path (for some
1<j5<k)from w to w'.



f(z.b,ba)=c¢

Sy, b1, b9, b3) = by
flzoer,00,00) = ¢4
Flu,dy,dy, ds) = dy

(3,1)-path from (z,b,b,a) to (u,dy,dy,ds)

b by c=cz d,

Figure 2:  An illustration of the graph G, with each column representing a vertex in Gy. The
dotted lines are missing arcs (solid lines are arcs, dotted lines are missing arc, and no
line means either could be true). (x;b,b,a) is connected to (y; a1, az, az) with avoidance
at coordinate 3, which in turn is connected to (z; b1, b2, b3) with avoidance at coordinates
1, etc. The figure depicts a (3,1) path P in Gy — where the avoidance began on the 3rd
coordinate and ended on the first coordinate, proceeding by the walk a, ag, b1,d; in H.

For a fixed vertex z € V(G) and fixed vertex b € V(H), let G,p, 1 <1i < k be a digraph
of pairs (7', a’) where f(x;b*|y o) # a' and there is an arc from (7', a’) to (i”,a”) whenever
there exists an (i',7")-path in G from w' = (z;b"|ir o) to w” = (50| an).

Let w = (x;0%|;,) and w; = (z;b"|yo). Suppose f(w) # a and f(w,) # d’.

e We say an oriented path W from w to w; (in G x H*) is a quasi-cycle when W is an
(i,4')-path from w to w’ in G (see Figure 3).

e If ' = a then we say w is an almost-cycle. An almost-cycle also requires that for any
A= (z;¢1,C9,...,cp) on W, X = (x;6F|par)

e If arc e € P then we say e is covered by the quasi-cycle (almost-cycle) W.

Consider the digraph G, ;. Let S = G, (i, a) be a strong component of G, containing
(i,a). We say S is a sink component if there is no arc from an element in S to any other
vertex in G, outside S. We also say S is trivial if it has only one element.

Let w = (z;0*|a « i) and suppose G (i, a) is a sink component in G, . Let G’ (w, 1) (r for
restricted) be the induced sub-digraph of Gf(w, ) containing vertices w’ = (y; a1, as, . .., ax)
reachable from w via an (i, j)-path such that for every ¢ # j, (b,a;) € L(z,y). Some of the
vertices in G';(w, 7) lie on almost cycles and some do not. We say an arc w'w” € G'(w, i) is
nice if it lies on a shortest almost-cycle.

Remark: If G is an oriented tree (contains no oriented cycle) then it is easy to find a
homomorphism from G to H. The complication arises when there are oriented cycles in G.
This is the main motivation of defining almost-cycles.



flz;bbya) =c¢ flzien, e 0) =cy flosiy,ig, i) =iy
f(?/?bl- bz-bii) =by f(“':dl-d%dii) =dy f(“l (‘IML‘ZML!) =l

T y z w v u x
W (aibboa), (yibi,babs), (zicrseanes), (widy,dayds),  (vsinyingis), (uily,la,ls), (w;b,a,b)

W =P (2;0,b,a), (yibi,ba,bs), (2ic1,c0,c2), (widy,da,ds), (v3ir,inyis) (uily, Lo, Ls), (23b,a,b)

Figure 3: An almost-cycle in Gy. Each column is a vertex in Gy, and dotted lines are missing
arcs.

2.3 Main Procedure

In this subsection we present the main algorithm. The main algorithm is Algorithm 1.
Subroutines that are used by the main algorithm are Algorithms 3, 2, and a known result
discussed in Section 2.4. Algorithm 3 (PreProcessing) simply updates the lists L of vertices
in G based on local edge constraints, and also updates the pair lists of vertices in G (pair
consistency); standard textbook CSP algorithms for the homomorphism problem would re-
peatedly invoke the PreProcessing routine, and then make a decision (often greedy, or trying
all possible choices that remain).

Algorithm 2 (RemoveNotMinority) is the key subroutine of the main algorithm. It starts
with w = (z;b%|s,) where f(w) = ¢ # a and then it starts modifying f by setting
f(z;er,eq, ... ex) = f(w) for every k-tuple ey, es, ..., e, € L(x) with f(x;e1,es,...,e1) = a.
Now in order to have a homomorphism from G x H* to H consistent with L it performs a
depth first search (in the sub-digraph G’ (w, £) of G x H*) to modify f as necessary. After
the execution of Algorithm 2 we remove a from L(z) in Algorithm 1.

After the main loop in Algorithm 1, we end up with a so-called Maltsev or minority
instance of the problem — in which we have a homomorphism f consistent with L such that
for every y € V(G) and every ¢,d € L(y) we have f(y;c¥|iq) = d. We argue in the next
subsection that such instances can be solved by using the known algorithm of | ]. The
Maltsev /minority instances can also be solved in a manner similar to our other arguments.

Observation 2.2 Letw' = (y;a1,ay, ..., ax) be a vertex that lies on an (¢,1)-path in G%(w, ().
Suppose yz(zy) € A(H). Let b € L(z) be an arbitrary out-neighbor (in-neighbor) of
a;, t.e. ab € AH). If fwt ¢ AH) Vf(w') ¢ A(H)) then there exists w” =
(2301,ba, ..., bjy .., by) such that w'w” is an arc of G (w,€) and w' avoids w" at coordi-
nate j. Here V) = b;.
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Algorithm 1 The main algorithm for solving the digraph homomorphism problem.
1: function DiGRAPHHOM(G, H, ¢) > G and H digraphs, ¢ a weak k-nuf on H
2: for all z € G, let L(z) =V (H)
3 for all x € G and a4, ...,ar € V(H), let f(z;aq,...,ar) = ¢(aq, ..., ax)
4: PREPROCESSING(G, H, L)
5: while 3z € V(GQ),d',b € L(z),d #bst. f(x;0%p ) #a do
6:
7
8
9

Let a € L(z) such that G, (¢, a) is a sink.
REMOVENOTMINORITY (z; b*|r.,)
Remove a from L(x)

PREPROCESSING(G, H, L)

10: Note: now, for all x € V(G) and a,b € L(x) we know f(x;b"; ) = a
11: REMOVEMINORITY (G, H, L, f)

12: Note: now, for all z € V(G), |L(z)| =1

13: if assigning x to L(x) for each x is a homomorphism then return true
14: else return false

This is because w' € G} (w, £) and hence we have (b, a,) € L(x,y), 1 <r # i < k. Therefore
there exist by, by, ..., by € L(2) such that a,.b, € A(H), and (b,b,) € L(z,2), 1 <r #j<k
(because of the PreProcessing). Here if ¢ # j then a; = a; according to the definition of
“follow” (see also Figure 2). We let w"” = (2;b1,by, ..., b) and hence w'v” € G'}(w, f) and
w’ avoids w” at coordinate j.

