NEAR-UNANIMITY FUNCTIONS AND VARIETIES OF REFLEXIVE GRAPHS*

RICHARD C. BREWSTER ${ }^{\dagger}$, TOMAS FEDER ${ }^{\ddagger}$, PAVOL HELL§ ${ }^{\S}$, JING HUANG『, AND
GARY MACGILLIVRAY ${ }^{\circledR}$

Abstract

Let H be a graph and $k \geq 3$. A near-unanimity function of arity k is a mapping g from the k-tuples over $V(H)$ to $V(H)$ such that $g\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is adjacent to $g\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{k}^{\prime}\right)$ whenever $x_{i} x_{i}^{\prime} \in E(H)$ for each $i=1,2, \ldots, k$, and $g\left(x_{1}, x_{2}, \ldots, x_{k}\right)=a$ whenever at least $k-1$ of the x_{i} 's equal a. Feder and Vardi proved that, if a graph H admits a near-unanimity function, then the homomorphism extension (or retraction) problem for H is polynomial time solvable. We focus on near-unanimity functions on reflexive graphs. The best understood are reflexive chordal graphs H : they always admit a near-unanimity function. We bound the arity of these functions in several ways related to the size of the largest clique and the leafage of H, and we show that these bounds are tight. In particular, it will follow that the arity is bounded by $n-\sqrt{n}+1$, where $n=|V(H)|$. We investigate substructures forbidden for reflexive graphs that admit a near-unanimity function. It will follow, for instance, that no reflexive cycle of length at least four admits a near-unanimity function of any arity. However, we exhibit nonchordal graphs which do admit near-unanimity functions. Finally, we characterize graphs which admit a conservative near-unanimity function. This characterization has been predicted by the results of Feder, Hell, and Huang. Specifically, those results imply that, if $\mathrm{P} \neq \mathrm{NP}$, the graphs with conservative near-unanimity functions are precisely the so-called bi-arc graphs. We give a proof of this statement without assuming $\mathrm{P} \neq \mathrm{NP}$.

Key words. graph homomorphism, near unanimity function, homomorphism extension, retraction, dichotomy

AMS subject classifications. $05 \mathrm{Cxx}, 68 \mathrm{Q} 10,68 \mathrm{~W} 25$
DOI. 10.1137/S0895480103436748

1. Introduction. We consider finite undirected graphs without multiple edges, but with loops allowed. A graph in which no vertex has a loop is called irreflexive, and a graph in which every vertex has a loop is called reflexive. When we say a graph satisfies a property, such as being connected, a tree, a cycle, etc., we mean that the underlying irreflexive graph (i.e., the graph obtained from it by deleting all loops if there are any) has the property.

Given graphs G and H, with lists $L(v) \subseteq V(H)$, for each $v \in V(G)$, a list homomorphism of G to H with respect to the lists L is a function $f: V(G) \rightarrow V(H)$ which satisfies the following two properties:
(i) $f(v) \in L(v)$ for all $v \in V(G)$;
(ii) $f(u) f(v) \in E(H)$ for all $u v \in E(G)$.

Note that a list homomorphism can map two adjacent vertices of G to the same vertex of H only if the vertex of H has a loop, and, in particular, it must map any vertex

[^0]of G with a loop to a vertex of H with a loop. List homomorphisms are introduced in [9].

For a fixed graph H, the list homomorphism problem, LIST-HOMH, asks whether an input graph G, together with lists L, admits a list homomorphism to H with respect to the given lists. The complexity of all list homomorphism problems has recently been classified [11]: LIST-HOMH is polynomial time solvable when H is a bi-arc graph and is NP-complete when H is not a bi-arc graph. (The definition of bi-arc graphs appears in section 5.)

In the case when the input lists $L(v)=V(H)$ for all $v \in V(G)$, the list homomorphism problem is the homomorphism problem, $\mathrm{HOM} H$, or the H-coloring problem. When $H=K_{n}$, the irreflexive complete graph on n vertices, the homomorphism problem HOMH becomes the n-coloring problem, which is polynomial time solvable when $n \leq 2$ and NP-complete when $n \geq 3$. The complexity of all HOMH problems has been classified by Hell and Nešetřil [16]: HOMH is polynomial time solvable when H is bipartite or contains a loop and is NP-complete if H is irreflexive and not bipartite.

The homomorphism extension problem, EXT H, another special case of list homomorphisms, is of particular interest. In EXTH the inputs are restricted so that each list is either a singleton set or the entire set $V(H)$. Extension problems obviously correspond to questions of extending a given partial mapping ("precoloring") to a homomorphism and have been historically studied under an equivalent formulation called retract problems, RETH; cf. [7, 3, 15, 21, 30]. The retract problem, RET H, for a fixed graph H takes as an input a graph G containing H as a subgraph and asks whether or not there is a homomorphism f of G to H such that $f(v)=v$ for all $v \in V(H)$. Such a homomorphism f is called a retraction of G to H. If there is a retraction of G to H, then H is called a retract of G.

It seems difficult to classify the complexity of all extension problems. In particular, Feder and Vardi [13] have shown that extension problems capture the complexity of the much larger class of all constraint satisfaction problems (CSPs) in the following sense: for each CSP, say, Π, there exists a reflexive graph H such that Π and EXT H are polynomially equivalent. This means that even proving that each extension problem is NP-complete or is solvable in polynomial time would answer a difficult open question in complexity theory [13]. Recall that, by contrast, for list homomorphism problems, we know the exact classification of the complexity [9, 10, 11]. In particular, by techniques similar to [13] it can be seen that if a graph H admits a conservative near-unanimity function (as defined below), then LIST-HOMH is polynomial time solvable. In turn, this implies that RETH and EXTH are also polynomial time solvable. See [17].

Let H be a graph and $k \geq 3$ be an integer. A near-unanimity function of arity k (or NUF_{k} for short) on H is a mapping $g: V(H)^{k} \rightarrow V(H)$ which satisfies the following properties:
(i) $g\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is adjacent to $g\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{k}^{\prime}\right)$ whenever $x_{i} x_{i}^{\prime} \in E(H)$ for each $i=1,2, \ldots, k$, and
(ii) $g\left(x_{1}, x_{2}, \ldots, x_{k}\right)=a$ whenever at least $k-1$ of the x_{i} 's equal a.

Early papers on near-unanimity functions include [1, 20]. Near-unanimity functions of arity 3 , also called majority functions, are much studied [2, 17, 31]. A nearunanimity function g of arity k on H is a conservative near-unanimity function if $g\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ for all vertices of H^{k}. It is shown in [11] that all bi-arc graphs admit a conservative near-unanimity function, implying that the corresponding list homomorphism problems can be solved in polynomial time via the
results mentioned above. It is also shown in [11] that graphs H which are not bi-arc graphs have NP-complete list homomorphism problems. Hence, if we assume that $\mathrm{P} \neq \mathrm{NP}$, then bi-arc graphs are precisely the graphs which admit a conservative nearunanimity function. We will prove this is the case without the assumption $\mathrm{P} \neq \mathrm{NP}$.

The categorical product of a family of graphs, $\left\{H_{i}\right\}_{i \in I}$, denoted $\prod_{i \in I} H_{i}$, has as its vertex set the Cartesian product $\prod_{i \in I} V\left(H_{i}\right)$. (We restrict our attention to finite products, i.e., $|I|<\infty$.) Two vertices $\left(g_{i}\right)_{i \in I}$ and $\left(h_{i}\right)_{i \in I}$ are adjacent if g_{i} and h_{i} are adjacent in each $H_{i}, i \in I$. We may write $H_{1} \times H_{2} \times \cdots \times H_{k}$ for the product of the k graphs, $H_{1}, H_{2}, \ldots, H_{k}$, and H^{k} for the product of k copies of H. Thus, a near-unanimity function of arity k is a homomorphism of H^{k} to H that is nearly unanimous, i.e., satisfies condition (ii) above. Finally, a graph variety is a class \mathcal{V} of graphs which contains all products and all retracts of members of \mathcal{V}. Given a class of graphs C, the variety generated by C is the smallest variety containing all of C. (The intersection of two varieties is itself a variety, and thus the concept of smallest is well defined.)

By abuse of notation we also denote by NUF_{k} the class of all graphs that admit $a \mathrm{NUF}_{k}$. We let NUF $=\bigcup_{k=1}^{\infty} \mathrm{NUF}_{k}$, i.e., the class of graphs each of which admits a near-unanimity function of some arity. We show that, for each fixed $k \geq 3$, the class NUF_{k} is a variety and that this collection of varieties is strictly monotone, i.e., $\mathrm{NUF}_{3} \subset \mathrm{NUF}_{4} \subset \cdots$ (with strict inclusions). We show the class of chordal graphs is contained in NUF. It follows that the variety generated by chordal graphs, i.e., the smallest variety containing all chordal graphs, is also contained in NUF; the variety generated by chordal graphs has been further investigated in [27]. The variety generated by cop-win or dismantable reflexive graphs (see [29]) contains the variety generated by chordal graphs. We give an example of a dismantable graph which does not belong to NUF. An extended examination of the inclusions described here (and of other varieties) is developed in [27]. In particular, NUF is strictly contained in the variety generated by dismantable graphs, and the variety generated by chordal graphs is strictly contained in the variety NUF [27, 25]. A polynomial time algorithm for recognizing graphs in NUF based on dismantability is given in [25].

We give two bounds on the arity of a near-unanimity function of a chordal graph with n vertices, in terms of its clique-size and its leafage (defined in section 3.1), respectively. It follows, in particular, that the arity is at most $n-\sqrt{n}+1$. We present some forbidden substructures for graphs to have a NUF. It follows from these conditions that no reflexive cycle of length at least four admits a near-unanimity function. However, we shall exhibit nonchordal graphs which do admit near-unanimity functions. Finally, we give a proof, without assuming $\mathrm{P} \neq \mathrm{NP}$, of the result predicted by [11], that the graphs which admit a conservative near-unanimity function are precisely the bi-arc graphs. See also [5, 23].

2. Basic properties.

Proposition 2.1. For each $k \geq 3$, a graph H admits $a \mathrm{NUF}_{k}$ if and only if each connected component of H admits a NUF_{k}.

Proof. Let $H_{1}, H_{2}, \ldots, H_{p}$ be the connected components of H. Suppose that g : $H^{k} \rightarrow H$ is a NUF_{k} on H. We begin by defining for each H_{i} a NUF_{k}, say, f_{i}, on H_{i}. Note that by definition g is a homomorphism of H^{k} to H, and hence any restriction $h=\left.g\right|_{X}$ of g to a subgraph X of H^{k} is a homomorphism $h: X \rightarrow H$.

A vertex of H^{k} with at least $k-1$ coordinates equal is called a nearly unanimous vertex. For each connected component C of H_{i}^{k}, we define f_{i} on C as follows. If C has a nearly unanimous vertex $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, define $f_{i}=\left.g\right|_{C}$. By near-unanimity, we
have $f_{i}(x) \in H_{i}$. Since $f_{i}(C)$ is also connected, $f_{i}(C)$ is a subgraph of H_{i}. On the other hand, if C contains no such vertex, then define $f_{i}: C \rightarrow H_{i}$ by $f_{i}\left(z_{1}, z_{2}, \ldots, z_{k}\right)=z_{1}$. It is easily seen that each f_{i} is a NUF_{k} on H_{i}.

Conversely, suppose $g_{i}: H_{i}^{k} \rightarrow H_{i}$ is a NUF_{k} on H_{i} for each $i=1,2, \ldots, p$. Let C be a component of H^{k}, and let $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ be two vertices in C. Since C is connected, there is a walk from x to y in C and, thus, a walk from x_{s} to y_{s} in H for each s, where $1 \leq s \leq k$. That is, for each component C of H^{k} and each coordinate s, there exists a component H_{j} of H such that $x_{s} \in H_{j}$ if and only if $y_{s} \in H_{j}$. Hence exactly one of the following conditions holds for all of the vertices of C :
(i) all k coordinates belong to the same H_{j}; i.e., C is a subgraph of H_{j}^{k};
(ii) exactly $k-1$ coordinates belong to the same H_{j}, and the other coordinate belongs to $H_{m}, m \neq j$; or
(iii) at most $k-2$ coordinates belong to any H_{j}.

