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Abstract. Let H be a graph and k ≥ 3. A near-unanimity function of arity k is a mapping
g from the k-tuples over V (H) to V (H) such that g(x1, x2, . . . , xk) is adjacent to g(x′

1, x
′
2, . . . , x

′
k)

whenever xix
′
i ∈ E(H) for each i = 1, 2, . . . , k, and g(x1, x2, . . . , xk) = a whenever at least k − 1 of

the xi’s equal a. Feder and Vardi proved that, if a graph H admits a near-unanimity function, then
the homomorphism extension (or retraction) problem for H is polynomial time solvable. We focus
on near-unanimity functions on reflexive graphs. The best understood are reflexive chordal graphs
H: they always admit a near-unanimity function. We bound the arity of these functions in several
ways related to the size of the largest clique and the leafage of H, and we show that these bounds
are tight. In particular, it will follow that the arity is bounded by n−

√
n+1, where n = |V (H)|. We

investigate substructures forbidden for reflexive graphs that admit a near-unanimity function. It will
follow, for instance, that no reflexive cycle of length at least four admits a near-unanimity function of
any arity. However, we exhibit nonchordal graphs which do admit near-unanimity functions. Finally,
we characterize graphs which admit a conservative near-unanimity function. This characterization
has been predicted by the results of Feder, Hell, and Huang. Specifically, those results imply that,
if P �= NP, the graphs with conservative near-unanimity functions are precisely the so-called bi-arc
graphs. We give a proof of this statement without assuming P �= NP.
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1. Introduction. We consider finite undirected graphs without multiple edges,
but with loops allowed. A graph in which no vertex has a loop is called irreflexive,
and a graph in which every vertex has a loop is called reflexive. When we say a graph
satisfies a property, such as being connected, a tree, a cycle, etc., we mean that the
underlying irreflexive graph (i.e., the graph obtained from it by deleting all loops if
there are any) has the property.

Given graphs G and H, with lists L(v) ⊆ V (H), for each v ∈ V (G), a list
homomorphism of G to H with respect to the lists L is a function f : V (G) → V (H)
which satisfies the following two properties:

(i) f(v) ∈ L(v) for all v ∈ V (G);
(ii) f(u)f(v) ∈ E(H) for all uv ∈ E(G).

Note that a list homomorphism can map two adjacent vertices of G to the same vertex
of H only if the vertex of H has a loop, and, in particular, it must map any vertex
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of G with a loop to a vertex of H with a loop. List homomorphisms are introduced
in [9].

For a fixed graph H, the list homomorphism problem, LIST-HOMH, asks whether
an input graph G, together with lists L, admits a list homomorphism to H with respect
to the given lists. The complexity of all list homomorphism problems has recently been
classified [11]: LIST-HOMH is polynomial time solvable when H is a bi-arc graph and
is NP-complete when H is not a bi-arc graph. (The definition of bi-arc graphs appears
in section 5.)

In the case when the input lists L(v) = V (H) for all v ∈ V (G), the list homomor-
phism problem is the homomorphism problem, HOMH, or the H-coloring problem.
When H = Kn, the irreflexive complete graph on n vertices, the homomorphism prob-
lem HOMH becomes the n-coloring problem, which is polynomial time solvable when
n ≤ 2 and NP-complete when n ≥ 3. The complexity of all HOMH problems has
been classified by Hell and Nešetřil [16]: HOMH is polynomial time solvable when H
is bipartite or contains a loop and is NP-complete if H is irreflexive and not bipartite.

The homomorphism extension problem, EXTH, another special case of list homo-
morphisms, is of particular interest. In EXTH the inputs are restricted so that each
list is either a singleton set or the entire set V (H). Extension problems obviously
correspond to questions of extending a given partial mapping (“precoloring”) to a
homomorphism and have been historically studied under an equivalent formulation
called retract problems, RETH; cf. [7, 3, 15, 21, 30]. The retract problem, RETH, for
a fixed graph H takes as an input a graph G containing H as a subgraph and asks
whether or not there is a homomorphism f of G to H such that f(v) = v for all
v ∈ V (H). Such a homomorphism f is called a retraction of G to H. If there is a
retraction of G to H, then H is called a retract of G.

It seems difficult to classify the complexity of all extension problems. In particu-
lar, Feder and Vardi [13] have shown that extension problems capture the complexity
of the much larger class of all constraint satisfaction problems (CSPs) in the following
sense: for each CSP, say, Π, there exists a reflexive graph H such that Π and EXTH
are polynomially equivalent. This means that even proving that each extension prob-
lem is NP-complete or is solvable in polynomial time would answer a difficult open
question in complexity theory [13]. Recall that, by contrast, for list homomorphism
problems, we know the exact classification of the complexity [9, 10, 11]. In particular,
by techniques similar to [13] it can be seen that if a graph H admits a conserva-
tive near-unanimity function (as defined below), then LIST-HOMH is polynomial
time solvable. In turn, this implies that RETH and EXTH are also polynomial time
solvable. See [17].

Let H be a graph and k ≥ 3 be an integer. A near-unanimity function of arity
k (or NUFk for short) on H is a mapping g : V (H)k → V (H) which satisfies the
following properties:

(i) g(x1, x2, . . . , xk) is adjacent to g(x′
1, x

′
2, . . . , x

′
k) whenever xix

′
i ∈ E(H) for

each i = 1, 2, . . . , k, and
(ii) g(x1, x2, . . . , xk) = a whenever at least k − 1 of the xi’s equal a.

Early papers on near-unanimity functions include [1, 20]. Near-unanimity functions
of arity 3, also called majority functions, are much studied [2, 17, 31]. A near-
unanimity function g of arity k on H is a conservative near-unanimity function if
g(x1, x2, . . . , xk) ∈ {x1, x2, . . . , xk} for all vertices of Hk. It is shown in [11] that all
bi-arc graphs admit a conservative near-unanimity function, implying that the cor-
responding list homomorphism problems can be solved in polynomial time via the
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results mentioned above. It is also shown in [11] that graphs H which are not bi-arc
graphs have NP-complete list homomorphism problems. Hence, if we assume that
P �= NP, then bi-arc graphs are precisely the graphs which admit a conservative near-
unanimity function. We will prove this is the case without the assumption P �= NP.

The categorical product of a family of graphs, {Hi}i∈I , denoted
∏

i∈I Hi, has as
its vertex set the Cartesian product

∏
i∈I V (Hi). (We restrict our attention to finite

products, i.e., |I| < ∞.) Two vertices (gi)i∈I and (hi)i∈I are adjacent if gi and hi

are adjacent in each Hi, i ∈ I. We may write H1 × H2 × · · · × Hk for the product
of the k graphs, H1, H2, . . . , Hk, and Hk for the product of k copies of H. Thus, a
near-unanimity function of arity k is a homomorphism of Hk to H that is nearly
unanimous, i.e., satisfies condition (ii) above. Finally, a graph variety is a class V of
graphs which contains all products and all retracts of members of V. Given a class of
graphs C, the variety generated by C is the smallest variety containing all of C. (The
intersection of two varieties is itself a variety, and thus the concept of smallest is well
defined.)

By abuse of notation we also denote by NUFk the class of all graphs that admit
a NUFk. We let NUF =

⋃∞
k=1 NUFk, i.e., the class of graphs each of which admits

a near-unanimity function of some arity. We show that, for each fixed k ≥ 3, the
class NUFk is a variety and that this collection of varieties is strictly monotone,
i.e., NUF3 ⊂ NUF4 ⊂ · · · (with strict inclusions). We show the class of chordal
graphs is contained in NUF. It follows that the variety generated by chordal graphs,
i.e., the smallest variety containing all chordal graphs, is also contained in NUF; the
variety generated by chordal graphs has been further investigated in [27]. The variety
generated by cop-win or dismantable reflexive graphs (see [29]) contains the variety
generated by chordal graphs. We give an example of a dismantable graph which does
not belong to NUF. An extended examination of the inclusions described here (and
of other varieties) is developed in [27]. In particular, NUF is strictly contained in
the variety generated by dismantable graphs, and the variety generated by chordal
graphs is strictly contained in the variety NUF [27, 25]. A polynomial time algorithm
for recognizing graphs in NUF based on dismantability is given in [25].