Let w' = (y;a1,az,...,a;) be a vertex which lies on an (£,4)-path in G’;(w, (). Suppose
yz (zy) is an arc in G. Let N(w', z,4) denote the set of pairs (w”, j) obtained as follows.

Vb, € L(2) s.t. aib; € A(H) (bja; € A(H)) and f(w')b; & A(H) (b;f(w') & A(H))

a) Let w” = (2;b1,...,b;,...,b) s.t. ww” is an arc of G (w,¢) and w' avoids w” at
coordinate j.

b) If there is a choice then w'w” is a nice arc.

Short description of Algorithm 2: At the current step of the NM-DFS we are at the
vertex w' = (y;ay,as,...,a;) with coordinate i. We look at each neighbor of y, say z. In
the list of z we look for all the neighbors b; of a; € L(y) for which the image of w; = f(2;...)
should be changed from b; € L(z) or d € L(z) (new value of f(w,)) to an out-neighbor of
f(w"). Thus we get different arcs w'w” (all having arc yz (zy) of G). Every such w” is added
into a new P-List (the list of the vertices that DFS should follow next). Note that for each
b; only one element w” is considered.

Remarks In Algorithm 2 the vertices (x;b|i + a) and (z;b*|¢ < a) of G are considered
as the same vertex. We also need to note that by Observation 2.2 it is enough to modify f

inside G (w, ).
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Algorithm 2 Remove a from L(z), updating f so it remains a homomorphism of G' x H*
to H consistent with L.

1: function REMOVENOTMINORITY (w = (z; b*|r 4, ()

2:
3:
4:

10:
11:
12:
13:

14:
15:
16:
17:

18:
19:

Input: z,a,b such that f(z;V*ss) = ¢ # a and G, (¢, a) is a sink
if Jw, = (x;a],d),...,a}) with f(w;) =a then
NM-DFS(w = (z;b"|r) , {)

function NM-DFS(w’ = (y; a4, as, ...,ax), 1) > Change f(y;-) for those that = q;
if w’ already visited at coordinate i in NM-DFS then return
for all z € V(G)|yz € A(G)(zy € A(G)) do
Construct N(w', z,1).
for all (w",j) € N(v',2,i) do
Let d € L(2) s.t. f(z;...) was changed from b; to d. > d = b; if no change
it f(w))d ¢ A(H) (df(w/) ¢ A(H)) then
for all wy = (2;01,b5,...,0}) if f(ws) was changed from b, to d do
set f(U)Q) = bj
if Jw; = (2;0),0,,...,b,) such that f(w;) =b; then
Add (w”,j) into a new P-List. > if something has b; as its value
for all (w”,j) € P-List, and V wy = (2; 0}, b5, ..., b)) s.t f(wy) =b; do
Set f(wy) = f(w"). > change f(z;...) from b; to f(w")
for all (w”,j) € P-List do
NM-DFS(w”, j)

//

f(z;01,b2,b3) = by
dy
change
a as bs dy flysay,ay,ay) =as— . f(ysay,d),af) = ay
Sz 0, b, 05) = by g (0, b5, 05) =d g [(2; 07, 05,b5) = by

Figure 4: Line 10 from Algorithm 2 where f(z;b], b}, b5) changed from b3 to d at an earlier point

in the NM-DF'S, and so now is changed to b4 along with other points that map to bs.
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The NM-DFS is used for two purposes. One is to modify f such that at the end f is a
homomorphism consistent with lists L and for any k-tuple ey, es, ..., e, f(x;eq,6,...,6;) #
a. The NM-DFS is also used to show that if there exists a homomorphism g : G — H
consistent with lists L with g(x) = a then there exists a homomorphism h : G — H
consistent with lists L and with h(x) # a.

Let us partition the G';(w,¢) into two parts. Let G%(w,¢) ('a’ for almost-cycle) be the
subdigraph of G';(w, £) containing vertices w’ such that w' lies on an almost cycle containing
w. Let G$(w,f) (0’ is for other) be the sub-digraph of G';(w,{) containing those vertices
that do not lie on an almost-cycle. We note that we need to modify f inside G’;(w, () by
Observation 2.2.

Consider an oriented cycle X in G containing vertex x and suppose there exists a homo-
morphism ¢ : G — H with g(z) = a. Let g(X) denote the image of X under g (an oriented
cycle in H containing a and congruent with X.

The goal is to search in L(X) (list of the vertices in X, for all such X) to find an oriented
path in L(X) congruent to X containing ¢ where f(x;b*|¢ < a) = c. Now a path R from
(w, ) tow' = (x;b*|j = a) in G%(w, £) which follows g(X) is a shortest almost-cycle (observe
that in X each arc is repeated once). We have considered such path R in the NM-DFS. We
note that walking through G¢%(w, ¢) as far as g is concerned could be arbitrary because we
do not reach (z;b*|j < a) from w in G%(w, £).
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Algorithm 3 Update lists of x,y based on edge constraints and pair constraint

1: function PREPROCESSING(G, H, L)

2:
3:

10:

11:
12:
13:
14:
15:
16:
17:

18:

Input: digraphs G, H, lists L(z) C V(H) for each z
ARCCONSISTENCY (G, H, L); PAIRCONSISTENCY (G, H, L)

function ARCCONSISTENCY (G, H, L)
update=True
while update do
if Jry(yr) € A(G),a € L(z) s.t. fb € L(y) with ab(ba) € A(H) then
remove a from L(x) and set update=True.
else update=False.

if there is an empty list then return no homomprphism

function PAIRCONSISTENCY (G, H, L)
for every (z,y) € V(G) x V(G) set L(z,y) = {(a,b)|a € L(z),y € L(y)}.
update=True
while update do

if 3z, y, 2 s.t. fc € L(2) s.t. (a,¢) € L(x, 2)&(c,b) € L(z,y) then
remove (a,b) from L(x,y) and set update=True.
else update=False.

if there is an empty list then return no homomprphism
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2.4 Minority Algorithm (RemoveMinority)

In this section we show that once the minority case has been reached in our main algorithm,
we can reduce to an already solved setting for homomorphism testing — namely that of the
Maltsev case. We note that this section is independent of the rest of the algorithm.