Let $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be a vertex in C. In case (i), define $g(x)=g_{j}(x)$. In case (ii), choose some coordinate t such that $x_{t} \in H_{j}$. Define $g(x)=x_{t}$. (We fix t for the entire component C; thus, g is simply the projection of C onto its t th coordinate.) Finally, in case (iii), let $g(x)=x_{1}$.

In all cases, g is a homomorphism. Moreover, g satisfies the near-unanimity condition. In case (i), g inherits the property from g_{j}. In case (ii), any nearly unanimous vertex in C must have all $k-1$ coordinates from H_{j}, including x_{t}, equal. Finally, in case (iii) there are no nearly unanimous vertices.

Proposition 2.2. For each $k \geq 3$, if a graph H admits a NUF_{k}, then H admits $a \mathrm{NUF}_{k+1}$.

Proof. Let $g: H^{k} \rightarrow H$ be a NUF_{k} on H. Then the function $h: H^{k+1} \rightarrow H$ defined as $h\left(x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}\right)=g\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is a NUF_{k+1} on H.

The argument above also proves the following.
Corollary 2.3. For each $k \geq 3$, if a graph H admits a conservative NUF_{k}, then H admits a conservative NUF_{k+1}.

We provide examples of graphs in $\mathrm{NUF}_{k+1}-\mathrm{NUF}_{k}$ for each $k \geq 3$ in section 4.1. Thus the converse of Proposition 2.2 does not hold. On the other hand, we will show that the converse of Corollary 2.3 does hold; i.e., H admits a conservative NUF_{k} for some $k \geq 3$ if and only if H admits a conservative NUF_{3}.

Proposition 2.4. Let G be a graph that admits a NUF_{k}, and let H be a retract of G. Then H also admits a NUF_{k}.

Proof. Let g be a NUF_{k} on G, and let $r: G \rightarrow H$ be a retraction. Then it is easy to verify that $g^{\prime}=r \circ\left(\left.g\right|_{V(H)^{k}}\right)$ is a NUF_{k} on H.

The above result shows that the class of graphs which admit a NUF_{k} are closed under retractions. In the case of conservative functions, the class is also closed under taking induced subgraphs.

Proposition 2.5. Suppose the graph G admits a conservative NUF_{k} and H is an induced subgraph of G. Then H admits a conservative NUF_{k}.

Proof. Let g be a conservative NUF_{k} for G. The restriction of g to H^{k} is a nearunanimity homomorphism of H^{k} to G, and to H as well since g is a conservative NUF.

Proposition 2.6. Let $X_{1}, X_{2}, \ldots, X_{n}$ be graphs in NUF_{k}. Then the product $X_{1} \times$ $X_{2} \times \cdots \times X_{n}$ is also in NUF_{k}.

Proof. By associativity of the product, it suffices to verify the claim for two graphs. It is easy to check that if g_{X} and g_{Y} are near-unanimity functions of arity k for X
and Y, respectively, then

$$
g\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)\right)=\left(g_{X}\left(x_{1}, x_{2}, \ldots, x_{k}\right), g_{Y}\left(y_{1}, y_{2}, \ldots, y_{k}\right)\right)
$$

is a NUF_{k} for $X \times Y$.
Corollary 2.7. For each $k \geq 3$, the class NUF_{k} is a variety.
A dominating vertex of a graph G is one adjacent to all other vertices of G. We make the following observation.

Proposition 2.8. If the reflexive graph H has a dominating vertex v, then H admits a NUF_{k} for all $k \geq 3$.

Proof. By Proposition 2.2 it suffices to show that H admits a NUF_{3}. The function

$$
g(a, b, c)= \begin{cases}x & \text { if at least two of } a, b, c \text { equal } x \\ v & \text { otherwise }\end{cases}
$$

is a NUF_{3}.
A graph is chordal if it does not contain an induced cycle of length greater than three. We shall show that each chordal graph belongs to NUF, and we shall show that each reflexive cycle of length at least four does not. However, Proposition 2.8 allows us to find examples of nonchordal graphs with a NUF. The wheel w_{n} is the graph obtained from a cycle of length n by adjoining one (new) vertex adjacent to all other vertices.

Corollary 2.9. Each reflexive wheel $w_{n}, n \geq 4$, is a nonchordal graph in NUF_{3}.
Since NUF_{3} is the variety generated by finite paths [2, 17, 19], we see that each reflexive wheel is in the variety generated by finite paths and thus in the variety generated by chordal graphs. In [27] it is shown that the variety generated by chordal graphs is in fact strictly contained in the variety NUF.
3. Reflexive chordal graphs. In this section and the next section, all graphs are assumed to be reflexive unless otherwise stated. We show in this section that every reflexive chordal graph admits a near-unanimity function. (By contrast, in section 4.2 we shall show that no reflexive cycle of length greater than three admits a nearunanimity function.) We provide two bounds on the arity of the NUF. One bound is based on the leafage of the graph, and the second is based on the clique-size and is obtained through the study of tree obstructions. We remark that the two approaches, leafage and tree obstructions, often allow us to compute the minimum k for which a graph admits a NUF_{k}. Typically the leafage is used to demonstrate the existence of a NUF_{k}, and tree obstructions are used to prove the nonexistence of a NUF_{k-1}.
3.1. Arity bounds based on leafage. Let T be a tree. A subtree of T is a connected subgraph of T. A rooted subtree R of T is a subtree of T with a distinguished vertex called the root of R, denoted $r(R)$.

It is well known that a graph H is chordal if and only if it is the intersection graph of a family \mathcal{F} of subtrees of a tree; that is, there is a one-to-one correspondence between $V(H)$ and \mathcal{F} such that two vertices of $V(H)$ are adjacent in H if and only if the corresponding subtrees of \mathcal{F} have at least one vertex in common; see [14]. The family \mathcal{F}, together with the underlying tree, is called an intersection representation of H by subtrees. The leafage $l(H)$ of a chordal graph H is the minimum number of leaves of a tree in which H has an intersection representation; cf. [26].

In the following H is a chordal graph. We use \mathcal{F} to denote a (fixed) family of subtrees of a tree T which gives an intersection representation of H. Further, let \mathcal{T}
be the set of all rooted subtrees R of T such that $R-r(R)$ is the union of some (zero, one, or more) components of $T-r(R)$, and if $R-r(R)$ is the union of zero components of $T-r(R)$, then $r(R)$ is a leaf of T. For a rooted subtree R, we denote by l_{R} the number of leaves of T contained in R; note that these definitions ensure that $l_{R} \geq 1$ for any rooted subtree R.

Given a collection S of $k+1$ (not necessarily distinct) subtrees in \mathcal{F}, we say that a rooted subtree $R \in \mathcal{T}$ is critical with respect to S if it satisfies the following two properties:

1. there are at least $k-l_{R}+1$ subtrees of S, each of which contains a vertex of R;
2. for each $R^{\prime} \in \mathcal{T}$ contained in $R-r(R)$, there are at most $k-l_{R^{\prime}}$ subtrees of S, each of which contains a vertex in R^{\prime}.
The two conditions above are referred to as Properties 1 and 2.
Lemma 3.1. Let S be a family of $k+1$ (not necessarily distinct) members of \mathcal{F}. Then
(a) every rooted subtree in \mathcal{T} satisfying Property 1 contains a rooted subtree which is critical with respect to S; and
(b) there are pairwise vertex disjoint critical rooted subtrees R_{1}, \ldots, R_{p} such that $T-\bigcup_{i=1}^{p} R_{i}$ does not contain any critical rooted subtrees.

Proof. Let the rooted subtree X satisfy Property 1. If X also satisfies Property 2, then X is critical with respect to S, and we are done. Otherwise, $X-r(X)$ contains another rooted subtree X^{\prime} which satisfies Property 1. Again, if X^{\prime} also satisfies Property 2, then X^{\prime} is critical; otherwise, $X^{\prime}-r\left(X^{\prime}\right)$ contains a third rooted subtree $X^{\prime \prime}$ which satisfies Property 1. Continuing this way, we will find a critical subtree with respect to S. A subtree consisting of a single vertex which satisfies Property 1 trivially satisfies Property 2.

To see statement (b), note that the entire tree T (with an arbitrary root) satisfies Property 1. In addition, a rooted tree R which does not satisfy Property 1 cannot contain a subtree R^{\prime} which satisfies Property 1 , since $k-l_{R}+1 \leq k-l_{R^{\prime}}+1$ in the case that R^{\prime} is a subtree of R.

Theorem 3.2. Every chordal graph H of leafage k admits a NUF_{k+1}.
Proof. Let \mathcal{F} be an intersection representation of H by subtrees of a tree T with $k \geq 2$ leaves. We shall show that the intersection graph H of \mathcal{F} admits a NUF $_{k+1}$. By Proposition 2.1, we may assume that H is connected. Further, we assume that every vertex of T belongs to a subtree in \mathcal{F}. For convenience, we shall not distinguish between the vertices of H and the subtrees of \mathcal{F}.

Let S be a collection of $k+1$ subtrees of \mathcal{F}. Although some of the $k+1$ subtrees of S may be the same, we treat them as distinct in the counting below.

By Lemma 3.1, there exist $R_{1}, R_{2}, \ldots, R_{p}$ pairwise vertex-disjoint critical rooted subtrees with respect to S such that $T-\cup_{i=1}^{p} R_{i}$ does not contain any critical rooted subtrees. We claim that there is a subtree in \mathcal{F} containing all the roots $r\left(R_{i}\right), i=$ $1,2, \ldots, p$. When $p=1$, this is clearly true as by assumption every vertex of T is in a subtree of \mathcal{F}. So assume that $p \geq 2$. In this case, we prove the stronger statement that in fact there is a subtree in S which contains all the roots. Suppose to the contrary that none of the $k+1$ subtrees of S contains all the roots. Then each subtree of S has vertices in at most $p-1$ critical rooted subtrees R_{i}. (Observe that any subtree of S that contains vertices in any two rooted subtrees must in fact contain both roots of the subtrees.) Denote by $c_{i}(i=1,2, \ldots, p)$ the number of subtrees of S, each of which has a vertex in R_{i}. Then we have $(p-1)|S|=(p-1)(k+1) \geq \sum_{i=1}^{p} c_{i}$.

By Property $1, c_{i} \geq k-l_{R_{i}}+1$. Thus we have

$$
\begin{aligned}
(p-1)(k+1) & \geq \sum_{i=1}^{p} c_{i} \\
& \geq \sum_{i=1}^{p}\left(k-l_{R_{i}}+1\right) \\
& =p(k+1)-\sum_{i=1}^{p} l_{R_{i}}
\end{aligned}
$$

which gives $\sum_{i=1}^{p} l_{R_{i}} \geq(k+1)$. This implies that some leaf of T must be contained in at least two critical rooted subtrees, contradicting the assumption that the critical rooted subtrees are pairwise vertex-disjoint.

Ultimately the goal is to define a NUF on these families of subtrees. Suppose at least k subtrees of S are the same subtree X. We claim X contains all the roots. In fact, a rooted subtree $R \in \mathcal{T}$ is critical with respect to S if and only if $V(R) \cap V(X)=$ $\{r(R)\}$. To see this, observe that R satisfying Property 1 requires $V(X) \cap V(R) \neq \emptyset$ and R satisfying Property 2 ensures $V(X) \cap V(R-r(R))=\emptyset$. On the other hand, $V(X) \cap V(R)=\{r(R)\}$ implies that R contains vertices from at least $k \geq k-l_{R}+1$ elements of S, since $l_{R} \geq 1$. Also, $R-r(R)$ contains no vertices from the k copies of X, which implies that $R-r(R)$ contains vertices from at most $k-l_{R-r(R)}$ subtrees of S, as $l_{R-r(R)} \geq 1$. Consequently, X contains all the roots.