We give two bounds on the arity of a near-unanimity function of a chordal graph
with n vertices, in terms of its clique-size and its leafage (defined in section 3.1), re-
spectively. It follows, in particular, that the arity is at most n−

√
n + 1. We present

some forbidden substructures for graphs to have a NUF. It follows from these condi-
tions that no reflexive cycle of length at least four admits a near-unanimity function.
However, we shall exhibit nonchordal graphs which do admit near-unanimity func-
tions. Finally, we give a proof, without assuming P �= NP, of the result predicted by
[11], that the graphs which admit a conservative near-unanimity function are precisely
the bi-arc graphs. See also [5, 23].

2. Basic properties.

Proposition 2.1. For each k ≥ 3, a graph H admits a NUFk if and only if each
connected component of H admits a NUFk.

Proof. Let H1, H2, . . . , Hp be the connected components of H. Suppose that g :
Hk → H is a NUFk on H. We begin by defining for each Hi a NUFk, say, fi, on Hi.
Note that by definition g is a homomorphism of Hk to H, and hence any restriction
h = g|X of g to a subgraph X of Hk is a homomorphism h : X → H.

A vertex of Hk with at least k− 1 coordinates equal is called a nearly unanimous
vertex. For each connected component C of Hk

i , we define fi on C as follows. If C has a
nearly unanimous vertex x = (x1, x2, . . . , xk), define fi = g|C . By near-unanimity, we
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have fi(x) ∈ Hi. Since fi(C) is also connected, fi(C) is a subgraph of Hi. On the other
hand, if C contains no such vertex, then define fi : C → Hi by fi(z1, z2, . . . , zk) = z1.
It is easily seen that each fi is a NUFk on Hi.

Conversely, suppose gi : Hk
i → Hi is a NUFk on Hi for each i = 1, 2, . . . , p. Let

C be a component of Hk, and let x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) be two
vertices in C. Since C is connected, there is a walk from x to y in C and, thus, a walk
from xs to ys in H for each s, where 1 ≤ s ≤ k. That is, for each component C of
Hk and each coordinate s, there exists a component Hj of H such that xs ∈ Hj if
and only if ys ∈ Hj . Hence exactly one of the following conditions holds for all of the
vertices of C:

(i) all k coordinates belong to the same Hj ; i.e., C is a subgraph of Hk
j ;

(ii) exactly k − 1 coordinates belong to the same Hj , and the other coordinate
belongs to Hm, m �= j; or

(iii) at most k − 2 coordinates belong to any Hj .

Let x = (x1, x2, . . . , xk) be a vertex in C. In case (i), define g(x) = gj(x). In case (ii),
choose some coordinate t such that xt ∈ Hj . Define g(x) = xt. (We fix t for the entire
component C; thus, g is simply the projection of C onto its tth coordinate.) Finally,
in case (iii), let g(x) = x1.

In all cases, g is a homomorphism. Moreover, g satisfies the near-unanimity con-
dition. In case (i), g inherits the property from gj . In case (ii), any nearly unanimous
vertex in C must have all k − 1 coordinates from Hj , including xt, equal. Finally, in
case (iii) there are no nearly unanimous vertices.

Proposition 2.2. For each k ≥ 3, if a graph H admits a NUFk, then H admits
a NUFk+1.

Proof. Let g : Hk → H be a NUFk on H. Then the function h : Hk+1 → H
defined as h(x1, x2, . . . , xk, xk+1) = g(x1, x2, . . . , xk) is a NUFk+1 on H.

The argument above also proves the following.

Corollary 2.3. For each k ≥ 3, if a graph H admits a conservative NUFk, then
H admits a conservative NUFk+1.

We provide examples of graphs in NUFk+1 − NUFk for each k ≥ 3 in section 4.1.
Thus the converse of Proposition 2.2 does not hold. On the other hand, we will show
that the converse of Corollary 2.3 does hold; i.e., H admits a conservative NUFk for
some k ≥ 3 if and only if H admits a conservative NUF3.

Proposition 2.4. Let G be a graph that admits a NUFk, and let H be a retract
of G. Then H also admits a NUFk.

Proof. Let g be a NUFk on G, and let r : G → H be a retraction. Then it is easy
to verify that g′ = r ◦ (g

∣∣
V (H)k

) is a NUFk on H.

The above result shows that the class of graphs which admit a NUFk are closed
under retractions. In the case of conservative functions, the class is also closed under
taking induced subgraphs.

Proposition 2.5. Suppose the graph G admits a conservative NUFk and H is
an induced subgraph of G. Then H admits a conservative NUFk.

Proof. Let g be a conservative NUFk for G. The restriction of g to Hk is a near-
unanimity homomorphism of Hk to G, and to H as well since g is a conservative
NUF.

Proposition 2.6. Let X1, X2, . . . , Xn be graphs in NUFk. Then the product X1×
X2 × · · · ×Xn is also in NUFk.

Proof. By associativity of the product, it suffices to verify the claim for two graphs.
It is easy to check that if gX and gY are near-unanimity functions of arity k for X



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

942 BREWSTER, FEDER, HELL, HUANG, AND MACGILLIVRAY

and Y , respectively, then

g((x1, y1), (x2, y2), . . . , (xk, yk)) = (gX(x1, x2, . . . , xk), gY (y1, y2, . . . , yk))

is a NUFk for X × Y .
Corollary 2.7. For each k ≥ 3, the class NUFk is a variety.
A dominating vertex of a graph G is one adjacent to all other vertices of G. We

make the following observation.
Proposition 2.8. If the reflexive graph H has a dominating vertex v, then H

admits a NUFk for all k ≥ 3.
Proof. By Proposition 2.2 it suffices to show that H admits a NUF3. The function

g(a, b, c) =

{
x if at least two of a, b, c equal x,

v otherwise

is a NUF3.
A graph is chordal if it does not contain an induced cycle of length greater than

three. We shall show that each chordal graph belongs to NUF, and we shall show that
each reflexive cycle of length at least four does not. However, Proposition 2.8 allows
us to find examples of nonchordal graphs with a NUF. The wheel wn is the graph
obtained from a cycle of length n by adjoining one (new) vertex adjacent to all other
vertices.

Corollary 2.9. Each reflexive wheel wn, n ≥ 4, is a nonchordal graph in NUF3.
Since NUF3 is the variety generated by finite paths [2, 17, 19], we see that each

reflexive wheel is in the variety generated by finite paths and thus in the variety
generated by chordal graphs. In [27] it is shown that the variety generated by chordal
graphs is in fact strictly contained in the variety NUF.

3. Reflexive chordal graphs. In this section and the next section, all graphs
are assumed to be reflexive unless otherwise stated. We show in this section that every
reflexive chordal graph admits a near-unanimity function. (By contrast, in section 4.2
we shall show that no reflexive cycle of length greater than three admits a near-
unanimity function.) We provide two bounds on the arity of the NUF. One bound is
based on the leafage of the graph, and the second is based on the clique-size and is
obtained through the study of tree obstructions. We remark that the two approaches,
leafage and tree obstructions, often allow us to compute the minimum k for which a
graph admits a NUFk. Typically the leafage is used to demonstrate the existence of
a NUFk, and tree obstructions are used to prove the nonexistence of a NUFk−1.

3.1. Arity bounds based on leafage. Let T be a tree. A subtree of T is a
connected subgraph of T . A rooted subtree R of T is a subtree of T with a distinguished
vertex called the root of R, denoted r(R).

It is well known that a graph H is chordal if and only if it is the intersection
graph of a family F of subtrees of a tree; that is, there is a one-to-one correspondence
between V (H) and F such that two vertices of V (H) are adjacent in H if and only
if the corresponding subtrees of F have at least one vertex in common; see [14]. The
family F , together with the underlying tree, is called an intersection representation
of H by subtrees. The leafage l(H) of a chordal graph H is the minimum number of
leaves of a tree in which H has an intersection representation; cf. [26].

In the following H is a chordal graph. We use F to denote a (fixed) family of
subtrees of a tree T which gives an intersection representation of H. Further, let T
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be the set of all rooted subtrees R of T such that R− r(R) is the union of some (zero,
one, or more) components of T−r(R), and if R−r(R) is the union of zero components
of T − r(R), then r(R) is a leaf of T . For a rooted subtree R, we denote by lR the
number of leaves of T contained in R; note that these definitions ensure that lR ≥ 1
for any rooted subtree R.