Note that at this point for every a,b € L(z) we have f(z;b"|;, o) = a and in particular
when a = b we have f(z;a,a,...,a) = a (idempotent property). This is because when a is
in L(x) then it means the RemoveNotMinority procedure did not consider a and in fact did
not change the value of f(z;...) from a to something else. Note that for the argument below
we just need the idempotent property for those vertices that are in L(z), x € V(G).

A ternary polymorphism A’ is called Maltsev if for all a # b, h'(a,b,b) = W' (b,b,a) = a.
Note that the value of h'(b, a,b) is unspecified by this definition.

Let G and H be as input to Algorithm 1, and suppose line 10 of the algorithm has been
reached. We define a homomorphism & : G x H® — H consistent with the lists L by setting
h(z;a,b,c¢) = f(x;a,b,b,...,b,¢) for a,b,c € L(x). Note that because f has the minority
property for all x € G, a,b € L(x), h is a Maltsev homomorphism consistent with the lists
L.

Note that for every a,b € L(z) we have f(z;0*|a < a) = a and in particular if a = b
we have f(z;a,a,...,a) = a (idempotent property). Since a is in L(x), this means the
RemoveNotMinority procedure did not considered a and in fact did not change the value
of f(x;...) from a to something else. Note that for the argument below we just need the
idempotent property for those vertices that are in L(z), x € V(G).

Let G’ be the structure obtained from G by making each arc a different binary relation.
In other words, G’ has vertices V(G) and |E(G)| binary relations R.,e € E(G), where
R, = {xy} if e is the arc e = zy.

Let H' be the structure where V(H') is the disjoint union of L(x),x € V(G), and there
are also |E(G)| binary relations S, e € E(G), where S, is the set of all ordered pairs ab with
ab € E(H),a € L(z),b € L(y), where e = xy. Note that |V(H')| > |V(G')| if each L(x) is
non-empty. This may seem unusual for the homomorphism setting, but is certainly allowed.

Now note that there is an L-homomorphism of G to H (i.e., a list homomorphism consistent
with lists L) if and only if there is a homomorphism of G’ to H'. Homomorphisms of such
structures are mappings f : V(G') — V(H’) such that zy € R, implies f(z)f(y) € S, for all
e € E(G).

Finally, note that the structure H’ has a Maltsev polymorphism A’ of the ordinary kind.
Indeed, let h, be our Maltsev polymorphisms defined on L(z) by setting h,(a,b,c) =
h(z;a,b,c). We let h'(a,b,c¢) = h(x;a,b,c) if a,b, c are from the same L(x), and for a,b,c
not from the same L(z) define h'(a,b,c) = a unless a = b, in which case define it as
h'(a,b,c) = c. The definition ensures that h is Maltsev. To check it is a polymorphism, note
that aa’,bl',cd € S, is only possible if a,b,c € L(x),d’,b',¢ € L(y), where e = xy. For
those, we have the polymorphism property by assumption.

Now we have a structure with a Maltsev polymorphism, so the Bulatov-Dalmau | ]
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algorithm applies and solves the homomorphism problem. Note that Corollary 4.2 of the
Bulatov-Dalmau paper explicitly mentions that it is polynomial in both the sizes of G and
H.

Therefore we have the following theorem.

Theorem 2.3 Suppose h : G x H* — H is a minority homomorphism consistent with lists
L on G. Then the existence of an L-homomorphism of G to H can be decided in polynomial
time.

We note that it is also possible to give a direct algorithm for the minority case that is
similar to how we handle the “not minority” case.

3 Proofs

3.1 Arc-Consistency and List Update

We first show that the standard properties of consistency checking remain true in our setting
— namely, that if the PreProcessing algorithms succeed then f remains a homomorphism
consistent with the lists L if it was before the pre-processing.

Lemma 3.1 If f is a homomorphism of G x H* — H consistent with L then f is a homo-
morphism consistent with L after running the pre-processing.

Proof: We need to show that if a, as, ..., a, are in L(y) after the pre-processing then
f(y;a1,a9,...,a;) € L(y) after the pre-processing. By definition vertex a is in L(y) after
the pre-processing because for every oriented path Y (of some length m ) in G from y to a
fixed vertex z € V(G) there is a vertex a € L(z) and there exists a walk B in H from a to
a’ and congruent with Y that lies on L(Y). L(Y') denote the vertices that are in the list of
the vertices of Y.

Let af,a, af,...,a), € L(z). Let A;, 1 < i < k be a walk from a; to a, in L(Y') and

congruent to Y. Let A; = a;,a},a?,...,a", a; and let Y = 3,41, %2, - - ., Y, 2-
Since f is a homomorphism consistent with L before the pre-processing, f(y; ai, as, . .., ax),
.1 1 1 . % 7 .M M m . / / :
flyisag,ay,..ovag), ..oy flysal,ay, ..o ab), ..., f(ym;alally ... al), f(z;d),dh, ... a)) is

a walk congruent with Y. This would imply that there is a walk from f(y;aq,as,...,ax) to

f(z;a},dl, ..., a,) congruent with Y in L(Y). and hence f(y;ai,aq,...,a;r) € L(y). Note

that here z and Y. o
By a similar argument as in the proof of Lemma 3.1 we have the following lemma.

Lemma 3.2 If f is a homomorphism of G x H* — H, consistent with L and ay,as, . .., a; €

L(z), by, by, ..., bx € L(y), and (a;,b;) € L(z,y), 1 <i <k, after pre-processing then
(f(z;ay,a9,... ak), f(y;b1,be,...,bx)) € L(z,y) after the pre-processing.