It remains to define the near-unanimity function g on H. Given $k+1$ vertices of H, consider the corresponding family S of subtrees in \mathcal{F}. Decompose T into p critical rooted subtrees $\left\{R_{i}\right\}_{i=1}^{p}$ as described in Lemma 3.1. Define $g(S)$ as follows: When at least k subtrees of S are the same subtree X, let $g(S)=X$; otherwise, let $g(S)$ be any subtree of \mathcal{F} which contains all the roots $r\left(R_{i}\right)$. It remains to verify that g is a homomorphism from H^{k+1} to H. Thus consider two adjacent vertices in H^{k+1}. That is, let $S=\left\{U_{1}, U_{2}, \ldots, U_{k+1}\right\}$ and $S^{\prime}=\left\{V_{1}, V_{2}, \ldots, V_{k+1}\right\}$ be two collections of $k+1$ subtrees (from \mathcal{F}) such that U_{j} intersects with V_{j} for each $j=1,2, \ldots, k+1$. Again, let $R_{1}, R_{2}, \ldots, R_{p}$ be the decomposition of T into critical subtrees with respect to S. Suppose to the contrary that $g(S)$ and $g\left(S^{\prime}\right)$ do not intersect. Let $P: z_{0} z_{1} \ldots z_{d}$ be the shortest path from $g(S)$ to $g\left(S^{\prime}\right)$ where $z_{0} \in V(g(S))$ and $z_{d} \in V\left(g\left(S^{\prime}\right)\right)$. Let C be the component of $T-z_{d}$ containing z_{0} and C^{\prime} be the component of $T-z_{0}$ containing z_{d}. Let A be the rooted subtree consisting of C with $r(A)=z_{d-1}$. Then A is a rooted subtree containing $g(S)$ but no vertex from $g\left(S^{\prime}\right)$. Similarly, $B=C^{\prime}$ with $r(B)=z_{1}$ is a rooted subtree containing $g\left(S^{\prime}\right)$ but no vertex from $g(S)$. Since each leaf of T is either in A or in B, we must have $l_{A}+l_{B} \geq k$. Since $g(S)$ does not intersect with B, B contains none of the roots of $R_{1}, R_{2}, \ldots, R_{p}$. Thus, B cannot satisfy Property 1 with respect to S. This means that S contains at most $k-l_{B}$ subtrees such that each of them has a vertex in B. In other words, S contains at least $k+1-\left(k-l_{B}\right)=l_{B}+1$ subtrees, none of which has a vertex in B. Thus, these $l_{B}+1$ subtrees must all be contained in A. Each of these subtrees intersects a member of S^{\prime}. Hence S^{\prime} must contain at least $l_{B}+1$ subtrees, each of which contains a vertex in A. On the other hand, a similar argument shows that S^{\prime} contains at most $k-l_{A}$ subtrees, each of which has a vertex in A. So we must have $l_{B}+1 \leq k-l_{A}$, i.e., $l_{A}+l_{B} \leq k-1$, in contradiction to the fact that $l_{A}+l_{B} \geq k$.

Lin, McKee, and West [26] proved that for every chordal graph H with n vertices, the leafage is at most $n-\lg n-\frac{1}{2} \lg \lg n+O(1)$. Hence, each chordal graph with n
vertices admits a NUF of arity $n-\lg n-\frac{1}{2} \lg \lg n+O(1)$. We improve this bound in the next section.

The upper bound on the arity in Theorem 3.2 is sharp in the sense that there are chordal graphs of leafage l which do not admit a NUF_{l}. In section 4.1, we construct families of graphs useful for showing lower bounds, including the one just mentioned.
3.2. Arity bounds based of tree certificates. We recall the problem EXTH from the introduction. An instance of EXT H consists of a graph G together with lists $L(v) \subseteq V(H)$, where each $L(v)$ is either a singleton set or all of $V(H)$. Let $X \subseteq V(G)$ be the set of vertices x for which $L(x)$ is a singleton. Then we may view the function $p: X \rightarrow V(H)$ defined by $p(x)=h \in L(x)$ as a preassignment of images (in H) to the vertices in X. The vertices in X are called preassigned vertices. The EXTH problem asks if there exists a homomorphism $f: G \rightarrow H$ which extends the preassignment p (i.e., satisfies $f(x)=p(x)$ for $x \in X$). In the case of a yes instance, we say that p is extendible (in H). In the following we shall use the language of lists, or of extending preassignments, as is convenient.

Before entering the technical details of our work, we outline some key ideas used in the development. (We use the standard notation for $X \subseteq V(G)$, and $G[X]$ denotes the induced subgraph of G with vertex set X.) First, it is clear that, given a preassignment $p: X \rightarrow V(H)$, if p is not a homomorphism of $G[X]$ to H, then p is not extendible. On the other hand, if p is a homomorphism $G[X] \rightarrow H$, then a natural algorithmic idea is to successively extended p by one vertex, i.e., select $v \in V(G) \backslash X$, and define $f(v)=h \in L(v)$ (and set $f(u)=p(u)$ for all $u \in X$) such that $f: G[X \cup\{v\}] \rightarrow H$ is a homomorphism. Clearly the condition we must verify is that $f(u) f(v) \in E(H)$ whenever $u v \in E(G)$ for each $u \in X$. Such a value h is an allowed image for v. On the other hand, in searching $L(v)$ for an allowed image for v, we may remove from $L(v)$ any value h^{\prime} such that $p(u) h^{\prime} \notin E(H)$ for some $u \in X$, where $u v \in E(G)$. Below we will talk about u causing h^{\prime} to be removed from $L(v)$. Finally, if some $L(v)$ becomes empty by removing nonallowed images, then $p: X \rightarrow V(H)$ cannot extend to a homomorphism of G to H. (The image of v under any homomorphism $\phi: G \rightarrow H$ extending p will always be an allowed image, and thus $\phi(v)$ is never removed from $L(v)$.) This process of removing nonallowed images is known as a consistency check; see, for example, [17].

Testing all possible extensions of p to all of G is an exponential process; however, for certain graphs H, as identified below, the extendability of p can be determined by considering only a polynomial number of possible extensions. In particular, for such a graph H and a given instance (G, p) of EXT H, the preassignment $p: X \rightarrow V(H)$ is not extendible to H if and only if there exists a certificate of nonextendability in the form of a tree with at most k preassigned leaves (where k is a constant depending on H). The existence of such algorithmically well-behaved NO-certificates yields that EXTH is polynomial.

We begin with the concept of a conflict.
Definition 3.3. Let G and H be graphs. A set $X \subseteq V(G)$ with a preassignment $p: X \rightarrow V(H)$ which is not extendible, such that the restriction of p to any proper subset X^{\prime} of X is extendible, is called a conflict in G with respect to H. The size of the conflict is $|X|$. A graph H has strict extension-width k if every conflict (in any graph G with respect to H) has size at most k.

Feder and Vardi [13] give several equivalent descriptions of graphs that admit a NUF_{k}. In particular, the following connection between strict extension-width and near-unanimity is presented.

Theorem 3.4 (Feder and Vardi [13]). A graph H admits a NUF_{k} if and only if it has strict extension-width $k-1$.

A graph has bounded strict extension-width if it has strict extension-width k for some integer k. Thus the theorem implies that NUF is precisely the class of graphs with bounded strict extension-width. See [17] for more details on this connection.

Reflexive graphs with a NUF_{3} have been most carefully investigated. (Irreflexive graphs with a NUF_{3} are characterized in [2].) The class of reflexive graphs with a NUF_{3} is known to be the smallest variety containing all reflexive paths [28]. It is also known to be precisely the class of all reflexive graphs H such that H is a retract of any G of which it is an isometric subgraph [19, 28]. What this means in the language of extensions and conflicts is the following. Given a graph G containing H as a subgraph, let $p: X \rightarrow V(H)$ be a preassignment where $X=V(H)$ and p is the identity function. Note that in this context (G, p) is naturally viewed as an instance of the retraction problem for H. Either p is extendible (in the case that H is isometric) or there is a conflict of size two (otherwise). Such a conflict yields a certificate of nonextendability. In particular, the certificate is a path P with end vertices u and v preassigned as $p^{\prime}(u)=a, p^{\prime}(v)=b$, where a, b are vertices of $X=V(H)$. By taking P so that $d_{P}(u, v)=d_{G}(a, b)<d_{H}(a, b)$, we see that p^{\prime} is extendible in G but $p \circ p^{\prime}$ is not extendible in H. Hence, p is not extendible to a homomorphism of G to H; i.e., H is not a retract of G. (For a description of $\mathrm{NUF}_{k}, k \geq 3$, as a variety generated by some starting set of building blocks, see [12]. See also [19] and [4].)

We have just observed that graphs in NUF_{3} have certificates of nonextendability in the form of a path whose end points have been preassigned. We now extend this concept to larger certificates.

Definition 3.5. A reflexive graph H has extension-width one if for any G and any preassignment $p: X \rightarrow V(H)$, where $X \subseteq V(G)$, either p is extendible or there exist a tree T and a set of vertices $X^{\prime} \subseteq V(T)$ preassigned by a mapping $p^{\prime}: X^{\prime} \rightarrow X$ such that p^{\prime} is extendible in G but $p \circ p^{\prime}$ is not extendible in H. The tree T together with the preassignment p^{\prime} is called a tree-certificate. Furthermore, the tree T is minimal if the preassigned vertices are precisely the leaves of T and they form a conflict (in H with respect to T).

Thus, by the comments above the reflexive graphs with a NUF_{3} are precisely the reflexive graphs of extension-width one, where the (minimal) tree-certificates can be chosen to be paths.

In [18] the concept of width one is defined as tree duality. A graph H has tree duality if for all G either $G \rightarrow H$ or there exists a tree T such that $T \rightarrow G$ and $T \nrightarrow H$. The notion of extension-width defined here differs slightly from that in [13]; it has been adapted to extensions (and implicitly to retractions). Thus our condition is that either a preassignment p extends to a homomorphism of G to H or there is a tree T and a preassignment p^{\prime} from T to the preassigned vertices of G (under p) such that p^{\prime} extends to a homomorphism of T to G but $p \circ p^{\prime}$ does not extend to a homomorphism of T to H. Clearly, the existence of a tree-certificate demonstrates that p is not extendible. The proposition below shows that each tree-certificate contains a minimal tree-certificate.

Proposition 3.6. Let (G, p) be an instance of $E X T H$ where $X \subseteq V(G)$ is the set of preassigned vertices. Suppose T is a tree and $p^{\prime}: X^{\prime} \rightarrow X$ is a preassignment, where $X^{\prime} \subseteq V(T)$, such that p^{\prime} is extendible (in G) but $p \circ p^{\prime}$ is not extendible (in H). Then T contains, as a subtree, a minimal tree-certificate.

Proof. Let T^{\prime} be a minimal subtree of T with respect to nonextendibility in H, and let $X^{\prime \prime} \subseteq X^{\prime}$ be the set of preassigned vertices of in T^{\prime}. We first claim that each vertex in $X^{\prime \prime}$ is a leaf. Suppose to the contrary that some vertex $v \in X^{\prime \prime}$ is not a leaf. Let T_{1}, \ldots, T_{k} be the subtrees of $T^{\prime}-v$. Consider $T_{i}+v$. By the minimality of T^{\prime}, $T_{i}+v$ is extendible in H. Moreover, since v is preassigned the same value in $T_{i}+v$ for all i, we obtained that the preassignment $X^{\prime \prime}$ of T^{\prime} is extendible in H, which is a contradiction.

We claim that all the leaves in T^{\prime} are preassigned. Suppose to the contrary that some leaf $v \in T^{\prime}$ is not preassigned. By minimality, the preassignment from $T^{\prime}-v$ to $V(H)$ is extendible. In particular, the parent of v receives an image. Since H is reflexive, v can receive the same image. Thus this preassignment of $X^{\prime \prime}$ to H is extendible, which is a contradiction.