Given a collection S of k + 1 (not necessarily distinct) subtrees in F , we say that
a rooted subtree R ∈ T is critical with respect to S if it satisfies the following two
properties:

1. there are at least k − lR + 1 subtrees of S, each of which contains a vertex
of R;

2. for each R′ ∈ T contained in R − r(R), there are at most k − lR′ subtrees
of S, each of which contains a vertex in R′.

The two conditions above are referred to as Properties 1 and 2.

Lemma 3.1. Let S be a family of k + 1 (not necessarily distinct) members of F .
Then

(a) every rooted subtree in T satisfying Property 1 contains a rooted subtree
which is critical with respect to S; and

(b) there are pairwise vertex disjoint critical rooted subtrees R1, . . . , Rp such that
T −

⋃p
i=1 Ri does not contain any critical rooted subtrees.

Proof. Let the rooted subtree X satisfy Property 1. If X also satisfies Property 2,
then X is critical with respect to S, and we are done. Otherwise, X − r(X) contains
another rooted subtree X ′ which satisfies Property 1. Again, if X ′ also satisfies Prop-
erty 2, then X ′ is critical; otherwise, X ′ − r(X ′) contains a third rooted subtree X ′′

which satisfies Property 1. Continuing this way, we will find a critical subtree with
respect to S. A subtree consisting of a single vertex which satisfies Property 1 trivially
satisfies Property 2.

To see statement (b), note that the entire tree T (with an arbitrary root) satisfies
Property 1. In addition, a rooted tree R which does not satisfy Property 1 cannot
contain a subtree R′ which satisfies Property 1, since k − lR + 1 ≤ k − lR′ + 1 in the
case that R′ is a subtree of R.

Theorem 3.2. Every chordal graph H of leafage k admits a NUFk+1.

Proof. Let F be an intersection representation of H by subtrees of a tree T with
k ≥ 2 leaves. We shall show that the intersection graph H of F admits a NUFk+1.
By Proposition 2.1, we may assume that H is connected. Further, we assume that
every vertex of T belongs to a subtree in F . For convenience, we shall not distinguish
between the vertices of H and the subtrees of F .

Let S be a collection of k + 1 subtrees of F . Although some of the k + 1 subtrees
of S may be the same, we treat them as distinct in the counting below.

By Lemma 3.1, there exist R1, R2, . . . , Rp pairwise vertex-disjoint critical rooted
subtrees with respect to S such that T −∪p

i=1Ri does not contain any critical rooted
subtrees. We claim that there is a subtree in F containing all the roots r(Ri), i =
1, 2, . . . , p. When p = 1, this is clearly true as by assumption every vertex of T is in a
subtree of F . So assume that p ≥ 2. In this case, we prove the stronger statement that
in fact there is a subtree in S which contains all the roots. Suppose to the contrary
that none of the k + 1 subtrees of S contains all the roots. Then each subtree of S
has vertices in at most p− 1 critical rooted subtrees Ri. (Observe that any subtree of
S that contains vertices in any two rooted subtrees must in fact contain both roots
of the subtrees.) Denote by ci (i = 1, 2, . . . , p) the number of subtrees of S, each
of which has a vertex in Ri. Then we have (p − 1)|S| = (p − 1)(k + 1) ≥

∑p
i=1 ci.
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By Property 1, ci ≥ k − lRi
+ 1. Thus we have

(p− 1)(k + 1) ≥
p∑

i=1

ci

≥
p∑

i=1

(k − lRi + 1)

= p(k + 1) −
p∑

i=1

lRi
,

which gives
∑p

i=1 lRi ≥ (k + 1). This implies that some leaf of T must be contained
in at least two critical rooted subtrees, contradicting the assumption that the critical
rooted subtrees are pairwise vertex-disjoint.

Ultimately the goal is to define a NUF on these families of subtrees. Suppose at
least k subtrees of S are the same subtree X. We claim X contains all the roots. In
fact, a rooted subtree R ∈ T is critical with respect to S if and only if V (R)∩V (X) =
{r(R)}. To see this, observe that R satisfying Property 1 requires V (X) ∩ V (R) �= ∅
and R satisfying Property 2 ensures V (X) ∩ V (R − r(R)) = ∅. On the other hand,
V (X) ∩ V (R) = {r(R)} implies that R contains vertices from at least k ≥ k − lR + 1
elements of S, since lR ≥ 1. Also, R − r(R) contains no vertices from the k copies of
X, which implies that R − r(R) contains vertices from at most k − lR−r(R) subtrees
of S, as lR−r(R) ≥ 1. Consequently, X contains all the roots.

It remains to define the near-unanimity function g on H. Given k + 1 vertices of
H, consider the corresponding family S of subtrees in F . Decompose T into p critical
rooted subtrees {Ri}pi=1 as described in Lemma 3.1. Define g(S) as follows: When at
least k subtrees of S are the same subtree X, let g(S) = X; otherwise, let g(S) be
any subtree of F which contains all the roots r(Ri). It remains to verify that g is a
homomorphism from Hk+1 to H. Thus consider two adjacent vertices in Hk+1. That
is, let S = {U1, U2, . . . , Uk+1} and S′ = {V1, V2, . . . , Vk+1} be two collections of k + 1
subtrees (from F) such that Uj intersects with Vj for each j = 1, 2, . . . , k + 1. Again,
let R1, R2, . . . , Rp be the decomposition of T into critical subtrees with respect to S.
Suppose to the contrary that g(S) and g(S′) do not intersect. Let P : z0z1 . . . zd be
the shortest path from g(S) to g(S′) where z0 ∈ V (g(S)) and zd ∈ V (g(S′)). Let C be
the component of T − zd containing z0 and C ′ be the component of T − z0 containing
zd. Let A be the rooted subtree consisting of C with r(A) = zd−1. Then A is a rooted
subtree containing g(S) but no vertex from g(S′). Similarly, B = C ′ with r(B) = z1

is a rooted subtree containing g(S′) but no vertex from g(S). Since each leaf of T is
either in A or in B, we must have lA + lB ≥ k. Since g(S) does not intersect with
B, B contains none of the roots of R1, R2, . . . , Rp. Thus, B cannot satisfy Property 1
with respect to S. This means that S contains at most k− lB subtrees such that each
of them has a vertex in B. In other words, S contains at least k+1− (k− lB) = lB +1
subtrees, none of which has a vertex in B. Thus, these lB + 1 subtrees must all be
contained in A. Each of these subtrees intersects a member of S′. Hence S′ must
contain at least lB + 1 subtrees, each of which contains a vertex in A. On the other
hand, a similar argument shows that S′ contains at most k − lA subtrees, each of
which has a vertex in A. So we must have lB + 1 ≤ k − lA, i.e., lA + lB ≤ k − 1, in
contradiction to the fact that lA + lB ≥ k.

Lin, McKee, and West [26] proved that for every chordal graph H with n vertices,
the leafage is at most n − lg n − 1

2 lg lg n + O(1). Hence, each chordal graph with n
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vertices admits a NUF of arity n− lg n− 1
2 lg lg n + O(1). We improve this bound in

the next section.

The upper bound on the arity in Theorem 3.2 is sharp in the sense that there are
chordal graphs of leafage l which do not admit a NUFl. In section 4.1, we construct
families of graphs useful for showing lower bounds, including the one just mentioned.

3.2. Arity bounds based of tree certificates. We recall the problem EXTH
from the introduction. An instance of EXTH consists of a graph G together with lists
L(v) ⊆ V (H), where each L(v) is either a singleton set or all of V (H). Let X ⊆ V (G)
be the set of vertices x for which L(x) is a singleton. Then we may view the function
p : X → V (H) defined by p(x) = h ∈ L(x) as a preassignment of images (in H) to the
vertices in X. The vertices in X are called preassigned vertices. The EXTH problem
asks if there exists a homomorphism f : G → H which extends the preassignment p
(i.e., satisfies f(x) = p(x) for x ∈ X). In the case of a yes instance, we say that p is
extendible (in H). In the following we shall use the language of lists, or of extending
preassignments, as is convenient.