16



3.2 RemoveNotMinority Correctness Proof

The main argument is proving that after each step of the RemoveNotMinority function f
still is a homomorphism consistent with the lists and has the weak nuf property (Lemma
3.3). Moreover, after removing a vertex from the list of a vertex of G there still exists a

homomorphism from G to H if there was one before removing that vertex from the list
(Lemma 3.4).

Lemma 3.3 If f is a homomorphism of G x H¥ — H, consistent with L with weak nuf
property before RemoveNotMinority(w = <l’;bk|g<_a> ,0) then the modified f remains a ho-
momrphism consistent with L with weak nuf property afterwards. Moreover for every k-tuple

ar,az, .. a € L(x), f(asar,...,a) #a.

Lemma 3.4 If there is a homomorphism g : G — H with g(x) = a then there is a homomor-
phism from G to H after removing a from L(x) according to RemoveNotMinority({(x; b*|q) , C).

3.2.1 Proof of Lemma 3.3

In order to show that f still is a homomorphism consistent with L with weak nuf property,
we need to address items 1,2,3,4 below.

1. The weak nuf property is preserved: f(y;b5|icp,) = f(y; b5]jep,) for any y € G, by, by €
L(y),1<4,5 <k

2. The RemoveNotMinority function stops.

3. The adjacency property is preserved: for an arbitrary arc yz € A(G) (zy € A(G))
and for every af,d},...,a;, € L(y) and b}, b5, ..., b, € L(z) where a;b; € A(H) (bia} €
A(H)), 1 <i <k, we have f(y;ay, ay, ..., a) f(z 00,0, ..., b;) € A(H)

(f (200,05, - b0) fysay, ah, - ap) € A(H)).

4. We argue that we only need to fix the problems caused by changing f(x;...) from a to ¢
in G (< @;b%|pa >,£). We show that if f(z;0"|rca) = c# a and f(z;e1,e,... ) =
a then f(z;eq1,es,...,6e;) is changed to ¢ (in the simple case) or to some other fixed
element (which will be used in the next lemma) not equal to a after the execution of
RemoveNotMinority (x; b%| ).

Proof of 1 : Since we change the value f(y;a},d,...,a}) from a; to f(y;a1,as,...,a;) for
every k-tuple ay, s, ..., aj € L(y), we change f(y;b1,b1,...,b1,ba) = f(y;01,01,...,b9,b1) =
o= f(y; ba, by, ..., b1) to the same value. Therefore f still has the weak k-nuf property.

Proof of 2 : Observe that during the NM-DFS the value of f(y;a},d,...,a}), y # x may

change several times. This is because after changing f(y;a},d), ..., a}) from a; to some aj44
there might be the case that there is a path A’ from a to axy1 in H and some (¢, j) path @
in G%(w, k) to some vertex (y;ci,ca, ..., Cj1, ki1, Gyt - - -, Ch)-
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However, the value of f(0), 0 = (x;e1,e,...,¢e;) is changed once or the value of f(#) may
change a number of times while going through a circuit (explained in Case 2 in the proof of
(4)) but each time to a new value.

No value is changed back to the one we already changed (the only place that this happens
is in Line 13; for remembering the previous image but we immediately change the value to
something else in line 16).

Note that the NM-DF'S algorithm may end up traversing all the vertices in G ¢. There are
at most |G||H*| vertices in G.

Proof of 3 : Let axi1 = f(y;d),dl, ... a,) and byy = f(z; 0], 05, ..., 0,). If agi1bgyr is an
arc of H then we are done. Otherwise without loss of generality we consider the following
two cases.

a) The original value of f(y;a},dl,...,a,) was a; and it was changed to ax,; and the
1) G2 k J
value of f(z;b],0),...,b)) was not changed.

(b) The original value of f(y;a},as,...,a)) was a; and it was changed to azy; and the
value of f(z; b, b5, ... b)) was changed after changing the value of f(y;a},d), ..., a}).

We assume these changes are the last changes according to the NM-DFS. In other words,
ap+1 1s the last value of f(y;al,dh, ..., a)) and by is the last value of f(xz;b],0,,...,b),).

According to the function RemoveNotMinority, there is an (¢, j)-path W from w =
(236" [ea) to w’ = (y; a1, 09, .., ax) in G(w, £).

We also note that the current vertex in the NM-DF'S is vertex w’ together with coordinate
j. Let b; be the original value of f(z;b},0,,...,0)). We note that a;b; is an arc because
initially f is a homomorphism consistent with L. Since ax11b; € A(H), by Observation 2.2
there exists w” = (z;b1, by, ..., b) such that w'w” € A(G%(w,()) (for simplicity we assume
b; is in the (j + 1)-th coordinate of (z;by,bs, ..., b)).

Proof of (a) : Here by1; = b;. Since w'w” € A(G}(w,()), the NM-DFS should have
taken the arc w'w” and should have changed the value of f(z;b},b5,...b}) from b; to f(w”)
(w” = (z;b1,ba,...,bx)) which is a contradiction. Note that by Claim 3.5, f(w”) is an
out-neighbor of ag;.

Proof of (b): We assume f(z;b),0,,...,b,) did change after f(y;a},dal,...,a}). Either
vertex w” is immediately after w’ (and the value of f(z;b],b5,...,b}) is going to change for
the first time) in the NM-DFS and this would mean we should have changed the value of
f(z; 00,05, ..., b,) as we discussed earlier. Or the value of b; = f(z;b),0,,...,0b,) did change
following some path Z : y,y1,...,¥,, z in G together with a path R in G'}(w, () starting at
w'. By adding arc yz (zy) we close an oriented cycle in G. Suppose the (j+ 1)-th coordinate
of the last vertex in R is b; (again here for simplicity we consider the j 4+ 1-th coordinate).