Therefore, T^{\prime} is a tree whose leaves are preassigned and the leaves form a conflict. That is, T^{\prime} together with the preassignment is a minimal tree-certificate.

Tree-certificates are used implicitly in [9] but are first formally defined and studied in [27]. Finally, we remark that K_{2} is an example of a graph with width two. That is, for the $\mathrm{HOM} K_{2}$ problem, i.e., testing if a graph is bipartite, the NO-certificates are odd cycles, i.e., partial two-trees.

A special type of tree-certificate is introduced in [19]. A hole in a reflexive graph H is a set Z of vertices with a mapping $\delta: Z \rightarrow\{0,1,2, \ldots\}$ such that no h in H has the distances $d_{H}(h, x) \leq \delta(x)$ for all $x \in Z$, but for each proper subset Z^{\prime} of Z, there is an h satisfying these inequalities for all x in Z^{\prime}. A k-hole is a hole in which the set Z has exactly k vertices. A unit hole is a hole in which δ is the constant mapping with range $\{1\}$. If $Z=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, we may refer to the hole as a $\left(\delta\left(x_{1}\right), \delta\left(x_{2}\right), \ldots, \delta\left(x_{k}\right)\right)$ k-hole.

Equivalently, a hole in H is a tree T with exactly one branch vertex (vertex of degree greater than two), together with a precoloring $p: X \rightarrow V(H)$, where X is the set of leaves of T. The length of the path from the branch vertex to the leaf x is precisely $\delta(x)$. Further, (X, p) is a conflict in T with respect to H; i.e., p is not extendible in H, but any proper subtree of T, with the same precoloring (restricted to the subtree), is extendible in H.

From the above discussion, we obtain the following corollaries of Theorem 3.4.
Corollary 3.7. A reflexive graph that admits a minimal tree-certificate with k preassigned leaves cannot have a NUF_{k}.

Proof. The minimal tree-certificate contains a conflict with k vertices, showing the strict extension-width is at least k.

Corollary 3.8. A reflexive graph with a k-hole cannot have $a \mathrm{NUF}_{k}$.
It turns out that the reflexive graphs with a NUF_{3} are also characterized as the class of reflexive graphs which do not have holes [19, 28]. Thus a reflexive chordal graph which is not in NUF_{3} must have a hole. We shall elaborate on this fact in section 4. Specifically, such graphs must have a unit hole of a particular kind.

We now return our attention to improving the bounds on the strict extensionwidth of reflexive chordal graphs. In Figure 1 is an algorithm from [9]. This algorithm solves the connected list homomorphism problem, denoted by the CLIST-HOMH problem, where H is a reflexive chordal graph and the lists of any instance induce connected subgraphs of H. The proof of correctness for the algorithm follows from properties of the perfect elimination ordering of H; see [9]. We present the algorithm with the addition that we explicitly construct a tree-certificate for G in H when G is a NOinstance of the problem. A digraph D is used in the algorithm to retain information

CLIST-HOMH Algorithm [9]

Input: A graph G with lists $L: V(G) \rightarrow \mathcal{P}(V(H))$ such that $L(v)$ induces a connected subgraph of H.
Output: A homomorphism $f: G \rightarrow H$ such that $f(v) \in L(v)$ for all v, or a tree-certificate T proving $G \nrightarrow H$.

1. Let $h_{1}, h_{2}, \ldots, h_{n}$ be a perfect elimination ordering of H (an ordering such that any two neighbors of h_{i} among $h_{i+1}, h_{i+2}, \ldots, h_{n}$ are adjacent).
2. Set $V(D)=\left\{t_{g}: g \in V(G)\right\} ; E(D)=\emptyset$.
3. For $i=1$ to n
3.1 Remove h_{i} from all lists $L(g)$ in which it is not the only member.
3.2 For those g which have $L(g)=\left\{h_{i}\right\}$:
3.2.1 assign $f(g)=h_{i}$;
3.2.2 for each g^{\prime} adjacent to g, remove from $L\left(g^{\prime}\right)$ all vertices that are not adjacent to h_{i}; and add the arc $t_{g^{\prime}} t_{g}$ to D if some vertex is removed from $L\left(g^{\prime}\right)$; 3.2.3 delete g from G.
3.3 If some list $L(x)=\emptyset$, then let T be the subgraph of D consisting of descendants of t_{x}. Answer NO; return T together with the lists L_{T} where $L_{T}\left(t_{g}\right)$ equals the original $L(g)$ (provided as input).
4. Answer YES; return f.

Fig. 1. An algorithm for CLIST-HOMH, where H is a reflexive chordal graph, and each list induces a connected subgraph of H.
about which vertices cause the removal of elements from lists (of other vertices). In the case of a NO-instance we prove below, the digraph D contains a tree-certificate $\left(T, p^{\prime}\right)$; thus, H has extension-width one. Also, we provide bounds on the size of the conflict contained in T, thus providing bounds on the strict extension-width of H. That is, we prove the following.

THEOREM 3.9. Each reflexive chordal graph H has extension-width one and bounded strict extension-width.

The proof of the theorem appears below after the development of some preliminary results.

Lemma 3.10. At any step of the CLIST-HOMH Algorithm in Figure 1, the digraph D is acyclic.

Proof. If $t_{g^{\prime}} t_{g}$ is an arc of D, then g is removed from G before g^{\prime} is removed from G.

Lemma 3.11. Suppose the CLIST-HOMH Algorithm in Figure 1 answers NO and returns $\left(T, L_{T}\right)$ for some instance (G, L) of CLIST-HOMH. Then for each vertex $t_{g} \in V(T)$ other than the root, the corresponding vertex $g \in V(G)$ is assigned to some h_{i}, i.e., $f(g)=h_{i}$, by the algorithm. Furthermore, this assignment is injective.

Proof. Suppose $t_{g_{1}}$ and $t_{g_{2}}$ are both children of some vertex t_{g} in T. The arcs $t_{g} t_{g_{1}}$ and $t_{g} t_{g_{2}}$ in T are created in D after each $t_{g_{1}}$ and $t_{g_{2}}$ are assigned an image at step 3.2.2 of the algorithm. Thus, assume that the assignments $f\left(g_{1}\right)=h_{i}$ and $f\left(g_{2}\right)=h_{j}$ are made by the algorithm. Without loss of generality we may assume that h_{i} precedes h_{j} in the perfect elimination ordering, or $h_{i}=h_{j}$. The arc in T from t_{g} to $t_{g_{2}}$ was added to T when the assignment $f\left(g_{2}\right)=h_{j}$ caused some vertex, say, h, to be removed from $L(g)$. In particular, $h_{j} h \notin E(H)$ and h appears later in the perfect elimination ordering than h_{j}. Also, $h_{i} h \in E(H)$; otherwise, h_{i} causes h to be removed from $L(g)$ before $t_{g_{2}}$ is assigned h_{j}, and thus $t_{g} t_{g_{2}}$ would not appear in D.

In addition, note that t_{g} cannot be assigned h_{j}. Since h_{j} caused h to be removed from the list, there must be a vertex in the elimination ordering after both h_{j} and h that will remain in the list for g (after the current round). Recall that the lists are connected. In particular, adjacent vertices receive unique images.

We claim that h_{i} and h_{j} are nonadjacent in H. This is immediate from properties of the elimination ordering and the observations $h_{i} h \in E(H), h_{j} h \notin E(H)$. The same argument shows there is no path $h_{i}=u_{1}, u_{2}, \ldots, u_{m}=h_{j}$ in H where each u_{ℓ} precedes $u_{\ell+1}$ in the perfect elimination ordering. Indeed, for such a path, $h_{j} h \notin E(H)$ implies $u_{m-1} h \notin E(H)$, which in turn implies $u_{m-2} h \notin E(H)$. Continuing back to h_{i}, we conclude $h_{i} h \notin E(H)$, which is a contradiction.

Finally, there is no vertex h^{\prime} in the perfect elimination ordering with paths $h=u_{1}, u_{2}, \ldots, u_{m_{1}}=h_{i}$ and $h=w_{1}, w_{2}, \ldots, w_{m_{2}}=h_{j}$ such that each u_{ℓ} precedes $u_{\ell+1}$ and each w_{ℓ} precedes $w_{\ell+1}$ in the perfect elimination ordering. Suppose to the contrary that such paths exist. Then u_{2} and w_{2} are common neighbors of h^{\prime} and must be adjacent. Without loss of generality u_{2} precedes w_{2} in the elimination ordering. Thus the paths $u_{2}, u_{3}, \ldots, u_{m_{1}}=h_{i}$ and $u_{2}, w_{2}, w_{3}, \ldots, w_{m_{2}}=h_{j}$ are paths with the property above, and the first path has been shortened by one vertex. We thus repeatedly shorten the paths until one has length zero, say, the first path, at which point we have a path from h_{i} to h_{j}, which is the case analyzed in the previous paragraph.

This last result about two paths ending at h_{i} and h_{j}, respectively, shows that the descendants of $t_{g_{1}}$ and $t_{g_{2}}$, respectively, receive images that are disjoint sets of vertices in H, completing the proof that the function f defined in the algorithm is indeed injective.

We now establish that in the case of a NO-instance, the CLIST-HOMH algorithm does indeed return a tree. Recall that for a list homomorphism problem vertices with lists of size one are called preassigned.

Lemma 3.12. If the CLIST-HOMH Algorithm in Figure 1 answers NO and returns $\left(T, L_{T}\right)$, then T is a tree rooted at t_{x}, where x is the vertex whose list becomes empty in step 3.3. Moreover, the preassigned vertices are leaves in T, and the preassigned images form an independent set in H.

Proof. Every vertex in T other than the root t_{x} has in-degree one. Suppose to the contrary that some vertex t has predecessors t_{1} and t_{2}. Using the proof of Lemma 3.11, one can easily show that the descendants of t_{1} and t_{2} are disjoint sets and thus derive a contradiction.

To see that preassigned vertices in T are leaves, observe that internal vertices of T are assigned a value from their list and have something removed from their list by a child. Thus, the list of an internal vertex cannot be a singleton.

Suppose $t_{g_{1}}$ and $t_{g_{2}}$ are leaves of T, neither of which is the root. Then they have a common ancestor, say, t_{g}, such that the $\left(t_{g}, t_{g_{1}}\right)$-path and the $\left(t_{g}, t_{g_{2}}\right)$-path in T are internally disjoint. Let $t_{g_{1}^{\prime}}$ and $t_{g_{2}^{\prime}}$ be the first vertex after t_{g} on the two paths, respectively, with $t_{g_{i}}=t_{g_{i}^{\prime}}$ possible. Without loss of generality, $f\left(g_{1}\right)$ precedes $f\left(g_{2}\right)$ in the perfect elimination ordering. If $f\left(g_{1}\right) f\left(g_{2}\right) \in E(H)$, then there are paths in H from $f\left(g_{1}\right)$ to $f\left(g_{1}^{\prime}\right)$ and $f\left(g_{1}\right)$ to $f\left(g_{2}^{\prime}\right)$, contrary to the proof of Lemma 3.11.

Finally, suppose that the root t^{\prime} is a preassigned vertex. Then the unique child of the root, say, t_{g}, causes the single element from $L\left(t^{\prime}\right)$, say, h^{\prime}, to be removed when the algorithm makes the assignment $f(g)=h$. Consider some other leaf, say, $t_{g_{1}}$, in the tree, including the possibility that t_{g} is a leaf. Suppose further that the assignment $f\left(g_{1}\right)=h_{1}$ is made by the algorithm. Then there is a path from h_{1} to h in H whose vertices are in increasing order with respect to the perfect elimination ordering. Each vertex on this path is nonadjacent to h^{\prime}. In particular, $h_{1} h^{\prime} \notin E(H)$. Therefore, the set of all leaves is independent.