Before entering the technical details of our work, we outline some key ideas used in
the development. (We use the standard notation for X ⊆ V (G), and G[X] denotes the
induced subgraph of G with vertex set X.) First, it is clear that, given a preassignment
p : X → V (H), if p is not a homomorphism of G[X] to H, then p is not extendible.
On the other hand, if p is a homomorphism G[X] → H, then a natural algorithmic
idea is to successively extended p by one vertex, i.e., select v ∈ V (G)\X, and define
f(v) = h ∈ L(v) (and set f(u) = p(u) for all u ∈ X) such that f : G[X ∪ {v}] → H
is a homomorphism. Clearly the condition we must verify is that f(u)f(v) ∈ E(H)
whenever uv ∈ E(G) for each u ∈ X. Such a value h is an allowed image for v. On
the other hand, in searching L(v) for an allowed image for v, we may remove from
L(v) any value h′ such that p(u)h′ �∈ E(H) for some u ∈ X, where uv ∈ E(G).
Below we will talk about u causing h′ to be removed from L(v). Finally, if some L(v)
becomes empty by removing nonallowed images, then p : X → V (H) cannot extend
to a homomorphism of G to H. (The image of v under any homomorphism φ : G → H
extending p will always be an allowed image, and thus φ(v) is never removed from
L(v).) This process of removing nonallowed images is known as a consistency check ;
see, for example, [17].

Testing all possible extensions of p to all of G is an exponential process; however,
for certain graphs H, as identified below, the extendability of p can be determined by
considering only a polynomial number of possible extensions. In particular, for such
a graph H and a given instance (G, p) of EXTH, the preassignment p : X → V (H)
is not extendible to H if and only if there exists a certificate of nonextendability in
the form of a tree with at most k preassigned leaves (where k is a constant depending
on H). The existence of such algorithmically well-behaved NO-certificates yields that
EXTH is polynomial.

We begin with the concept of a conflict.

Definition 3.3. Let G and H be graphs. A set X ⊆ V (G) with a preassignment
p : X → V (H) which is not extendible, such that the restriction of p to any proper
subset X ′ of X is extendible, is called a conflict in G with respect to H. The size of
the conflict is |X|. A graph H has strict extension-width k if every conflict (in any
graph G with respect to H) has size at most k.

Feder and Vardi [13] give several equivalent descriptions of graphs that admit
a NUFk. In particular, the following connection between strict extension-width and
near-unanimity is presented.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

946 BREWSTER, FEDER, HELL, HUANG, AND MACGILLIVRAY

Theorem 3.4 (Feder and Vardi [13]). A graph H admits a NUFk if and only if
it has strict extension-width k − 1.

A graph has bounded strict extension-width if it has strict extension-width k for
some integer k. Thus the theorem implies that NUF is precisely the class of graphs
with bounded strict extension-width. See [17] for more details on this connection.

Reflexive graphs with a NUF3 have been most carefully investigated. (Irreflexive
graphs with a NUF3 are characterized in [2].) The class of reflexive graphs with a
NUF3 is known to be the smallest variety containing all reflexive paths [28]. It is also
known to be precisely the class of all reflexive graphs H such that H is a retract
of any G of which it is an isometric subgraph [19, 28]. What this means in the lan-
guage of extensions and conflicts is the following. Given a graph G containing H
as a subgraph, let p : X → V (H) be a preassignment where X = V (H) and p is
the identity function. Note that in this context (G, p) is naturally viewed as an in-
stance of the retraction problem for H. Either p is extendible (in the case that H is
isometric) or there is a conflict of size two (otherwise). Such a conflict yields a cer-
tificate of nonextendability. In particular, the certificate is a path P with end vertices
u and v preassigned as p′(u) = a, p′(v) = b, where a, b are vertices of X = V (H).
By taking P so that dP (u, v) = dG(a, b) < dH(a, b), we see that p′ is extendible
in G but p ◦ p′ is not extendible in H. Hence, p is not extendible to a homomor-
phism of G to H; i.e., H is not a retract of G. (For a description of NUFk, k ≥ 3,
as a variety generated by some starting set of building blocks, see [12]. See also [19]
and [4].)

We have just observed that graphs in NUF3 have certificates of nonextendability
in the form of a path whose end points have been preassigned. We now extend this
concept to larger certificates.

Definition 3.5. A reflexive graph H has extension-width one if for any G and
any preassignment p : X → V (H), where X ⊆ V (G), either p is extendible or there
exist a tree T and a set of vertices X ′ ⊆ V (T ) preassigned by a mapping p′ : X ′ → X
such that p′ is extendible in G but p◦p′ is not extendible in H. The tree T together with
the preassignment p′ is called a tree-certificate. Furthermore, the tree T is minimal
if the preassigned vertices are precisely the leaves of T and they form a conflict (in H
with respect to T ).

Thus, by the comments above the reflexive graphs with a NUF3 are precisely the
reflexive graphs of extension-width one, where the (minimal) tree-certificates can be
chosen to be paths.

In [18] the concept of width one is defined as tree duality. A graph H has tree
duality if for all G either G → H or there exists a tree T such that T → G and
T �→ H. The notion of extension-width defined here differs slightly from that in [13];
it has been adapted to extensions (and implicitly to retractions). Thus our condition
is that either a preassignment p extends to a homomorphism of G to H or there is
a tree T and a preassignment p′ from T to the preassigned vertices of G (under p)
such that p′ extends to a homomorphism of T to G but p ◦ p′ does not extend to a
homomorphism of T to H. Clearly, the existence of a tree-certificate demonstrates that
p is not extendible. The proposition below shows that each tree-certificate contains a
minimal tree-certificate.

Proposition 3.6. Let (G, p) be an instance of EXTH where X ⊆ V (G) is the
set of preassigned vertices. Suppose T is a tree and p′ : X ′ → X is a preassignment,
where X ′ ⊆ V (T ), such that p′ is extendible (in G) but p ◦ p′ is not extendible (in H).
Then T contains, as a subtree, a minimal tree-certificate.
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Proof. Let T ′ be a minimal subtree of T with respect to nonextendibility in H,
and let X ′′ ⊆ X ′ be the set of preassigned vertices of in T ′. We first claim that each
vertex in X ′′ is a leaf. Suppose to the contrary that some vertex v ∈ X ′′ is not a leaf.
Let T1, . . . , Tk be the subtrees of T ′ − v. Consider Ti + v. By the minimality of T ′,
Ti + v is extendible in H. Moreover, since v is preassigned the same value in Ti + v
for all i, we obtained that the preassignment X ′′ of T ′ is extendible in H, which is a
contradiction.

We claim that all the leaves in T ′ are preassigned. Suppose to the contrary that
some leaf v ∈ T ′ is not preassigned. By minimality, the preassignment from T ′ − v
to V (H) is extendible. In particular, the parent of v receives an image. Since H
is reflexive, v can receive the same image. Thus this preassignment of X ′′ to H is
extendible, which is a contradiction.

Therefore, T ′ is a tree whose leaves are preassigned and the leaves form a conflict.
That is, T ′ together with the preassignment is a minimal tree-certificate.

Tree-certificates are used implicitly in [9] but are first formally defined and studied
in [27]. Finally, we remark that K2 is an example of a graph with width two. That is,
for the HOMK2 problem, i.e., testing if a graph is bipartite, the NO-certificates are
odd cycles, i.e., partial two-trees.

A special type of tree-certificate is introduced in [19]. A hole in a reflexive graph H
is a set Z of vertices with a mapping δ : Z → {0, 1, 2, . . .} such that no h in H has the
distances dH(h, x) ≤ δ(x) for all x ∈ Z, but for each proper subset Z ′ of Z, there is an
h satisfying these inequalities for all x in Z ′. A k-hole is a hole in which the set Z has
exactly k vertices. A unit hole is a hole in which δ is the constant mapping with range
{1}. If Z = {x1, x2, . . . , xk}, we may refer to the hole as a (δ(x1), δ(x2), . . . , δ(xk))
k-hole.

Equivalently, a hole in H is a tree T with exactly one branch vertex (vertex of
degree greater than two), together with a precoloring p : X → V (H), where X is
the set of leaves of T . The length of the path from the branch vertex to the leaf x
is precisely δ(x). Further, (X, p) is a conflict in T with respect to H; i.e., p is not
extendible in H, but any proper subtree of T , with the same precoloring (restricted
to the subtree), is extendible in H.

From the above discussion, we obtain the following corollaries of Theorem 3.4.

Corollary 3.7. A reflexive graph that admits a minimal tree-certificate with k
preassigned leaves cannot have a NUFk.

Proof. The minimal tree-certificate contains a conflict with k vertices, showing
the strict extension-width is at least k.