Since Z(yz) is a closed walk it may be that the last vertex of Ris w” = (2;b1,ba, ..., b5, ..., bg)
and hence by following the modification of f along the path R we set f(w”) = bgy1. Since
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f(z,bba)=c¢
f(y,a1,a9,a3) = ay

f(z,c1,00,b3) = by

flu,er,ez,e3) = es

[y, dv,da,a3) = a5

change

fy,ay,ah,05) =as o f(y,d},a).a5) = ay
Sz b b0, 0) =by o f(z, 00,05, by) = by

fludy, dydy)=es 5 flud.dydy) =ey
fly,al,dy,ay) =as o f(y,a},ab.ay) = a5

Figure 5: Keep in mind for the proof of 3 (b) in the proof of Lemma 3.3

f is a homomorphism for the vertices in R (by Claim 3.5), f(w')f(w") is an arc and hence
aj11bgy1 must be an arc of H. In other words, the modification is consistent.

Now let us assume that the last vertex of R is not w”. Suppose the last vertex of R is
w=(z;¢1,C2,...,¢j—1,bj,¢j41,...,¢). Now in this case according to line 11 of the NM-DFS
(see y as z and z as y in the algorithm, see also Figure 5) we have d = a;,; and dbyy; is not
an arc of H.

Now first suppose a;bx+1 ¢ A(H) (in Figure 5, asbs) then according to the rules of NM-
DFS we should have considered the vertex w’' = (y;dy,ds, ... ,dj_1,aj,djt1,...,d;) where
ww' € G%(w,f) and hence we should have changed the value of f(y,aj,as,...,a;) from
ar+1 to an in-neighbor of byyy (by Claim 3.5 f(w)f(w') is an arc). This is a contradic-
tion. Second suppose a;byi; is an arc (in Figure 5, asby). In this case the the arc w'ws

where w' = (y;a1,a9,...,a;) and wy = (2;b1,b9,...,bj_1,bk41,bj11,...,a;) (in Figure 5,
(y; a1, az, az)(z; b1, ba, by)) is in G (w, £). Therefore w'wy should have been taken by NM-
DFS and we should have changed the value of f(z,b},b5,...,0)) from by, a contradiction

that was the last value (here again by Claim 3.5 f(w’)f(ws) is an arc).

Claim 3.5 At each step of the NM-DFS if w'w" is an arc in G(w,l) then f(w’)f(w")
(f (") f(w'), depending on the orientation) is an arc of H.

Proof: Suppose w’ = (y;aq,as,...,a;r) and w” = (z,b1,bs, ..., b). Initially f(w’)f(w”) is an

arc if w'w” € G'x H* or f(w') f(w") is an arc if w”w’ € G x H* because f is a homomorphism
consistent with the lists. If f(w’)f(w”) is not an arc then it must be the case that f(w’)
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Figure 6: Circuit of length 2

did change and f(w") did not change. This means there was a (¢, ¢')-path @; from (w, ¢) to
some w = (y,c1, ¢y, ..., ¢) in G(w,€) and the NM-DFS went along @ and it did change
f(y;aq,as,...,a;) from cp to a different value. Now since w'w” (w”w’) is an arc of G x HF,
f(w") = dp is an out-neighbor (in-neighbor) of ¢,. Note that f(w’) is changed to f(w)
according to the NM-DFS. If f(w)dy & A(H) then the arc (y;c1,ca,...,cx)(z;5dy,da, ..., dy)
(for appropriate vertices dy,ds,...,d; in L(z)) should have been considered according to
the NM-DFS (lines 8,16 dealing with P-List) and f(w”) should have been changed to an

out-neighbor of f(y;c1,ca,. .., ck).

Proof of 4 : The NM-DFS starts from vertex (w, ) where w = (x;b*|s_,). The changes to
f are forced in the list of vertices y where w’ = (y,a1,as,...,a;) € Gy, ie. f(y,...) should
be changed from a; to something else. This means there exists an (¢,7) path from w to w'.
Since we only need to change the image of f in y from a;, we are free to choose the a;, j # i
in L(y) and hence we may assume that NM-DFS is performed in G (w,f). We also note
that since (¢, a) is a sink component of G, ;(¢,a), any shortest almost-cycle lies entirely in
G (w, 0).

Now in the remaining we analyze the behavior of NM-DFS depending on the final value of
f(z;e1,ea,...,e) that is initially a. The final value is used in Lemma 3.4. Let C' = G, (¢, a)
be the strong component of G, containing (¢, a) as described before. We say vertex (i,a) €
C is a source if there is no path from (i,a) to (j,c) in C where f(z;b*|;4) = c. We say the
sink component C' is invertible if it does not have a source.

Suppose C' does not have a source. Now according to the definition of invertible, there is a
path in C starting at (i = ig, a) that goes through the vertices (i1, ¢), (i2,d1), . .., (it, di—1), (it41, dt)
in this order. Thus there exist corresponding vertices a = (z;b"|;,a), 8 = (2305 |;,c), Aj =
(x; bk|ij+1<_dj), 1 < j <t and there exists a quasi-cycle @ in G} from a to A; that goes
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through 8, A1, Ag, ..., A¢ in this order and f(«a) = ¢, f(B) =d1, f(M) =da, ..., f(No1) = dy,
f(\) =a. If t =1 then d; = a and A1 = a. We say @Q is a circuit in G'(a, 1) (see Figure
6). Let Q(t) be an almost-cycle obtained from concatenating the path @) and a path @’
from A to o/ = (2;0%[j < a) in G%(a,4). Note that path Q" exists because C' is a strong
component of G, ;. Note that here for simplicity we may assume that the last vertex of the
circuit would be A; with f()\;) = a. It could be the case the d; plays the role of a.

Observe that if there exists an arc from (¢,a) to (i’,a”) then this means we do need to
modify f(xz; 8}, 8,...,05;) from a” to f(w;) where wy = (z;b*|yrar).

Now we consider two cases depending on whether C' is invertible or not.

Case 1. ( is not invertible.

First suppose C has only elements (i,a). We note that we do not see any (x;b*|y._ o) for
a” # a in the NM-DFS. This means we do not end up changing a value of f(x; o}, as, ..., a})
once we change it to ¢ at the beginning.

So we may assume that C has at least one element of form (i,a’), @’ # a. Since C (a
component of ;) is a non-trivial strong component, there exists a path P’ in G%(w’, ')
to w where w' = (z;b*|yo) . In this case P’ follows a walk in G that may go through =
multiple times until it reaches (z;b*|,,). This would mean that along P’ we are modifying
f and in particular we are modifying f in G;(w’,i’). Note that since (¢, a) is a source and
C' is a sink component, there is no arc from (¢, a) to some (j, c) where f(w) = ¢, and hence
there is no path in G%(w, k) from w to (z;b*|;). This means we do not end up changing
a value of f(x;af,ah, ..., o)) after changing it from a to ¢ and then changing it from ¢ to
something else.