Corollary 3.13. Suppose (G, L) is an instance of EXTH where $X \subseteq V(G)$ is the set of preassigned vertices. Further, suppose the CLIST-HOMH Algorithm in Figure 1 answers $N O$ and returns $\left(T, L_{T}\right)$. Then T contains as a subtree a minimal tree-certificate.

Proof. Suppose $\left(T, L_{T}\right)$ is returned by the CLIST-HOMH Algorithm. Because the lists L_{T} come from L, each is either a singleton or the entire set $V(H)$. Hence $\left(T, L_{T}\right)$ is also an instance of EXT H, in particular, a NO-instance. Note the mapping $t_{g} \mapsto g$ is an embedding of T in G. Thus, T is extendible in G but not in H. By Proposition 3.6, T contains as a subtree a minimal tree-certificate.

Proof of Theorem 3.9. Let (G, L) be a NO-instance of EXTH. We will establish that there is a tree-certificate for G with respect to H. Moreover, this tree contains a conflict of size at most $|V(H)|$.

If H is not connected, we consider two cases. First, if some component of G has preassigned vertices in different components of H, then a path between two such vertices is a tree-certificate containing a conflict of size two. On the other hand, if for each component of G its preassigned vertices appear in the same component of H, then (G, L) is a NO-instance if and only if some component of G is a NO-instance for some component of H. Thus, we may restrict our attention to connected graphs G and H. Hence, any instance of EXT H can be viewed as an instance of CLIST-HOM H where each list is a singleton or $V(H)$, and since H is connected, we can apply the algorithm in Figure 1. Given that (G, L) is a NO-instance, the algorithm returns a tree-certificate by Corollary 3.13. Furthermore, this tree has at most $n=|V(H)|$ leaves by Lemma 3.11. The former statement shows that H has extension-width one; the latter statement shows that H has strict extension-width n.

Theorem 3.9 shows that each reflexive chordal graph with n vertices belongs to NUF_{n+1}. We now improve the bound.

THEOREM 3.14. Let H be a reflexive chordal graph with n vertices and maximum clique-size $\omega \geq 3$. Then H admits $a \mathrm{NUF}_{k}$ with $k \leq \min \{n-\omega+1, n-n /(\omega-1)+1\}$. In particular, $k \leq n-\sqrt{n}+1$.

Proof. First observe that $n-\sqrt{n} \geq \min \{n-n /(\omega-1), n-\omega\}$. Hence it suffices to prove that the strict extension-width of H is less than or equal to both $n-n /(\omega-1)$ and $n-\omega$.

Suppose G is a NO-instance of EXTH. By Corollary 3.13, there is a tree-certificate for G. In particular, there is a tree T with lists L from $V(H)$ that is nonextendible in H. Moreover, the preassigned vertices of T are precisely the leaves of T, and they form a conflict.

Suppose s vertices of T are preassigned values in H. These s vertices can only be leaves of T, including possibly the root t of T, if the root has only one child. Also, by Lemma 3.12, the preassigned values form an independent set in H. Thus, a clique with ω vertices in H contains at most one of the s preassigned images; therefore, the remaining vertices in the clique are not among the s vertices, showing that the strict extension-width is at most $s \leq n-\omega+1$. This establishes that H admits a NUF $_{k}$ for $k \leq n-\omega+2$. In the case that $s=n-\omega+1$, we note that H must be a split graph with s independent vertices and a clique of size $n-s$. However, such a chordal graph has an intersection representation with $s-1$ leaves. Thus the leafage of H is at most $s-1$, and we conclude from Theorem 3.2 that H admits a NUF_{k} where $k \leq n-\omega+1$.

Let r be the number of children of t, the root of T. The r children eliminate at least r values from the list for t. If $r \neq 1$, then each of these r vertices must remove at least one value from $L(t)$ which is not among the preassigned images for the leaves
of T. Suppose to the contrary that this is not the case. Let t_{g} be a child of t that removes only values from $L(t)$ that come from the set of preassigned images. Then we can remove the subtree rooted at t_{g} from T and obtain a smaller tree-certificate, contrary to our assumption that T is minimal. Indeed, each preassigned image, say, h_{i}, will be removed from the list of all vertices in T at iteration i of the for-loop in the algorithm. Hence, the values that t_{g} removes from $L(v)$ will all be removed by the algorithm anyway, without the subtree rooted at t_{g} being present. (Observe that all of the preassigned vertices form an independent set, but the lists are connected. Hence $L(v)$ must contain a vertex that appears later in the perfect elimination ordering than all of the preassigned vertices. Thus v will not be assigned a preassigned image, and they will indeed all be removed from $L(v)$.)

Let i be the number of internal vertices of T (other than the root). Each of these internal vertices is assigned an image which again is not among the preassigned images for the leaves of T. There are l remaining vertices in H that are not one of the $s+i$ assigned images nor one of the r images removed from $L(t)$. Define $p=r+l+i$, unless $r=1$, in which case $p=l+i$. Thus, $n-s=p$. We will establish the result by showing that $p \geq n /(\omega-1)$.

Let d be the maximum number of children of a vertex in T other than the root. The number of vertices in H assigned as images to vertices in T other than the root is at most $r+i d$, since the root has r children and each of the i internal vertices has at most d children. The r eliminated values from the list for the root t, and the l additional elements counted above, are the only other vertices of H, giving $n \leq 2 r+l+i d$.

Note finally that $\omega \geq d+1$. If $d=1$, the claim is trivial. Suppose $d \geq 2$. Consider the d neighbors of an internal vertex t_{g} (other than the root) of T. Call these neighbors $t_{g_{1}}, t_{g_{2}}, \ldots, t_{g_{d}}$. Further, suppose the algorithm makes the assignments $f(g)=h$ and $f\left(g_{i}\right)=h_{i}$ for $i=1,2, \ldots, d$, and suppose these assignments occur in the order $i=1,2, \ldots, d$. The d children remove d vertices from $L\left(t_{g}\right)$. In particular, say that the assignment $f\left(g_{i}\right)=h_{i}$ causes x_{i} to be removed from $L\left(t_{g}\right)$. Each of $x_{2}, x_{3}, \ldots, x_{d}$ must appear later in the perfect elimination ordering (by the construction of T) than h_{1}. Also, each x_{i} for $2 \leq i \leq d$ must be adjacent to h_{1}; otherwise, h_{1} would have caused x_{i} to be removed from $L\left(t_{g}\right)$. Hence h_{1} is adjacent to h and each of x_{i} for $2 \leq i \leq d$. Since h_{1} precedes the other vertices in the perfect elimination ordering, $h_{1}, h, x_{2}, \ldots, x_{d}$ form a clique of size $d+1$.

We claim $p(\omega-1)=(p-i)(\omega-1)+i(\omega-1) \geq 2 r+l+i d \geq n$. To see this note that $\omega-1 \geq d$, and by hypothesis $\omega-1 \geq 2$. If $r \neq 1$, then $p-i=r+l$, and the claim follows. When $r=1$ we have $p-i=l$, giving $l(\omega-1) \geq 2+l$ (and the claim), except for $l=1$ and $\omega=3$, or $l=0$. First, note that $l \geq 1$; otherwise, the root t and its only child in T would map to the last two vertices in the perfect elimination ordering, which are adjacent.

Hence, assume that $l=1$ and $\omega=3$. If some internal vertex of T other than the root has $d^{\prime} \leq d$ children, then we claim that $n \leq 2 r+l+i d-\left(d-d^{\prime}\right)$. In this final case the difference of one is accounted for unless $d=d^{\prime}=2$. This is not possible since the child of the root t would have two children that remove two values from its list, giving $l \geq 2$, contrary to $l=1$. Therefore, $p(\omega-1) \geq n$, or $p \geq n /(\omega-1)$, completing the proof.

4. Reflexive graphs without NUF.

4.1. Graphs without $\mathbf{N U F}_{\boldsymbol{k}}$ for some \boldsymbol{k}. Having established in the previous sections that each reflexive chordal graph belongs to NUF_{k} for some k, we now turn our attention to providing lower bounds on the arity of the NUF.

We first show that reflexive chordal graphs without NUF_{3} must have a unit hole of a particularly simple kind.

DEFInition 4.1. The reflexive chordal graph R_{k} is formed by constructing a clique on vertices y_{1}, \ldots, y_{k} and adding independent vertices x_{1}, \ldots, x_{k} and edges $x_{i} y_{j}$ for $i \neq j$.

Theorem 4.2. Let H be a reflexive chordal graph which is not in NUF_{3}. There exists $k \geq 3$ such that R_{k} is an induced subgraph of H. Furthermore, the set $X=$ $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subseteq V\left(R_{k}\right)$ is the vertex set of a $(1,1, \ldots, 1) k$-hole in H.

Proof. It suffices to show that H does indeed contain an induced copy of R_{k} with no vertex adjacent to all the x_{i} 's. Clearly, such a copy of R_{k} is a $(1,1, \ldots, 1) k$-hole in H.

Since $H \notin \mathrm{NUF}_{3}$, there exist a graph G and a preassignment $p: X \rightarrow V(H)$, where $X \subseteq V(G),|X| \geq 3$, and X is a conflict. As described in the proof of Theorem 3.9, we may assume that G and H are connected. (A conflict must belong to a single component of G, and conflicts receiving their images in two components of H have size two.) Hence, by Corollary 3.13, there is a tree-certificate (T, p^{\prime}) for G with respect to H. In particular, $p^{\prime}: X^{\prime} \rightarrow X$, where X^{\prime} is the set of leaves of T. Furthermore, $\left|X^{\prime}\right|=|X|$. Suppose to the contrary that $\left|X^{\prime}\right|<|X|$. Since X is a conflict, $p^{\prime}\left(X^{\prime}\right)$ is extendible in H (as it is a proper subset of X). This contradicts the fact that $\left(T, p^{\prime}\right)$ is a tree-certificate.

Hence, T is a tree, with at least three leaves which form a conflict with respect to H under the preassignment $p \circ p^{\prime}$. Without loss of generality, assume T is the smallest tree whose leaves form a conflict of size $\left|X^{\prime}\right|$.

We consider two cases, depending on the degree in T of the root t.
Case 1 . $\operatorname{deg}_{T}(t)=r \geq 3$. Let the children of t be $t_{1}, t_{2}, \ldots, t_{r}$. In the execution of the CLIST-HOMH Algorithm in Figure 1 these are mapped to vertices $x_{1}, x_{2}, \ldots, x_{r}$ of H, respectively. By (the proof of) Lemma 3.12, $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ is an independent set. Since t is the root of T (meaning that it arose from the first vertex of G whose list became empty), the vertices $x_{1}, x_{2}, \ldots, x_{r}$ have no common neighbor in H. By the minimality of T, for $j=1,2, \ldots, r$ the vertices in $X-\left\{x_{j}\right\}$ have a common neighbor y_{j} in H.

By the minimality of T, for $j \neq i$ the vertex y_{i} occurs after x_{j} in the perfect elimination ordering of $V(H)$. Suppose to the contrary that some child of the root, say, x_{i}, removes a set of images, say, Y_{i}, from the list of the root, all of which occur before x_{j} in the perfect elimination ordering. Then we may remove x_{i} and all of its descendants from T. The algorithm will remove all elements of Y_{i} from the list of the roots in Step 3.1 before the assignment $f\left(t_{j}\right)=x_{j}$ is made. Hence, there is no need to include x_{i} in the tree, contrary to our assumption of minimality. In particular (since $r \geq 3$), any two of $y_{1}, y_{2}, \ldots, y_{r}$ have a common neighbor x_{j} occurring before them in the perfect elimination ordering. Therefore, $\left\{y_{1}, y_{2}, \ldots, y_{r}\right\}$ induces a clique in H, and $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{r}\right\}$ induces a copy of R_{r}, with no vertex in H adjacent to all the x_{i} 's.