Corollary 3.8. A reflexive graph with a k-hole cannot have a NUFk.

It turns out that the reflexive graphs with a NUF3 are also characterized as the
class of reflexive graphs which do not have holes [19, 28]. Thus a reflexive chordal
graph which is not in NUF3 must have a hole. We shall elaborate on this fact in
section 4. Specifically, such graphs must have a unit hole of a particular kind.

We now return our attention to improving the bounds on the strict extension-
width of reflexive chordal graphs. In Figure 1 is an algorithm from [9]. This algorithm
solves the connected list homomorphism problem, denoted by the CLIST-HOMH prob-
lem, where H is a reflexive chordal graph and the lists of any instance induce connected
subgraphs of H. The proof of correctness for the algorithm follows from properties
of the perfect elimination ordering of H; see [9]. We present the algorithm with the
addition that we explicitly construct a tree-certificate for G in H when G is a NO-
instance of the problem. A digraph D is used in the algorithm to retain information
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CLIST-HOMH Algorithm [9]
Input: A graph G with lists L : V (G) → P(V (H)) such that L(v) induces a connected subgraph

of H.
Output: A homomorphism f : G → H such that f(v) ∈ L(v) for all v, or a tree-certificate T

proving G �→ H.
1. Let h1, h2, . . . , hn be a perfect elimination ordering of H (an ordering such that any two

neighbors of hi among hi+1, hi+2, . . . , hn are adjacent).
2. Set V (D) = {tg : g ∈ V (G)}; E(D) = ∅.
3. For i = 1 to n

3.1 Remove hi from all lists L(g) in which it is not the only member.
3.2 For those g which have L(g) = {hi}:

3.2.1 assign f(g) = hi;
3.2.2 for each g′ adjacent to g, remove from L(g′) all vertices that are not adjacent

to hi; and add the arc tg′ tg to D if some vertex is removed from L(g′);
3.2.3 delete g from G.

3.3 If some list L(x) = ∅, then let T be the subgraph of D consisting of descendants of
tx. Answer NO; return T together with the lists LT where LT (tg) equals the original
L(g) (provided as input).

4. Answer YES; return f .

Fig. 1. An algorithm for CLIST-HOMH, where H is a reflexive chordal graph, and each list
induces a connected subgraph of H.

about which vertices cause the removal of elements from lists (of other vertices). In
the case of a NO-instance we prove below, the digraph D contains a tree-certificate
(T, p′); thus, H has extension-width one. Also, we provide bounds on the size of the
conflict contained in T , thus providing bounds on the strict extension-width of H.
That is, we prove the following.

Theorem 3.9. Each reflexive chordal graph H has extension-width one and
bounded strict extension-width.

The proof of the theorem appears below after the development of some preliminary
results.

Lemma 3.10. At any step of the CLIST-HOMH Algorithm in Figure 1, the di-
graph D is acyclic.

Proof. If tg′tg is an arc of D, then g is removed from G before g′ is removed
from G.

Lemma 3.11. Suppose the CLIST-HOMH Algorithm in Figure 1 answers NO
and returns (T,LT ) for some instance (G,L) of CLIST-HOMH. Then for each vertex
tg ∈ V (T ) other than the root, the corresponding vertex g ∈ V (G) is assigned to some
hi, i.e., f(g) = hi, by the algorithm. Furthermore, this assignment is injective.

Proof. Suppose tg1 and tg2 are both children of some vertex tg in T . The arcs
tgtg1 and tgtg2 in T are created in D after each tg1 and tg2 are assigned an image
at step 3.2.2 of the algorithm. Thus, assume that the assignments f(g1) = hi and
f(g2) = hj are made by the algorithm. Without loss of generality we may assume
that hi precedes hj in the perfect elimination ordering, or hi = hj . The arc in T from
tg to tg2 was added to T when the assignment f(g2) = hj caused some vertex, say,
h, to be removed from L(g). In particular, hjh �∈ E(H) and h appears later in the
perfect elimination ordering than hj . Also, hih ∈ E(H); otherwise, hi causes h to be
removed from L(g) before tg2

is assigned hj , and thus tgtg2 would not appear in D.

In addition, note that tg cannot be assigned hj . Since hj caused h to be removed
from the list, there must be a vertex in the elimination ordering after both hj and h
that will remain in the list for g (after the current round). Recall that the lists are
connected. In particular, adjacent vertices receive unique images.
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We claim that hi and hj are nonadjacent in H. This is immediate from properties
of the elimination ordering and the observations hih ∈ E(H), hjh �∈ E(H). The same
argument shows there is no path hi = u1, u2, . . . , um = hj in H where each u� precedes
u�+1 in the perfect elimination ordering. Indeed, for such a path, hjh �∈ E(H) implies
um−1h �∈ E(H), which in turn implies um−2h �∈ E(H). Continuing back to hi, we
conclude hih �∈ E(H), which is a contradiction.

Finally, there is no vertex h′ in the perfect elimination ordering with paths
h = u1, u2, . . . , um1

= hi and h = w1, w2, . . . , wm2
= hj such that each u� pre-

cedes u�+1 and each w� precedes w�+1 in the perfect elimination ordering. Suppose
to the contrary that such paths exist. Then u2 and w2 are common neighbors of h′

and must be adjacent. Without loss of generality u2 precedes w2 in the elimination
ordering. Thus the paths u2, u3, . . . , um1 = hi and u2, w2, w3, . . . , wm2 = hj are paths
with the property above, and the first path has been shortened by one vertex. We
thus repeatedly shorten the paths until one has length zero, say, the first path, at
which point we have a path from hi to hj , which is the case analyzed in the previous
paragraph.

This last result about two paths ending at hi and hj , respectively, shows that
the descendants of tg1 and tg2 , respectively, receive images that are disjoint sets of
vertices in H, completing the proof that the function f defined in the algorithm is
indeed injective.

We now establish that in the case of a NO-instance, the CLIST-HOMH algorithm
does indeed return a tree. Recall that for a list homomorphism problem vertices with
lists of size one are called preassigned.

Lemma 3.12. If the CLIST-HOMH Algorithm in Figure 1 answers NO and
returns (T,LT ), then T is a tree rooted at tx, where x is the vertex whose list
becomes empty in step 3.3. Moreover, the preassigned vertices are leaves in T , and
the preassigned images form an independent set in H.

Proof. Every vertex in T other than the root tx has in-degree one. Suppose to the
contrary that some vertex t has predecessors t1 and t2. Using the proof of Lemma 3.11,
one can easily show that the descendants of t1 and t2 are disjoint sets and thus derive
a contradiction.

To see that preassigned vertices in T are leaves, observe that internal vertices of
T are assigned a value from their list and have something removed from their list by
a child. Thus, the list of an internal vertex cannot be a singleton.

Suppose tg1
and tg2

are leaves of T , neither of which is the root. Then they have
a common ancestor, say, tg, such that the (tg, tg1)-path and the (tg, tg2)-path in T
are internally disjoint. Let tg′

1
and tg′

2
be the first vertex after tg on the two paths,

respectively, with tgi = tg′
i

possible. Without loss of generality, f(g1) precedes f(g2)
in the perfect elimination ordering. If f(g1)f(g2) ∈ E(H), then there are paths in H
from f(g1) to f(g′1) and f(g1) to f(g′2), contrary to the proof of Lemma 3.11.

Finally, suppose that the root t′ is a preassigned vertex. Then the unique child of
the root, say, tg, causes the single element from L(t′), say, h′, to be removed when the
algorithm makes the assignment f(g) = h. Consider some other leaf, say, tg1 , in the
tree, including the possibility that tg is a leaf. Suppose further that the assignment
f(g1) = h1 is made by the algorithm. Then there is a path from h1 to h in H whose
vertices are in increasing order with respect to the perfect elimination ordering. Each
vertex on this path is nonadjacent to h′. In particular, h1h

′ �∈ E(H). Therefore, the
set of all leaves is independent.
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Corollary 3.13. Suppose (G,L) is an instance of EXTH where X ⊆ V (G)
is the set of preassigned vertices. Further, suppose the CLIST-HOMH Algorithm in
Figure 1 answers NO and returns (T,LT ). Then T contains as a subtree a minimal
tree-certificate.