Case 2. (' is invertible. We need to show that if there is a path Q; from (¢,a) to (¢,c)
(we choose ¢ for simplicity) in C' then function NM-DFS would handle this situation and it
fixes the value of f(x;0],b5,...,0)) from a to some element not a. The main purpose of this
case would be finding that fixed element.

Suppose such path @), exists in C'. Since C' is invertible, there exists some path ), from
(¢, ¢) to (¢,d;) which goes through the vertices (¢, dy), (¢,ds), ..., (¢,d;—1). Consequently this
means there exist vertices : a = w, 3 = (2;0%pc), \i = (2;0"|pq,),1 < i < t and there
exists a path @ : a,...,3,...; A1, Aoy, A in G, £) where f(a) = ¢, f(B) = du,
f(A\) =da, ..., f(N—1) = dyy, f(N) = a. For simplicity we assumed that the coordinates
i1,19,...,% (as in the circuit definition) are all /.

Now according to the definition of a circuit there exists Q(t). According to the function
NM-DFS at some point the NM-DFS starts with o and it moves along an almost-cycle Q(t)
and changes the value of f()\;) from a to ¢. As it moves along Q(t), once it reaches 3 the
NM-DFS algorithm changes the value of f()\;) from ¢ to d; and also changes the value of
f(«) from ¢ to dy, once NM-DFS reaches Ay on Q(¢), it changes the value of f(8) from d; to
dy and the value of f(«) from d; to dy. It continues, until it reaches \;_1, and at this point
the value of all f()\;), 1 < i <t is set to d; as well as the value of f(«), f(5). Now there
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does not exists a path from a in G%(«, f) to some vertex o’ = (z; V¥|;a,) with f(a') # d,.
This is because of the following observations :

Observation: There is no directed path (¢, j)-path R in G(¢,€), ¥ = (; *lpq) with
f(¥) # d to some vertex ¢ = (x;*|;a) with f(¢) = d’. To see that suppose such a path
R exists. Consider the last arc of R say e = (y;di,ds, ..., dy)(x;*|;a) where we may
assume yz € A(G). Since e is an arc of G%(,£) we have f(y;di, dy, ..., dy)d ¢ A(H) and
fly;dy,da, ... dy) f(z; % jea) € A(H), a contradiction.

Observation: Since C'is a source we do not need to consider circuits in other components
of G%b.

Now w becomes a source, since f(w) = d;. NM-DFS has changed f(z;a4,as, ..., a;) from
a to d; and it does not change it anymore. NM-DFS starts the usual procedure as if there
is no circuit ). Moreover since C' is a sink component there is no path from C to another
invertible component.

Note that the NM-DFS goes through the vertices of A, Ao, ..., \;_1 and it continues the
usual NM-DFS from \;_; as it requires to change the value of some f(u;el, €, ..., e}) where
Ai1(us e, ag, ... ex) is an arc in G (w, £) if e & A(H) (or ey € A(H) if uz € A(G)).
Note that we have changed the value of f(A\i—1) to A. Now f(u,e€],éh,...,€)) is changed
and is set to some out-neighbor of \; (in-neighbor of A;) and NM-DFS continues from there.
In the next step it returns back and it starts from A\;_5 and so on.

Closing remark :  We run the function NM-DFS(x; 0|, ,,¢) starting at coordinate /.
Once we change the value of f(z;ay,as,...,ax) from a to ¢ (or d; when C is invertible) then
potentially we need to modify the value for f(y;b1,bs,...,b;) from an out-neighbor of a,

say @’ in L(y) to an out-neighbor of ¢ and this procedure is the same when we start with
NM-DFS(z;b*|;q, 7). o

3.2.2 Proof of Lemma 3.4

Suppose ¢ is a homomorphism from G to H with g(z) = a. We may assume that there exists
a (x;eq,eq,...,a,) with f(x;eq,es,...,a;) = a. Otherwise in some previous step we have
shown that there exists a homomorphism that does not map x to a if there exists one that
maps z to a. Let w = (z;b|¢ < a) and let ¢ = f(w).

Let G; be the induced sub-digraph of G’ (w, £) with vertices (y, ai, as, ..., ax) such that :
e (y;ai,ay,...,a) is reachable from w in G%(w, ),

o f(wy) = ag, for wy = (y;a},d,, ..., a)) where f(w;) was initially g(y),
> for simplicity we consider the k-th coordinate, depending on the path from w to
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(y;ai1,aq9,...,a;), f(wy) could be some a;.

e a; is the value before the last time f(w;) is going be to changed.
> the value of f(w;) is going to be changed to f(y; a1, as, ..., a;) according to NM-DFS
for the last time.

Let G’ be the induced sub-digraph of G with the vertices y € V(G) where (y; a1, as, . .., a;) €
G

Observation : Consider a path W in G’ from (z;b*|ra) to (2;b"];). Now let X be
a walk in G from z to x corresponding to W, i.e. W follows X. We note that by replacing
ar with f(y;aq,aq,...,ax) for every y € X where (y;aq,as,...,a;) is on path W, we get a
mapping from X to H and under this mapping the beginning of X and end of X are mapped
to same vertex c. This is because of the property of weak k-nuf. Moreover this mapping is
a homomorphism from X to H because f is a homomorphism consistent with L.

Let Y be a path in G’ from z to y. Corresponding to Y there is a path in G’ from (; b*|r—q)
to some (y;ay, as,...,ax). Now define h(y) = f(y;a1,aq,...,a;). Forevery y € V(G)\V(G")
set h(y) = ¢g*(y) (here g*(y) is the last value of f(y;a},d),...,a}) where initially was g(y)).
Note that h(z) = c.

We need to show that h is a homomorphism from G to H. Let zz’ (2'z) be an arc of G
where z € V(G’). We only need to consider the case z € V(G’). By definition there exists a
path W from w to some w' = (2;b1,by,...,b;) € G with f(w') = br11. Note that if there
does not exists such path W, then by definition z & V(G’).