Case 2. $\operatorname{deg}_{T}(t)=r \leq 2$. Since T has $s \geq 3$ leaves, at least one child of the root, say, $t_{g_{1}}$, is the root of a subtree of T consisting of a path from $t_{g_{1}}$ to a vertex t^{\prime} with at least two children (where $t_{g_{1}}=t^{\prime}$ is possible). Let the children of t^{\prime} be t_{2}, \ldots, t_{k} $(k \geq 3)$, and assume these vertices have been mapped to x_{2}, \ldots, x_{k}, respectively, by the algorithm.

If $r=2$, then let $t_{g_{2}}$ be the other child of t. Further, let h be the image assigned to $t_{g_{2}}$ in the algorithm, and define v to be the vertex $v=t_{g_{2}}$. On the other hand,
if $r=1$, then t is a leaf, and by Corollary 3.13 the original list for $t, L(t)$, must be a singleton, say, $\{h\}$. In this case, define the vertex v to be $v=t$.

Consider the $k-1$ assigned images x_{2}, \ldots, x_{k}. A vertex x_{1} will be defined below. Let y_{1} be the value in H assigned to t^{\prime} by the algorithm. As before, for each i, the $k-2$ vertices $x_{j}, j \neq i$, have a common neighbor y_{i} following y_{1} in the perfect elimination ordering, with y_{i} not adjacent to x_{i}. Hence, for each $i=2, \ldots, k, y_{1}$ and y_{i} have a common neighbor, $x_{j}, j \neq i$, preceding them in the perfect elimination ordering. Thus, the y_{i} 's, $i=1,2, \ldots, k$, form a clique.

Let $d=d_{H}\left(y_{1}, h\right)$ be the distance in H from y_{1} to h. Since T does not map to $H, d_{T}\left(t^{\prime}, v\right)<d_{H}\left(y_{1}, h\right)$. Let $d^{\prime}=d_{T}\left(t^{\prime}, v\right)$. Furthermore, for $i \neq 1$, the distance $d_{i}=d_{H}\left(y_{i}, h\right)$ must satisfy the inequality $d-1 \leq d_{i} \leq d^{\prime}$. To see the inequality, note that y_{1} is adjacent to y_{i}; hence, $d-1 \leq d_{i}$. Also, by the minimality of $T, T-\left\{x_{i}\right\}$ maps to H with t^{\prime} mapping to y_{i}. Hence, $d_{i} \leq d^{\prime}$.

Consider a tree T^{\prime} (whose leaves are vertices in H) consisting of a vertex y^{*} adjacent to each y_{i} for $i \geq 2$ together with a path of length $d-2$ from y^{*} to h. If T^{\prime} does not map to H, then, since T^{\prime} has distances between its leaves at least their distance in H, the tree T^{\prime} is another example of a tree like T, but smaller, which is a contradiction. Hence, T^{\prime} maps to H, and, in particular, y^{*} maps to a vertex x_{1}. By the distance inequalities, x_{1} is not adjacent to y_{1}, but it is adjacent to all y_{i} with $i \neq 1$.

Finally, consider x_{i} with $i \neq 1$. The vertex x_{i} is distance at least d from h in H. This follows from the algorithm and properties of the perfect elimination ordering. If h comes after y_{1} in the perfect elimination ordering, then a path from x_{i} to h in H of length at most $d-1$ easily yields a path of length at most $d-1$ from y_{1} to h in H, which is a contradiction. Similarly, h preceding y_{1} also leads to a contradiction. Since x_{1} is at distance $d-2$ from h in H, it follows that x_{1} is not adjacent to any x_{i} with $i \neq 1$. Furthermore, no vertex w in H is adjacent to all x_{i}, since otherwise we could map T to H by mapping t^{\prime} to w at distance $d-1=d^{\prime}$ from h in H. This completes the proof.

We continue our examination of holes from page 947, where we defined holes and provided a correspondence to trees with one branch point. The above proof shows that for chordal graphs H without NUF_{3}, there is an instance of EXT H whose treecertificate is a $(1,1, \ldots, 1)$ hole. Historically, holes have been studied in the (equivalent) language of retractions. We adopt the retraction language for this next result. Given a graph G with a subgraph H, we say a hole in H is filled if G contains a vertex g whose distances to the vertices of the hole are within the distance given in the definition of the hole, i.e., $d_{G}(g, x) \leq \delta(x)$ for each x in the hole. Thus, a filled hole corresponds to a tree-certificate where the tree is a subdivision of a star. On the other hand, we now provide a graph G that does not retract to a reflexive chordal graph H, yet G does not fill a hole in H. In essence, the tree-certificate for G is necessarily more complex than a subdivision of a star.

ThEOREM 4.3. There is a reflexive chordal graph H with a NUF_{5} (but not a NUF_{4}) and an instance G of RETH that does not retract to H, yet no vertex of G fills a hole in H.

Proof. The graph H has ten vertices $a_{i}, b_{i}, c_{i}, d_{i}, e_{i}$ for $i=1,2$ and edges $a_{i} c_{i}, a_{i} d_{i}$, $b_{i} c_{i}, b_{i} e_{i}, c_{i} d_{i}, c_{i} e_{i}, d_{i} e_{i}, d_{1} d_{2}, e_{1} e_{2}, d_{1} e_{2}$, and $e_{1} d_{2}$. The instance G is H together with three vertices x_{1}, x_{2}, y and edges $x_{i} a_{i}, x_{i} b_{i}, x_{i} y$. None of x_{1}, x_{2}, y fills a hole in H, and yet G does not retract to H. To see that no hole is filled, observe that $d\left(x_{1}, v\right) \geq d\left(c_{1}, v\right)$ for all $v \in V(H)$. Hence x_{1} cannot fill a hole in H. A similar

Fig. 2. A G containing a subgraph H induced by the black vertices. The graph H is in $\mathrm{NUF}_{5}-$ NUF_{4}. The graph G is a NO-instance of RETH yet fills no holes in H.
argument shows that neither x_{2} nor y fills a hole. Figure 2 contains a drawing of H (with black vertices) and G (consisting of H plus the three white vertices).

To establish that H admits a NUF_{5} and not a NUF_{4}, we first observe that it is easy to construct an intersection representation for H with leafage 4 . Hence, by Theorem 3.2, H admits a NUF_{5}. Suppose to the contrary that g is a NUF_{4} for H. Then $g\left(a_{1}, a_{1}, a_{1}, c_{1}\right)=a_{1}$ and $g\left(c_{1}, b_{1}, b_{1}, b_{1}\right)=b_{1}$. Since $\left(a_{1}, a_{1}, a_{1}, c_{1}\right)$ and $\left(c_{1}, b_{1}, b_{1}, b_{1}\right)$ are both adjacent to $\left(d_{1}, c_{1}, c_{1}, e_{1}\right)$, we must have $g\left(d_{1}, c_{1}, c_{1}, e_{1}\right)$ adjacent to both a_{1} and b_{1}. Namely, $g\left(d_{1}, c_{1}, c_{1}, e_{1}\right)=c_{1}$. However, $\left(d_{1}, c_{1}, c_{1}, e_{1}\right)$ is adjacent to ($d_{2}, d_{1}, e_{1}, e_{2}$). Thus, $g\left(d_{2}, d_{1}, e_{1}, e_{2}\right)$ is adjacent to c_{1}. A similar argument shows that $g\left(d_{2}, d_{1}, e_{1}, e_{2}\right)$ is adjacent to c_{2}. In particular $\left(a_{2}, a_{2}, c_{2}, a_{2}\right)$ and $\left(b_{2}, c_{2}, b_{2}, b_{2}\right)$ are both adjacent to $\left(c_{2}, d_{2}, e_{2}, c_{2}\right)$. Hence, $g\left(c_{2}, d_{2}, e_{2}, c_{2}\right)=c_{2}$ and $g\left(d_{2}, d_{1}, e_{1}, e_{2}\right)$ is adjacent to c_{2} (as well as c_{1}), which is a contradiction.

We complete this section by establishing that the bounds in Theorems 3.2 and 3.14 are tight.

THEOREM 4.4. For each $i \geq 0$ and $\omega \geq 3$, there exists a reflexive chordal graph $L B(\omega, i)$ with $n=2 \omega+i(\omega-1)$, strict extension-width $s=\omega+i(\omega-2)$, and leafage s.

Proof. Fix $\omega \geq 3$.
For the case $i=0, L B(\omega, 0)$ is the chordal graph with vertices $x_{1}, \ldots, x_{\omega}$, $y_{1}, \ldots, y_{\omega}$, a clique on the y_{l}, all edges $x_{k} y_{l}$ with $k \neq l$, and all loops, i.e., a copy of R_{ω} as defined above. To see that $L B(\omega, 0)$ has strict extension-width at least $s=\omega$, consider an instance T (a tree defined below) of $\operatorname{EXT} L B(\omega, 0)$. The tree T has root t adjacent to ω leaves, each assigned to a unique x_{k} in $L B(\omega, 0)$. Clearly, the preassignment does not extend to a homomorphism $T \rightarrow H$, but if one of the ω leaves in T is deleted, say, the leaf mapped to x_{1}, then the root t can be mapped to y_{1}. Thus the x_{k} 's form a conflict of size $s=\omega$. On the other hand, there is an intersection representation of $L B(\omega, 0)$ with s leaves. Hence, by Theorem $3.2, L B(\omega, 0)$ belongs to NUF_{s+1}. We have $n=2 \omega$, strict extension-width $s=\omega$, and leafage s.

For the case $i=1$, consider the element x_{1} in the preceding construction, with $\omega-1$ neighbors y_{j} with $j \neq 1$. To construct $L B(\omega, 1)$, add vertices $z_{2}, z_{3}, \ldots, z_{\omega}$ adjacent to x_{1}, plus edges $z_{k} y_{l}$ for $k \neq l$ and $l \neq 1$. Similarly, replace the leaf in T that is preassigned to x_{1} with a vertex t^{\prime} having the $\omega-1$ children each preassigned to a unique z_{k}. Thus n has increased by $\omega-1$, and the fact that T does not map to $L B(\omega, 1)$ depends on $\omega-1$ new leaves in T but no longer depends on t^{\prime} (which is no longer preassigned to x_{1}). Hence the size of the conflict has increased by at least $\omega-2$;
however, it is easy to see that the leafage has increased by at most $\omega-2$. Therefore, s has increased by $\omega-2$.

Note that the new vertices z_{k} have $\omega-1$ neighbors in $L B(\omega, 1)$ as before for the x_{k} in $L B(\omega, 0)$. We may repeat the process of enlarging each $L B(\omega, i)$ and changing T as follows. In $L B(\omega, i)$ add $\omega-1$ new vertices, the $z_{2}, \ldots, z_{\omega}$ above, and join each to some vertex and $\omega-2$ of its neighbors, as for x_{1} above, ensuring that no two of the new vertices have the same neighborhood. In T, select a leaf, say, u, as before, for the preimage of x_{1}; add $\omega-1$ leaves each adjacent to u, and map each (injectively) to the new $\omega-1$ vertices, say, $z_{2}, \ldots, z_{\omega}$, as above. Thus each time we increase n by $\omega-1$ and s by $\omega-2$. This completes the construction.

The bound in Theorem 3.2 is tight.
Corollary 4.5. For each $l \geq 3$, there is a reflexive chordal graph H with $\omega=3$, and leafage l, such that $H \in \mathrm{NUF}_{l+1}-\mathrm{NUF}_{l}$.

Proof. The graph $L B(3, l-3)$ is such a graph.
The bounds in Theorem 3.14 are tight.
Corollary 4.6. For each $\omega \geq 2$ there is a reflexive chordal graph $H \in \mathrm{NUF}_{k}-$ NUF_{k-1}, where $k=n-\omega+1$.

Proof. The graph $L B(\omega, 0)$ is such a graph.
Corollary 4.7. For each $i \geq 0$, there is a reflexive chordal graph $H \in \operatorname{NUF}_{k}-$ NUF_{k-1} with $\omega=3$, where $k=n-n /(\omega-1)+1$.