Proof. Suppose (T,LT ) is returned by the CLIST-HOMH Algorithm. Because
the lists LT come from L, each is either a singleton or the entire set V (H). Hence
(T,LT ) is also an instance of EXTH, in particular, a NO-instance. Note the mapping
tg �→ g is an embedding of T in G. Thus, T is extendible in G but not in H. By
Proposition 3.6, T contains as a subtree a minimal tree-certificate.

Proof of Theorem 3.9. Let (G,L) be a NO-instance of EXTH. We will establish
that there is a tree-certificate for G with respect to H. Moreover, this tree contains a
conflict of size at most |V (H)|.

If H is not connected, we consider two cases. First, if some component of G has
preassigned vertices in different components of H, then a path between two such
vertices is a tree-certificate containing a conflict of size two. On the other hand, if for
each component of G its preassigned vertices appear in the same component of H,
then (G,L) is a NO-instance if and only if some component of G is a NO-instance for
some component of H. Thus, we may restrict our attention to connected graphs G
and H. Hence, any instance of EXTH can be viewed as an instance of CLIST-HOMH
where each list is a singleton or V (H), and since H is connected, we can apply the
algorithm in Figure 1. Given that (G,L) is a NO-instance, the algorithm returns a
tree-certificate by Corollary 3.13. Furthermore, this tree has at most n = |V (H)|
leaves by Lemma 3.11. The former statement shows that H has extension-width one;
the latter statement shows that H has strict extension-width n.

Theorem 3.9 shows that each reflexive chordal graph with n vertices belongs to
NUFn+1. We now improve the bound.

Theorem 3.14. Let H be a reflexive chordal graph with n vertices and maximum
clique-size ω ≥ 3. Then H admits a NUFk with k ≤ min{n−ω+1, n−n/(ω−1)+1}.
In particular, k ≤ n−

√
n + 1.

Proof. First observe that n−
√
n ≥ min{n−n/(ω−1), n−ω}. Hence it suffices to

prove that the strict extension-width of H is less than or equal to both n−n/(ω− 1)
and n− ω.

Suppose G is a NO-instance of EXTH. By Corollary 3.13, there is a tree-certificate
for G. In particular, there is a tree T with lists L from V (H) that is nonextendible
in H. Moreover, the preassigned vertices of T are precisely the leaves of T , and they
form a conflict.

Suppose s vertices of T are preassigned values in H. These s vertices can only be
leaves of T , including possibly the root t of T , if the root has only one child. Also,
by Lemma 3.12, the preassigned values form an independent set in H. Thus, a clique
with ω vertices in H contains at most one of the s preassigned images; therefore, the
remaining vertices in the clique are not among the s vertices, showing that the strict
extension-width is at most s ≤ n−ω + 1. This establishes that H admits a NUFk for
k ≤ n− ω + 2. In the case that s = n− ω + 1, we note that H must be a split graph
with s independent vertices and a clique of size n− s. However, such a chordal graph
has an intersection representation with s− 1 leaves. Thus the leafage of H is at most
s−1, and we conclude from Theorem 3.2 that H admits a NUFk where k ≤ n−ω+1.

Let r be the number of children of t, the root of T . The r children eliminate at
least r values from the list for t. If r �= 1, then each of these r vertices must remove
at least one value from L(t) which is not among the preassigned images for the leaves
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of T . Suppose to the contrary that this is not the case. Let tg be a child of t that
removes only values from L(t) that come from the set of preassigned images. Then
we can remove the subtree rooted at tg from T and obtain a smaller tree-certificate,
contrary to our assumption that T is minimal. Indeed, each preassigned image, say,
hi, will be removed from the list of all vertices in T at iteration i of the for-loop in
the algorithm. Hence, the values that tg removes from L(v) will all be removed by the
algorithm anyway, without the subtree rooted at tg being present. (Observe that all of
the preassigned vertices form an independent set, but the lists are connected. Hence
L(v) must contain a vertex that appears later in the perfect elimination ordering than
all of the preassigned vertices. Thus v will not be assigned a preassigned image, and
they will indeed all be removed from L(v).)

Let i be the number of internal vertices of T (other than the root). Each of these
internal vertices is assigned an image which again is not among the preassigned images
for the leaves of T . There are l remaining vertices in H that are not one of the s + i
assigned images nor one of the r images removed from L(t). Define p = r + l + i,
unless r = 1, in which case p = l + i. Thus, n− s = p. We will establish the result by
showing that p ≥ n/(ω − 1).

Let d be the maximum number of children of a vertex in T other than the root. The
number of vertices in H assigned as images to vertices in T other than the root is at
most r+id, since the root has r children and each of the i internal vertices has at most
d children. The r eliminated values from the list for the root t, and the l additional
elements counted above, are the only other vertices of H, giving n ≤ 2r + l + id.

Note finally that ω ≥ d+1. If d = 1, the claim is trivial. Suppose d ≥ 2. Consider
the d neighbors of an internal vertex tg (other than the root) of T . Call these neighbors
tg1 , tg2

, . . . , tgd . Further, suppose the algorithm makes the assignments f(g) = h and
f(gi) = hi for i = 1, 2, . . . , d, and suppose these assignments occur in the order
i = 1, 2, . . . , d. The d children remove d vertices from L(tg). In particular, say that
the assignment f(gi) = hi causes xi to be removed from L(tg). Each of x2, x3, . . . , xd

must appear later in the perfect elimination ordering (by the construction of T ) than
h1. Also, each xi for 2 ≤ i ≤ d must be adjacent to h1; otherwise, h1 would have
caused xi to be removed from L(tg). Hence h1 is adjacent to h and each of xi for
2 ≤ i ≤ d. Since h1 precedes the other vertices in the perfect elimination ordering,
h1, h, x2, . . . , xd form a clique of size d + 1.

We claim p(ω − 1) = (p− i)(ω − 1) + i(ω − 1) ≥ 2r + l + id ≥ n. To see this note
that ω − 1 ≥ d, and by hypothesis ω − 1 ≥ 2. If r �= 1, then p − i = r + l, and the
claim follows. When r = 1 we have p− i = l, giving l(ω − 1) ≥ 2 + l (and the claim),
except for l = 1 and ω = 3, or l = 0. First, note that l ≥ 1; otherwise, the root t
and its only child in T would map to the last two vertices in the perfect elimination
ordering, which are adjacent.

Hence, assume that l = 1 and ω = 3. If some internal vertex of T other than the
root has d′ ≤ d children, then we claim that n ≤ 2r + l + id − (d − d′). In this final
case the difference of one is accounted for unless d = d′ = 2. This is not possible since
the child of the root t would have two children that remove two values from its list,
giving l ≥ 2, contrary to l = 1. Therefore, p(ω− 1) ≥ n, or p ≥ n/(ω− 1), completing
the proof.

4. Reflexive graphs without NUF.

4.1. Graphs without NUFk for some k. Having established in the previous
sections that each reflexive chordal graph belongs to NUFk for some k, we now turn
our attention to providing lower bounds on the arity of the NUF.
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We first show that reflexive chordal graphs without NUF3 must have a unit hole
of a particularly simple kind.

Definition 4.1. The reflexive chordal graph Rk is formed by constructing a clique
on vertices y1, . . . , yk and adding independent vertices x1, . . . , xk and edges xiyj for
i �= j.

Theorem 4.2. Let H be a reflexive chordal graph which is not in NUF3. There
exists k ≥ 3 such that Rk is an induced subgraph of H. Furthermore, the set X =
{x1, x2, . . . , xk} ⊆ V (Rk) is the vertex set of a (1, 1, . . . , 1) k-hole in H.

Proof. It suffices to show that H does indeed contain an induced copy of Rk with
no vertex adjacent to all the xi’s. Clearly, such a copy of Rk is a (1, 1, . . . , 1) k-hole
in H.

Since H �∈ NUF3, there exist a graph G and a preassignment p : X → V (H),
where X ⊆ V (G), |X| ≥ 3, and X is a conflict. As described in the proof of Theo-
rem 3.9, we may assume that G and H are connected. (A conflict must belong to a
single component of G, and conflicts receiving their images in two components of H
have size two.) Hence, by Corollary 3.13, there is a tree-certificate (T, p′) for G with
respect to H. In particular, p′ : X ′ → X, where X ′ is the set of leaves of T . Fur-
thermore, |X ′| = |X|. Suppose to the contrary that |X ′| < |X|. Since X is a conflict,
p′(X ′) is extendible in H (as it is a proper subset of X). This contradicts the fact
that (T, p′) is a tree-certificate.