For simplicity we consider coordinate k, there exists a path B from a to by where W
follows B.

Since zz’ is an arc of G and g is a homomorphism from G to H, g(2)g(z') € A(H).
Moreover, according to the NM-DF'S bdy, € A(H) (here dy, is the value in which some vertex
w) = (2, d},d,, ..., d}) is going to change from g(2’) after visiting the arc zz’ by the NM-
DFS). Note that dj is in L(2’). This is because either dy = g(z’) and hence it passes the
PreProcessing test or it is f(Z/,...) and hence by Lemma 3.1 dy € L(2’). Now if by 1dy is
an arc of H then we are done. Otherwise according to the NM-DFS there exist vertices
dy,ds,...,dy € L(2') such that b;d; € A(H), 1 <i <k and w'w", w" = (Z,dy,dy, ..., dy),
is an arc of (. Since this is the last time we change the value of some f(w}) from g(2) in
the NM-DFS algorithm, we have w” € G’ and hence 2’ € V(G’). This would imply that
h(Z") = f(w"). Since f is a homomorphism consistent with L, we have f(w')f(w") € A(H)
and because we set h(z) = f(w') and h(z') = f(w”) we have h(z)h(z') € A(H). Note that
in the special case when 2z’ = x we have g(z’) = a and by the Observation above we have
h(z") = c. Therefore h is a homomorphism from G to H with h(z) = c.

The argument is the same when the strong component G, (¢, a) does not have a source.
o
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4 Additional Algorithms and Proofs (New Minority
Algorithm)

This section collects additional statements and proofs mainly related to new Minority algo-
rithm. We develops a direct algorithm to handle the minority case in our main algorithm.
Of course, it would be easier to appeal to Bulatov-Dalmau Maltsev result as explained in
Subsection 2.4.

Let M? be the digraph of triple (y,c,d), * € G,c,d € L(y). There is an arc from
(y,c,d) to (v, c,d') where yy' € A(G), cc,dd" € A(H) and cd" & A(H) or y'y € A(G)
and dc,d'd € A(H), dc & A(H). Note that M? is a graph but we view M? as digraph and
when we talk about a path in M?® we mean an oriented path that reflect the direction of
the edge xy when (y,c,d)(y’,c,d’) is an arc of M3. Let G,(a,b) be the strong component
of M3 containing (z,a,b) such that for each vertex (y,c,d) € G(a,b), (a,c) € L(x,y) and
(b,d) € L(z,y). We say a strong component G,(a,b) of M? is invertible if both (z,a,b) and
(x,b,a) are in G,(a,b).

Again the idea is similar to the one handling the RemoveNotMinority case. At each step we
consider a vertex z of G and two vertices a,b € L(z) and try to eliminate one of the a, b from
L(z). To decide whether remove a or b we construct an instance of the problem say (G', H, L)
and solve this instance recursively. Based on the existence of a L’-list homomorphism from
G’ to H we decide to remove a or b. Depending on G, (a,b) being invertible or not two
different instances for the sub-problem are constructed. At the end we have singleton lists
and if there is a homomorphism from G to H with the singleton lists then success otherwise
we report there is no homomorphism from G to H. We denote the underline graph of digraph
G by UN(G). If G,(a,b) is invertible we construct a new instance G’, H, L’ and to construct
the lists L’ we use the Maltsev property.

Lemma 4.1 Let X be an oriented path in G and let B,C, D be three walks in L(X) all
congruent to X where B is from a to ¢ and C is from b to ¢ and D is from b to D. Then
there exists a walk E from a to d in L(X) that is congruent with X.

Proof: By following B, C, D on the vertices in X and applying the definition of polymor-
phism h, we conclude that E exists. o
Lemma 4.1 implies the following corollary.

Corollary 4.2 If (a,c) € L(x,y) and (b,c),(b,d) € L(z,y) then (a,d) € L(x,y).

Lemma 4.3 The Algorithm j runs in polynomial time. Moreover, if there is a homomor-
phism g from G to H with g(x) € {a,b} then there is a homomorphism from G to H after
removing a or b from L(x) according to Maltsev-(G, H, L, h).

Proof: First consider the case that G,(a,b) is not invertible. The Algorithm 4 is
recursive but at each recursive call the size of the input decreases by at least one. This
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Algorithm 4 RemoveMinority — Using Matlsev Operations

1: function REMOVEMINORITY (G, H, L)

2: Input: z,a,b such that f(x;b*|; q) =a

3: Define Maltsev consistent homomorphism h : G x H® — H where
h(z;a,b,¢) = f(x;a,b,b,...,b,¢) for a,b,c € L(x).

4: while 32 € V(G) with |L(z)| > 2 do

5: MATLSEV(G, H, L )

6: if 9 a list homomorphism from G to H then return True

7: else return False.

8: function MALTSEV(G, H, L)

9: Let a,b € L(x) be two distinct vertices. Construct G, (a,b).

10:

11: if G.(a,b) is not invertible then

12: Set L'(x) = a and L'(y) = ) for every = # y.

13: Set G” = (), and let G’ be an induced sub-digraph of G constructed as below.

14: for all y € G s.t. 3 a path from (z,a,b) to (y,¢,d) in G,(a,b) do

15: add y to G' and ¢ to L'(y),

16: let yy' an arc of G’ when (y,c,d)(y,d,d) € G.(a,b).

17:

18: if G.(a,b) is invertible then

19: Set L'(x) = a and L'(y) = 0 for every = # y.

20: Let G” be the set of vertices y € V(G) where (y, ¢, d, e) lies on an oriented path
P from (z,a,b,b) to (z,b,b,a) in UN(G x H?) s.t. no intermediate vertex in P
is (z,d,V,c) for o', V', ¢ € L(x)

21: for all arc (y,c,d,e)(y,c,d',€¢) € P do

add h(y,c,d,e) to L'(y), h(y',c,d',€') to L'(y'), and add arc yy' (y'y) to G”
22: Let G’ be the induced sub-digraph of G with vertices
23: y € G\ G” and arcs yy' where (y,c¢,d)(y',¢,d") € G,(a,b) and add ¢ into L'(y)
when (y,c,d) € G(a,b)

24:

25: if Matlsev(G'UG”,H,L’) then

26: remove b from L(z)

27: else remove a from L(x).
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is because we do not add b into L'(x) and hence we have an instance (G', L', H) of the
problem in which at least one vertex has a smaller size list. We also note that once we
make a decision to remove a vertex from a list the decision is not changed. Therefore the
overall procedure in this case is polynomial (assuming in each call G, (a, b) is not invertible).
According to Maltsev-(G, H, L, h) if G’ does not admit a homomorphism to H then there is
no homomorphism from G to H that maps x to a since G’ is a sub-digraph of G.