Proof. The graph $L B(3, i)$ is such a graph.
4.2. Graphs without $\mathbf{N U F}_{\boldsymbol{k}}$ for any \boldsymbol{k}. We now construct classes of reflexive graphs that do not admit a near-unanimity function of any arity. Given a vertex v and a subgraph S of a graph H, we use the notation $d(v, H)$ to denote the minimum distance from the vertex v to a vertex in the subgraph H, where the minimum is taken over all vertices of H. We are working with reflexive graphs; however, $N(v)$ denotes the vertices other than v that are adjacent to v, i.e., $v \notin N(v)$.

Lemma 4.8. Let H be a connected reflexive graph and t, b be two nonadjacent vertices of H. Suppose that for each $x \in N(t)$ there is a complete subgraph $K(x)$, which is either a maximal clique or a single vertex, with the property that $d(x, K(x))>$ $\max \{d(t, K(x)), d(b, K(x))\}$. Then H does not admit $a \mathrm{NUF}_{k}$ for any $k \geq 3$.
(The hypotheses are illustrated in Figure 3, where t is the top vertex, b is the bottom vertex, and for each $x \in N(t), K(x)$ is one of the middle four vertices which is not adjacent to x.)

Proof. Suppose to the contrary that g is a NUF_{k} on H. For each $j=1,2, \ldots, k$, let \bar{x}_{j} be a vertex, say, $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, of H^{k} with the property that $x_{i}=t$ for all $i<j, x_{i}=b$ for all $i>j$, and x_{j} is an arbitrary vertex of H. Thus $\bar{x}_{j}=$ $\left(t, \ldots, t, x_{j}, b, \ldots, b\right)$. Consider any vertex $x \in N(t)$. By hypothesis there exists a complete subgraph $K(x)$ with $d(x, K(x))>\max \{d(t, K(x)), d(b, K(x))\}$. Thus there exist $y, z \in V(K(x))$ with $d(x, K(x))>d(t, y)$ and $d(x, K(x))>d(b, z)$. Hence in H^{k} the distance between \bar{x}_{j}, and $\left(y, \ldots, y, x_{j}, z, \ldots, z\right)$ is less than $d(x, K(x))$. For each $v \in K(x)$ the vertex $\left(y, \ldots, y, x_{j}, z, \ldots, z\right)$ is adjacent to $\left(v, \ldots, v, x_{j}, v, \ldots, v\right)$. Hence $g\left(y, \ldots, y, x_{j}, z, \ldots, z\right)$ must be adjacent to v, and as $K(x)$ is either a single vertex or a maximal complete subgraph of $H, g\left(y, \ldots, y, x_{j}, z, \ldots, z\right)$ must be a vertex of $K(x)$. We have

$$
\begin{aligned}
d(x, K(x)) & >d\left(\bar{x}_{j},\left(y, \ldots, y, x_{j}, z, \ldots, z\right)\right) \\
& \geq d\left(g\left(\bar{x}_{j}\right), g\left(y, \ldots, y, x_{j}, z, \ldots, z\right)\right)
\end{aligned}
$$

Fig. 3. A dismantable reflexive graph without a NUF_{k}.
and, consequently, $g\left(\bar{x}_{j}\right) \neq x$. Since x was an arbitrary member of $N(t)$, we conclude that $g\left(\bar{x}_{j}\right) \notin N(t)$.

Since H is a connected graph, there is a (t, b)-path $(t=) v_{1}, v_{2}, \ldots, v_{l}(=b)$. Thus, in H^{k}, we have the following path, say, P :

$$
\begin{aligned}
(t, b, b, b, \ldots, b, b) & \sim\left(t, v_{l-1}, b, b, \ldots, b, b\right) \sim\left(t, v_{l-2}, b, b, \ldots, b, b\right) \sim \cdots \\
\sim\left(t, v_{2}, b, b, \ldots, b, b\right) & \sim(t, t, b, b, \ldots, b, b) \sim\left(t, t, v_{l-1}, b, \ldots, b, b\right) \sim \cdots \\
\sim(t, t, t, b, \ldots, b, b) & \sim\left(t, t, t, v_{l-1}, \ldots, b, b\right) \ldots \sim(t, t, t, \ldots, t, b)
\end{aligned}
$$

Since $g(t, b, b, b, \ldots, b)=b$ and $g(t, t, \ldots, t, t, b)=t$, we must have that $g(P)$ is a (b, t)-walk in H. Since t and b are nonadjacent, some interior vertex of P must map to a neighbor of t, contrary to our claim above.

Corollary 4.9. No reflexive cycle of length at least 4 admits a NUF_{k} for any $k \geq 3$.

Proof. Let $C: v_{1} v_{2} \ldots v_{n} v_{1}(n \geq 4)$ be a cycle. We show that C satisfies the assumption of Lemma 4.8: Set $t=v_{1}, b=v_{3}, K_{1}=\left\langle\left\{v_{\left\lceil\frac{n-1}{2}\right\rceil}, v_{\left\lceil\frac{n}{2}\right\rceil}\right\}\right\rangle$, and $K_{2}=$ $\left\langle\left\{v_{\left\lceil\frac{n+3}{2}\right\rceil}, v_{\left\lceil\frac{n+4}{2}\right\rceil}\right\}\right\rangle$. Then $N(t)=\left\{v_{2}, v_{n}\right\}$ and

$$
\begin{gathered}
d\left(v_{n}, K_{1}\right)=\left\lfloor\frac{n}{2}\right\rfloor>\left\lfloor\frac{n}{2}\right\rfloor-1=\max \left\{d\left(t, K_{1}\right), d\left(b, K_{1}\right)\right\}, \\
d\left(v_{2}, K_{2}\right)=\left\lfloor\frac{n}{2}\right\rfloor>\left\lfloor\frac{n}{2}\right\rfloor-1=\max \left\{d\left(t, K_{2}\right), d\left(b, K_{2}\right)\right\}
\end{gathered}
$$

We have established that all chordal graphs belong to NUF. Recall that it is proved in [27] that the variety generated by chordal graphs is properly contained in NUF. The corollary below shows that some dismantable graphs do not admit a NUF. It has subsequently been established in [25] that NUF is properly contained in the variety generated by dismantable graphs.

Corollary 4.10. The dismantable reflexive graph in Figure 3 does not admit a NUF_{k} for any $k \geq 3$.

Corollary 4.11. There is a reflexive graph H that does not admit a NUF of any arity such that every nonidentity retract of H admits a NUF_{3}.

We complete this section by observing for irreflexive graphs that if H admits a NUF_{k}, then H must be bipartite. The proof is analogous to Corollary 4.9.

Proposition 4.12. Let H be an irreflexive graph. If H is not bipartite, then H does not admit a NUF_{k} for any $k \geq 3$.
5. Conservative NUF. We complete the paper be examining a special type of near-unanimity functions called conservative functions. Recall that $g \in \mathrm{NUF}_{k}$ is a conservative near-unanimity function if $g\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ for all $\left(x_{1}, \ldots, x_{k}\right)$. Conservative near-unanimity functions have also been called choice or projective and are of particular interest since if H admits a conservative NUF, then the list-homomorphism problem for H is polynomial time solvable.

The computational complexity of LIST-HOM H has been determined for any fixed (general) graph H. In [11] a new class of intersection graphs called bi-arc graphs is introduced. The LIST-HOMH problem is polynomial time solvable if H is a bi-arc graph and is NP-complete if H is not a bi-arc graph. This result generalizes the work of $[9,10]$ since a reflexive graph is a bi-arc graph if and only if it is an interval graph, and an irreflexive graph is a bi-arc graph if and only if it is a complement of a circular arc graph of clique covering number two.

The polynomial time algorithm of [11] is established by showing that every bi-arc graph admits a conservative NUF_{3}. Under the assumption that $\mathrm{P} \neq \mathrm{NP}$, the bi-arc graphs are precisely the graphs with a conservative NUF_{3}. We now establish this result without the assumption $\mathrm{P} \neq \mathrm{NP}$.

Let C be a circle with two specified points p and q. A bi-arc is an ordered pair of $\operatorname{arcs}(N, S)$ on C such that N contains p but not q, and S contains q but not p. A graph G is a bi-arc graph if there is a family of bi-arcs $\left\{\left(N_{x}, S_{x}\right): x \in V(G)\right\}$ such that, for any not necessarily distinct vertices $x, y \in V(G)$, the following hold:
(i) if x and y are adjacent, neither N_{x} intersects S_{y} nor N_{y} intersects S_{x};
(ii) if x and y are not adjacent, both N_{x} intersects S_{y} and N_{y} intersects S_{x}.
(Note that there cannot be bi-arcs $(N, S),\left(N^{\prime}, S^{\prime}\right)$ such that N intersects S^{\prime} but S does not intersect N^{\prime} or vice versa.)

We begin by showing that the irreflexive graphs that admit a conservative NUF_{3} are precisely the complements of circular arc graphs of clique covering number two.

An edge-asteroid in a bipartite graph with the bipartition (X, Y) is a set of $2 k+1$ edges $u_{0} v_{0}, u_{1} v_{1}, \ldots, u_{2 k} v_{2 k}\left(k \geq 1\right.$ and each $u_{i} \in X$ and $\left.v_{i} \in Y\right)$ and $2 k+1$ paths, $P_{0,1}, P_{1,2}, \ldots, P_{2 k, 0}$, where each $P_{i, i+1}$ joins u_{i} to u_{i+1}, such that for each $i=0,1, \ldots, 2 k$ there is no edge between $\left\{u_{i}, v_{i}\right\}$ and $\left\{v_{i+k}, v_{i+k+1}\right\} \cup V\left(P_{i+k, i+k+1}\right)$ (subscripts are modulo $2 k+1$). We refer to the (odd) integer $2 k+1$ as the order of the edge-asteroid. An edge-asteroid which has no edge between $\left\{u_{0}, v_{0}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{2 k}\right\} \cup V\left(P_{1,2}\right) \cup V\left(P_{2,3}\right) \cup \ldots \cup V\left(P_{2 k-1,2 k}\right)$ is called a special edge-asteroid.

We will use the following structural characterization.
ThEOREM 5.1 (see [10]). An irreflexive bipartite graph H is the complement of a circular arc graph if and only if H is chordal bipartite and contains no special edge-asteroids.

THEOREM 5.2. Let H be an irreflexive graph. The following are equivalent:
(a) H is bipartite and the complement of a circular arc graph;
(b) H admits a conservative NUF_{3};
(c) H admits a conservative NUF_{k} for some $k \geq 3$.

Proof. In [11], it is shown that every complement of a circular arc graph of clique covering number two has a conservative NUF_{3}. Clearly, if H has a conservative NUF_{3}, then H has a conservative NUF_{k} for some k.

To complete the proof, assume to the contrary that H is not the complement of a circular arc graph of clique covering number two, but H does admit a conservative NUF_{k}, say, g. If H is not bipartite, then by Proposition $4.12 H$ does not admit a NUF_{k} for any k. Therefore, H is bipartite.

Suppose H contains an induced (even) cycle, say, C, of length at least six with vertex set $0,1,2, \ldots, 2 n-1$. In light of Proposition 2.5, g is a conservative NUF_{k} on the cycle C. Consider the following path in C^{k} :

$$
\begin{aligned}
(0,0, \ldots, 0,0,2) & \sim(2 n-1, \ldots, 2 n-1,1,3) \sim(0, \ldots, 0,2,2) \\
& \sim(2 n-1, \ldots, 2 n-1,1,3,3) \sim(0, \ldots, 0,2,2,2) \\
& \sim \cdots \sim(2 n-1,1,3, \ldots, 3,3) \sim(0,2,2, \ldots, 2,2)
\end{aligned}
$$

By near unanimity, the first vertex of the path must map to 0 . The vertices of the form $(2 n-1, \ldots, 2 n-1,1,3, \ldots, 3)$ cannot map to 1 , since such vertices are distance $n-2$ from $(n+1, \ldots, n+1, n-1, n+1, \ldots n+1)$ and 1 is distance n from $n+1$. Thus the second vertex of the path must map to $2 n-1$, the third to 0 , the fourth to $2 n-1$, etc. By parity, the final vertex maps to 0 , which is a contradiction.