Hence, T is a tree, with at least three leaves which form a conflict with respect to
H under the preassignment p◦p′. Without loss of generality, assume T is the smallest
tree whose leaves form a conflict of size |X ′|.

We consider two cases, depending on the degree in T of the root t.

Case 1. degT (t) = r ≥ 3. Let the children of t be t1, t2, . . . , tr. In the execution of
the CLIST-HOMH Algorithm in Figure 1 these are mapped to vertices x1, x2, . . . , xr

of H, respectively. By (the proof of) Lemma 3.12, X = {x1, x2, . . . , xr} is an inde-
pendent set. Since t is the root of T (meaning that it arose from the first vertex of G
whose list became empty), the vertices x1, x2, . . . , xr have no common neighbor in H.
By the minimality of T , for j = 1, 2, . . . , r the vertices in X − {xj} have a common
neighbor yj in H.

By the minimality of T , for j �= i the vertex yi occurs after xj in the perfect
elimination ordering of V (H). Suppose to the contrary that some child of the root,
say, xi, removes a set of images, say, Yi, from the list of the root, all of which occur
before xj in the perfect elimination ordering. Then we may remove xi and all of its
descendants from T . The algorithm will remove all elements of Yi from the list of the
roots in Step 3.1 before the assignment f(tj) = xj is made. Hence, there is no need to
include xi in the tree, contrary to our assumption of minimality. In particular (since
r ≥ 3), any two of y1, y2, . . . , yr have a common neighbor xj occurring before them in
the perfect elimination ordering. Therefore, {y1, y2, . . . , yr} induces a clique in H, and
{x1, x2, . . . , xr} ∪ {y1, y2, . . . , yr} induces a copy of Rr, with no vertex in H adjacent
to all the xi’s.

Case 2. degT (t) = r ≤ 2. Since T has s ≥ 3 leaves, at least one child of the root,
say, tg1 , is the root of a subtree of T consisting of a path from tg1

to a vertex t′ with
at least two children (where tg1 = t′ is possible). Let the children of t′ be t2, . . . , tk
(k ≥ 3), and assume these vertices have been mapped to x2, . . . , xk, respectively, by
the algorithm.

If r = 2, then let tg2
be the other child of t. Further, let h be the image assigned

to tg2 in the algorithm, and define v to be the vertex v = tg2 . On the other hand,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEAR-UNANIMITY FUNCTIONS 953

if r = 1, then t is a leaf, and by Corollary 3.13 the original list for t, L(t), must be a
singleton, say, {h}. In this case, define the vertex v to be v = t.

Consider the k− 1 assigned images x2, . . . , xk. A vertex x1 will be defined below.
Let y1 be the value in H assigned to t′ by the algorithm. As before, for each i, the k−2
vertices xj , j �= i, have a common neighbor yi following y1 in the perfect elimination
ordering, with yi not adjacent to xi. Hence, for each i = 2, . . . , k, y1 and yi have a
common neighbor, xj , j �= i, preceding them in the perfect elimination ordering. Thus,
the yi’s, i = 1, 2, . . . , k, form a clique.

Let d = dH(y1, h) be the distance in H from y1 to h. Since T does not map
to H, dT (t′, v) < dH(y1, h). Let d′ = dT (t′, v). Furthermore, for i �= 1, the distance
di = dH(yi, h) must satisfy the inequality d− 1 ≤ di ≤ d′. To see the inequality, note
that y1 is adjacent to yi; hence, d − 1 ≤ di. Also, by the minimality of T , T − {xi}
maps to H with t′ mapping to yi. Hence, di ≤ d′.

Consider a tree T ′ (whose leaves are vertices in H) consisting of a vertex y∗

adjacent to each yi for i ≥ 2 together with a path of length d − 2 from y∗ to h.
If T ′ does not map to H, then, since T ′ has distances between its leaves at least their
distance in H, the tree T ′ is another example of a tree like T , but smaller, which is
a contradiction. Hence, T ′ maps to H, and, in particular, y∗ maps to a vertex x1.
By the distance inequalities, x1 is not adjacent to y1, but it is adjacent to all yi with
i �= 1.

Finally, consider xi with i �= 1. The vertex xi is distance at least d from h in H.
This follows from the algorithm and properties of the perfect elimination ordering.
If h comes after y1 in the perfect elimination ordering, then a path from xi to h in H
of length at most d− 1 easily yields a path of length at most d− 1 from y1 to h in H,
which is a contradiction. Similarly, h preceding y1 also leads to a contradiction. Since
x1 is at distance d− 2 from h in H, it follows that x1 is not adjacent to any xi with
i �= 1. Furthermore, no vertex w in H is adjacent to all xi, since otherwise we could
map T to H by mapping t′ to w at distance d− 1 = d′ from h in H. This completes
the proof.

We continue our examination of holes from page 947, where we defined holes and
provided a correspondence to trees with one branch point. The above proof shows
that for chordal graphs H without NUF3, there is an instance of EXTH whose tree-
certificate is a (1, 1, . . . , 1) hole. Historically, holes have been studied in the (equiva-
lent) language of retractions. We adopt the retraction language for this next result.
Given a graph G with a subgraph H, we say a hole in H is filled if G contains a
vertex g whose distances to the vertices of the hole are within the distance given in
the definition of the hole, i.e., dG(g, x) ≤ δ(x) for each x in the hole. Thus, a filled hole
corresponds to a tree-certificate where the tree is a subdivision of a star. On the other
hand, we now provide a graph G that does not retract to a reflexive chordal graph
H, yet G does not fill a hole in H. In essence, the tree-certificate for G is necessarily
more complex than a subdivision of a star.

Theorem 4.3. There is a reflexive chordal graph H with a NUF5 (but not a
NUF4) and an instance G of RETH that does not retract to H, yet no vertex of G
fills a hole in H.

Proof. The graph H has ten vertices ai, bi, ci, di, ei for i = 1, 2 and edges aici, aidi,
bici, biei, cidi, ciei, diei, d1d2, e1e2, d1e2, and e1d2. The instance G is H together
with three vertices x1, x2, y and edges xiai, xibi, xiy. None of x1, x2, y fills a hole
in H, and yet G does not retract to H. To see that no hole is filled, observe that
d(x1, v) ≥ d(c1, v) for all v ∈ V (H). Hence x1 cannot fill a hole in H. A similar
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a1 a2

c1 c2

b1 b2

d1 d2

e1 e2

x1 x2

y

Fig. 2. A G containing a subgraph H induced by the black vertices. The graph H is in NUF5 −
NUF4. The graph G is a NO-instance of RETH yet fills no holes in H.

argument shows that neither x2 nor y fills a hole. Figure 2 contains a drawing of H
(with black vertices) and G (consisting of H plus the three white vertices).

To establish that H admits a NUF5 and not a NUF4, we first observe that it
is easy to construct an intersection representation for H with leafage 4. Hence, by
Theorem 3.2, H admits a NUF5. Suppose to the contrary that g is a NUF4 for
H. Then g(a1, a1, a1, c1) = a1 and g(c1, b1, b1, b1) = b1. Since (a1, a1, a1, c1) and
(c1, b1, b1, b1) are both adjacent to (d1, c1, c1, e1), we must have g(d1, c1, c1, e1) adjacent
to both a1 and b1. Namely, g(d1, c1, c1, e1) = c1. However, (d1, c1, c1, e1) is adjacent
to (d2, d1, e1, e2). Thus, g(d2, d1, e1, e2) is adjacent to c1. A similar argument shows
that g(d2, d1, e1, e2) is adjacent to c2. In particular (a2, a2, c2, a2) and (b2, c2, b2, b2)
are both adjacent to (c2, d2, e2, c2). Hence, g(c2, d2, e2, c2) = c2 and g(d2, d1, e1, e2) is
adjacent to c2 (as well as c1), which is a contradiction.

We complete this section by establishing that the bounds in Theorems 3.2 and
3.14 are tight.

Theorem 4.4. For each i ≥ 0 and ω ≥ 3, there exists a reflexive chordal graph
LB(ω, i) with n = 2ω+i(ω−1), strict extension-width s = ω+i(ω−2), and leafage s.