No suppose b is removed according to Maltsev-(G, H, L, h) and there exists a homomor-
phism g from G to H with g(z) = b. Let ¢ be the homomorphism from G’ to H. Note that
U(z) = a.

Define Gy be a sub-digraph of G’ consists of the vertices y such that (y,%(y),g(y)) is
reachable from (x,a,b) in G,(a,b).

Now for every vertex y € Gy set ¢(x) = ¢(x) and for every y € G \ G1 set ¢(y) = g(y).
Now let zz’ be an arc of G. If none of the z,z’ € G then clearly since ¢ is a homomor-
phism, ¢(z)¢p(z') € A(H). If both z, 2" € G then again since v is a homomorphism, we have
o(2)p(2') € A(H). Suppose z € G and 2’ € G;. Since z € G there exists a path in G, (a, b)
from (x,a,b) to (z,%(2),g(z)). Now if ¢(2)g(2’) is an arc then we are done. Otherwise
(2',¢,9(2") € Gyp(a,b) where ¢ € L(2') and ¢ (z)c € A(H) (note that since 1(z) is in L(z) it
must have an out-neighbor in L(z")). This would mean 2’ € GG1, a contradiction. Note that
when 2’ = 2 and z € G; then because (¢(z),a) € L(z,x) we have ¢(z)a € A(H).

Second consider the case that G,(a,b) is invertible. Again as we argued in the
previous case the algorithm is recursive but at each recursive call the size of the input
decreases and once a decision made (removing a or b ) it won’t change.

Observe that if there exists a homomorphism ¢ that maps x to a then for every closed walk
X from z to z, the image of g(X) is a closed walk from a to a in H. Since there is a walk
BB from b to b in L(X) congruent and since (a,b) € L(x,x), there is a walk BA in L(X)
congruent to X. Now by Lemma 4.1 there is a walk AB from a to b in L(X) and congruent
with X. These would imply that there exists a path P in U(G x H?) from (z,b,b,a) to
(x,a,b,b). Now according to the definition of G” for every walk BB in L(X) from b to b
congruent with X we keep a walk AA in L'(X) congruent with X and is obtained by adding
h(y,c1, o, c3) into L'(y) where (y, ¢1, 2, ¢3) is in P.

This would mean that in the list of L'(X), corresponding to ¢ (X) (¢ is a homomorphism
from G to H where ¢(z) = a if there exists one) we have a path from a to a in L'(X).
Therefore if there exists no homomorphism from G’ UG” — H that maps = to a then there
is no homomorphism from G to H that maps x to a.

Now suppose b is removed according to Maltsev-(G, H, L, h) and there exists a homomor-
phism ¢ from G to H with g(z) = b. Let ¢; be the homomorphism from G’ to H and 15 be
a homomorphism from G” to H. Note that ¢ (z) = ¥(z) = a. First we show that there is
no arc e (forward or backward) from a vertex y in G’ to a vertex in G”. If this is the case
then there is a walk @ from x to y and there is a walk @’ from y to . Now since yz is an
arc then Qee Q' is a closed walk from z to 2 and hence we should have added z into G”.
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Note that G” consists of all the induced oriented cycles including x and also all the paths
reaching out of vertices of these cycles except x.

Define G; be a sub-digraph of G’ consists of vertices y such that (y, 11 (y), g(y)) is reachable
from (x,a,b) in G.(a,b). Now for every vertex y € V(Gy) set ¢1(y) = ¢ (y) and for every
y € V(G)\ V(Gy) set ¢1(y) = g(y). Define Gy be a sub-digraph of G” consisting of vertices
y such that (y,v2(y), g(y)) is reachable from (x,a,b) in G,(a,b).

Now for every vertex y € V(Ga) set ¢a(y) = 12(y) and for every y € V(G) \ V(G2)
set ¢a(y) = g(y). And finally let ¢(y) = ¢1(y) when y € V(G') and ¢(y) = ¢2(y) when
y € V(G"). Now let 2z’ be an arc of G. We need to verify that ¢(z)¢(z’) is an arc of H.

If none of the 2,z € V(G; U Gy) then clearly since ¢ is a homomorphism, ¢(2)¢(z') €
A(H). If both 2,72 € V(G;) (i = 1,2) then again since v; is a homomorphism, we have
o(2)p(2) € A(H). Suppose z € V(Gy) and 2/ € V(Gs). Since z € V(G,), there exists a
closed walk ZZ’ that contains z where Z is a path from z to z and Z’ is a walk from z
to x. Note that ¥(Z7’) is a walk from a to a in L(ZZ') and ¢(ZZ’) is a walk from b to
bin L(ZZ') and since (b,a) € L(x x z) there exists a walk BA in L(ZZ') congruent with
ZZ'. These would imply that corresponding to ZZ’ there exists a path P from (z,b, b, a) to
(x,a,b,b) containing vertex (z,1(2),d,g(2)). Now since g(z) € L(z) there exists a vertex
¢ € L(2') such that g(z)c € A(H) and there exists ¢’ € L(z') such that dd’' € A(H).

Now we add the two arcs (z,v9(z),d, g(2))(2',c,d', g(2")), (2 e, d', g(2")(z,92(2),d, g(2))
into P and hence we obtain a path P’ from (z,b,b,a) to (x,a,b,b) that goes through vertex
(2',e,d’, g(2')) and hence 2z’ € G”. Now since ¢o(2)g(2") & A(H), by definition 2’ € V(G3), a
contradiction.

As we argue before one can show that ¢, is also a homomorphism from G to H. Therefore
¢ is a homomorphism from G to H with ¢(z) = a. o
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