Hence H is chordal bipartite. We conclude that H contains a special edge-asteroid. Let the path $P_{0,1}$ be $u_{0}, p_{1}, p_{2}, \ldots, p_{t}, u_{1}$. Consider the following path in H^{k} :

$$
\begin{aligned}
\left(u_{0}, \ldots, u_{0}, u_{0}, u_{k+1}\right) & \sim\left(v_{0}, \ldots, v_{0}, p_{1}, v_{k+1}\right) \\
& \sim\left(u_{0}, \ldots, u_{0}, p_{2}, u_{k+1}\right) \sim\left(v_{0}, \ldots, v_{0}, p_{3}, v_{k+1}\right) \\
& \sim \cdots \sim\left(u_{0}, \ldots, u_{0}, u_{1}, u_{k+1}\right)
\end{aligned}
$$

Notice that, in this path, all coordinates with the exception of coordinate $k-1$ alternate between u_{i} and v_{i}. We will describe this situation by saying that coordinate $k-1$ traverses that path $P_{0,1}$ while all other coordinates alternate.

We claim $g\left(u_{0}, \ldots, u_{0}, u_{1}, u_{k+1}\right)=u_{0}$. Clearly the first vertex of the path is mapped to u_{0}. Since g is a conservative function and there is no edge between $\left\{u_{k+1}, v_{k+1}\right\}$ and $\left\{v_{0}, v_{1}\right\} \cup P_{0,1}$, we know that no vertex in the above path is mapped to $\left\{u_{k+1}, v_{k+1}\right\}$. If $g\left(u_{0}, \ldots, u_{0}, u_{1}, u_{k+1}\right)=u_{1}$, then we look at the path from $\left(u_{0}, \ldots, u_{0}\right.$, $\left.u_{1}, u_{k+1}\right)$ to ($u_{0}, \ldots, u_{0}, u_{1}, u_{k+2}$) where the last coordinate traverses the path $P_{k+1, k+2}$ while all other coordinates alternate. Since there is no edge from $\left\{u_{1}, v_{1}\right\}$ to $\left\{v_{k+1}, v_{k+2}\right\} \cup P_{k+1, k+2}$, the image of the entire path must alternate between u_{1} and v_{1}, and thus $g\left(u_{0}, \ldots, u_{0}, u_{1}, u_{k+2}\right)=u_{1}$. Similarly, we consider the path from $\left(u_{0}, \ldots, u_{0}, u_{1}, u_{k+2}\right)$ to $\left(u_{0}, \ldots, u_{0}, u_{2}, u_{k+2}\right)$ where coordinate $k-1$ traverses $P_{1,2}$ while all other coordinates alternate. Again there is no edge between $\left\{u_{k+2}, v_{k+2}\right\} \cup$ $\left\{u_{0}, v_{0}\right\}$ and $\left\{v_{1}, v_{2}\right\} \cup P_{1,2}$. Thus $g\left(u_{0}, \ldots, u_{0}, u_{2}, u_{k+2}\right)=u_{2}$. Continuing in this manner, we can move coordinate k down to u_{0} and coordinate $k-1$ up to u_{k}. We find that $g\left(u_{0}, \ldots, u_{0}, u_{k}, u_{0}\right)=u_{k}$, which is a contradiction. This proves the claim.

Consider the path from $\left(u_{0}, \ldots, u_{0}, u_{1}, u_{k+1}\right)$ to $\left(u_{0}, \ldots, u_{0}, u_{k+1}, u_{k+1}\right)$, where the $(k-1)$ st coordinate traverses all the paths $P_{1,2}, P_{2,3}, \ldots, P_{k, k+1}$ while the other coordinates alternate. Since there is no edge from $\left\{u_{0}, v_{0}\right\}$ to any of these paths $P_{i, i+1}$, the image of the entire path must alternate between u_{0} and v_{0}, and thus, $g\left(u_{0}, \ldots, u_{0}, u_{k+1}, u_{k+1}\right)=u_{0}$. Continuing in this manner, we can show that $g\left(u_{0}, \ldots, u_{0}, u_{k+1}, \ldots, u_{k+1}\right)=u_{0}$ and thus $g\left(u_{0}, u_{k+1}, \ldots, u_{k+1}\right)=u_{0}$, which is a contradiction.

We conclude by characterizing all graphs that admit a conservative near-unanimity function.

Theorem 5.3. Let H be a graph. The following are equivalent.
(a) H is a bi-arc graph;
(b) H admits a conservative NUF_{3};
(c) H admits a conservative NUF.

Proof. Assume H is a bi-arc graph. In [11], it is shown that H admits a conservative NUF_{3}. Clearly, if H admits a conservative majority function, then it admits a conservative NUF.

Thus assume H admits a conservative NUF. Let $H^{*}=H \times K_{2}$. Note that H^{*} is irreflexive since K_{2} is irreflexive. We have established how to construct a NUF for the product of two graphs given that both factors admit a NUF (see Proposition 2.7). This construction preserves the conservative property. Consequently, H^{*} is bipartite and the complement of a circular arc graph by Theorem 5.2. Using Proposition 3.1 of [11], we have H is a bi-arc graph.

Note that by Corollary 2.3 and Theorem 5.3, H admits a conservative NUF_{3} if and only if H admits a conservative NUF_{k} for all $k \geq 3$.

It is shown in [11] that the reflexive bi-arc graphs are precisely the interval graphs and the irreflexive bi-arc graphs are precisely the complement of circular arc graphs of clique covering number two. Thus we have the following.

Corollary 5.4. A reflexive graph admits a conservative NUF if and only if it is an interval graph and an irreflexive graph admits a conservative NUF if and only if it is the complement of a circular arc graph of clique covering number two.

It is easy to construct a conservative NUF for a reflexive (resp., irreflexive) bi-arc graph using an interval (resp., a circular arc) representation of the graph. In [11], a direct construction of a conservative NUF is given for bi-arc trees. However, a direct construction for general bi-arc graphs still remains elusive.

Acknowledgment. The authors wish to thank the referees for a very careful reading of the manuscript and many helpful suggestions.

REFERENCES

[1] K. A. Baker and A. F. Pixley, Polynomial interpolation and the Chinese remainder theorem for algebraic systems, Math. Z., 143 (1975), pp. 165-174.
[2] H. Bandelt, Graphs with edge-preserving majority functions, Discrete Math., 103 (1992), pp. 1-5.
[3] H. J. Bandelt, M. Farber, and P. Hell, Absolute reflexive retracts, Discrete Appl. Math., 44 (1993), pp. 9-20.
[4] R. C. Brewster and G. MacGillivray, Building blocks for the variety of absolute retracts, Discrete Math., 306 (2006), pp. 1758-1764.
[5] A. A. Bulatov, Tractable conservative constraint satisfaction problems, in Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science (Ottawa, Canada, 2003), IEEE Computer Society, Silver Spring, MD, pp. 321-330.
[6] V. Dalmau and A. Krokhin, Majority constraints have bounded pathwidth duality, European J. Combin., to appear.
[7] P. Dukes, H. Emerson, and G. MacGillivray, Undecidable generalized colouring problems, J. Combin. Math. Combin. Comput., 26 (1998), pp. 97-112.
[8] T. Feder, Classification of homomorphisms to oriented cycles and of k-partite satisfiability, SIAM J. Discrete Math., 14 (2001), pp. 471-480.
[9] T. Feder and P. Hell, List homomorphisms to reflexive graphs, J. Combin. Theory Ser. B, 72 (1998), pp. 236-250.
[10] T. Feder, P. Hell, and J. Huang, List homomorphisms and circular arc graphs, Combinatorica, 19 (1999), pp. 487-505.
[11] T. Feder, P. Hell, and J. Huang, Bi-arc graphs and the complexity of list homomorphisms, J. Graph Theory, 42 (2003), pp. 61-80.
[12] T. Feder, P. Hell, B. Larose, C. Loten, and C. Tardif, Near Unanimity Functions and Tree Duals, manuscript, 2008.
[13] T. Feder and M. Y. Vardi, The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory, SIAM J. Comput., 28 (1998), pp. 57-104.
[14] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[15] P. Hell, Retractions de graphes, Ph.D. thesis, Université de Montreal, Montreal, Canada, 1972.
[16] P. Hell and J. Nešetřill, On the complexity of H-colouring, J. Combin. Theory Ser. B, 48 (1990), pp. 92-110.
[17] P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford Lecture Series in Mathematics and Its Applications 28, Oxford University Press, Oxford, UK, 2004.
[18] P. Hell, J. Nešetřil, and X. Zhu, Duality and polynomial testing of tree homomorphisms, Trans. Amer. Math. Soc., 348 (1996), pp. 1281-1297.
[19] P. Hell and I. Rival, Absolute retracts and varieties of reflexive graphs, Canad. J. Math., 39 (1987), pp. 544-567.
[20] A. P. Huhn, Schwach distributive Verbände. I, Acta Sci. Math. (Szeged), 33 (1972), pp. 297305.
[21] E. M. Jawhari, D. Misane, and M. Pouzet, Retracts: Graphs and ordered sets from the metric point of view, in Combinatorics and Ordered Sets, Contemp. Math. 57, AMS, Providence, RI, 1986, pp. 175-226.
[22] H. W. Kin and V. Dalmau, Generalized majority-minority operations are tractable, in Proceedings of the Twentieth Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society, Washington, DC, 2005, pp. 438-447.
[23] G. Kun, B. Larose, and A. Memartolui, Private communication, 2004.
[24] B. Larose, C. Loten, and C. Tardif, A characterisation of first-order constraint satisfaction problems, in Proceedings of the 21st IEEE Symposium on Logic in Computer Science, IEEE Computer Society, Washington, DC, 2006, pp. 201-210.
[25] B. Larose, C. Loten, and L. ZÁdori, A polynomial time algorithm for near-unanimity graphs, J. Algorithms, 55 (2005), pp. 177-191.
[26] I. Lin, T. McKee, and D. West, The leafage of a chordal graph, Discuss. Math. Graph Theory, 18 (1998), pp. 23-48.
[27] C. Loten, Retractions of Chordal and Related Graphs, Ph.D. thesis, Simon Fraser University, Burnaby, BC, Canada, 2003.
[28] R. Nowakowski and I. Rival, The smallest graph variety containing all paths, Discrete Math., 43 (1983), pp. 223-234.
[29] R. Nowakowski and P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete Math., 43 (1983), pp. 235-239.
[30] E. Pesch, Retracts of Graphs, Mathematical Systems in Economics 110, Athenäum, Frankfurt am Main, 1988.
[31] R. W. Quackenbush, I. Rival, and I. Rosenberg, Clones, order varieties, near unanimity functions and holes, Order, 7 (1990), pp. 239-247.

[^0]: *Received by the editors October 28, 2003; accepted for publication (in revised form) January 4, 2008; published electronically May 21, 2008. This work was partially supported by the Natural Science and Engineering Research Council of Canada.
 http://www.siam.org/journals/sidma/22-3/43674.html
 ${ }^{\dagger}$ Department of Math. and Stats., Thompson Rivers University, Kamloops, BC, Canada, V2C 3H5 (rbrewster@tru.ca).
 ${ }^{\ddagger}$ Department of Computer Science, Stanford University, 268 Waverley St., Palo Alto, CA, 94301 (taras@theory.stanford.edu).
 ${ }^{\text {§ S School of Computing Science, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6 (pavol@ }}$ cs.sfu.edu).

 『Department of Math. and Stats., University of Victoria, Victoria, BC, Canada, V8W 3P4 (jing@ math.uvic.ca, gmacgill@uvic.ca).