Proof. Fix ω ≥ 3.
For the case i = 0, LB(ω, 0) is the chordal graph with vertices x1, . . . , xω,

y1, . . . , yω, a clique on the yl, all edges xkyl with k �= l, and all loops, i.e., a copy
of Rω as defined above. To see that LB(ω, 0) has strict extension-width at least
s = ω, consider an instance T (a tree defined below) of EXTLB(ω, 0). The tree T
has root t adjacent to ω leaves, each assigned to a unique xk in LB(ω, 0). Clearly, the
preassignment does not extend to a homomorphism T → H, but if one of the ω leaves
in T is deleted, say, the leaf mapped to x1, then the root t can be mapped to y1. Thus
the xk’s form a conflict of size s = ω. On the other hand, there is an intersection
representation of LB(ω, 0) with s leaves. Hence, by Theorem 3.2, LB(ω, 0) belongs to
NUFs+1. We have n = 2ω, strict extension-width s = ω, and leafage s.

For the case i = 1, consider the element x1 in the preceding construction, with
ω − 1 neighbors yj with j �= 1. To construct LB(ω, 1), add vertices z2, z3, . . . , zω
adjacent to x1, plus edges zkyl for k �= l and l �= 1. Similarly, replace the leaf in T
that is preassigned to x1 with a vertex t′ having the ω − 1 children each preassigned
to a unique zk. Thus n has increased by ω − 1, and the fact that T does not map to
LB(ω, 1) depends on ω − 1 new leaves in T but no longer depends on t′ (which is no
longer preassigned to x1). Hence the size of the conflict has increased by at least ω−2;
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however, it is easy to see that the leafage has increased by at most ω − 2. Therefore,
s has increased by ω − 2.

Note that the new vertices zk have ω − 1 neighbors in LB(ω, 1) as before for the
xk in LB(ω, 0). We may repeat the process of enlarging each LB(ω, i) and changing
T as follows. In LB(ω, i) add ω − 1 new vertices, the z2, . . . , zω above, and join each
to some vertex and ω − 2 of its neighbors, as for x1 above, ensuring that no two of
the new vertices have the same neighborhood. In T , select a leaf, say, u, as before, for
the preimage of x1; add ω − 1 leaves each adjacent to u, and map each (injectively)
to the new ω − 1 vertices, say, z2, . . . , zω, as above. Thus each time we increase n by
ω − 1 and s by ω − 2. This completes the construction.

The bound in Theorem 3.2 is tight.
Corollary 4.5. For each l ≥ 3, there is a reflexive chordal graph H with ω = 3,

and leafage l, such that H ∈ NUFl+1 − NUFl.
Proof. The graph LB(3, l − 3) is such a graph.
The bounds in Theorem 3.14 are tight.
Corollary 4.6. For each ω ≥ 2 there is a reflexive chordal graph H ∈ NUFk −

NUFk−1, where k = n− ω + 1.
Proof. The graph LB(ω, 0) is such a graph.
Corollary 4.7. For each i ≥ 0, there is a reflexive chordal graph H ∈ NUFk −

NUFk−1 with ω = 3, where k = n− n/(ω − 1) + 1.
Proof. The graph LB(3, i) is such a graph.

4.2. Graphs without NUFk for any k. We now construct classes of reflexive
graphs that do not admit a near-unanimity function of any arity. Given a vertex v
and a subgraph S of a graph H, we use the notation d(v,H) to denote the minimum
distance from the vertex v to a vertex in the subgraph H, where the minimum is taken
over all vertices of H. We are working with reflexive graphs; however, N(v) denotes
the vertices other than v that are adjacent to v, i.e., v �∈ N(v).

Lemma 4.8. Let H be a connected reflexive graph and t, b be two nonadjacent
vertices of H. Suppose that for each x ∈ N(t) there is a complete subgraph K(x),
which is either a maximal clique or a single vertex, with the property that d(x,K(x)) >
max{d(t,K(x)), d(b,K(x))}. Then H does not admit a NUFk for any k ≥ 3.

(The hypotheses are illustrated in Figure 3, where t is the top vertex, b is the
bottom vertex, and for each x ∈ N(t), K(x) is one of the middle four vertices which
is not adjacent to x.)

Proof. Suppose to the contrary that g is a NUFk on H. For each j = 1, 2, . . . , k,
let xj be a vertex, say, (x1, x2, . . . , xk), of Hk with the property that xi = t for
all i < j, xi = b for all i > j, and xj is an arbitrary vertex of H. Thus xj =
(t, . . . , t, xj , b, . . . , b). Consider any vertex x ∈ N(t). By hypothesis there exists a
complete subgraph K(x) with d(x,K(x)) > max{d(t,K(x)), d(b,K(x))}. Thus there
exist y, z ∈ V (K(x)) with d(x,K(x)) > d(t, y) and d(x,K(x)) > d(b, z). Hence in Hk

the distance between xj , and (y, . . . , y, xj , z, . . . , z) is less than d(x,K(x)). For each
v ∈ K(x) the vertex (y, . . . , y, xj , z, . . . , z) is adjacent to (v, . . . , v, xj , v, . . . , v). Hence
g(y, . . . , y, xj , z, . . . , z) must be adjacent to v, and as K(x) is either a single vertex or
a maximal complete subgraph of H, g(y, . . . , y, xj , z, . . . , z) must be a vertex of K(x).
We have

d(x,K(x)) > d(xj , (y, . . . , y, xj , z, . . . , z))

≥ d(g(xj), g(y, . . . , y, xj , z, . . . , z))
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t

b

x y z w

K(z)

K(w)

K(x) K(y)

Fig. 3. A dismantable reflexive graph without a NUFk.

and, consequently, g(xj) �= x. Since x was an arbitrary member of N(t), we conclude
that g(xj) /∈ N(t).

Since H is a connected graph, there is a (t, b)-path (t =)v1, v2, . . . , vl(= b). Thus,
in Hk, we have the following path, say, P :

(t, b, b, b, . . . , b, b) ∼ (t, vl−1, b, b, . . . , b, b) ∼ (t, vl−2, b, b, . . . , b, b) ∼ · · ·

∼ (t, v2, b, b, . . . , b, b) ∼ (t, t, b, b, . . . , b, b) ∼ (t, t, vl−1, b, . . . , b, b) ∼ · · ·

∼ (t, t, t, b, . . . , b, b) ∼ (t, t, t, vl−1, . . . , b, b) . . . ∼ (t, t, t, . . . , t, b).

Since g(t, b, b, b, . . . , b) = b and g(t, t, . . . , t, t, b) = t, we must have that g(P ) is a
(b, t)-walk in H. Since t and b are nonadjacent, some interior vertex of P must map
to a neighbor of t, contrary to our claim above.

Corollary 4.9. No reflexive cycle of length at least 4 admits a NUFk for any
k ≥ 3.

Proof. Let C : v1v2 . . . vnv1 (n ≥ 4) be a cycle. We show that C satisfies the
assumption of Lemma 4.8: Set t = v1, b = v3, K1 = 〈{v�n−1

2 �, v�n
2 �}〉, and K2 =

〈{v�n+3
2 �, v�n+4

2 �}〉. Then N(t) = {v2, vn} and

d(vn,K1) =
⌊n

2

⌋
>

⌊n
2

⌋
− 1 = max{d(t,K1), d(b,K1)},

d(v2,K2) =
⌊n

2

⌋
>

⌊n
2

⌋
− 1 = max{d(t,K2), d(b,K2)}.

We have established that all chordal graphs belong to NUF. Recall that it is
proved in [27] that the variety generated by chordal graphs is properly contained in
NUF. The corollary below shows that some dismantable graphs do not admit a NUF.
It has subsequently been established in [25] that NUF is properly contained in the
variety generated by dismantable graphs.

Corollary 4.10. The dismantable reflexive graph in Figure 3 does not admit a
NUFk for any k ≥ 3.

Corollary 4.11. There is a reflexive graph H that does not admit a NUF of
any arity such that every nonidentity retract of H admits a NUF3.

We complete this section by observing for irreflexive graphs that if H admits a
NUFk, then H must be bipartite. The proof is analogous to Corollary 4.9.

Proposition 4.12. Let H be an irreflexive graph. If H is not bipartite, then H
does not admit a NUFk for any k ≥ 3.
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5. Conservative NUF. We complete the paper be examining a special type
of near-unanimity functions called conservative functions. Recall that g ∈ NUFk is
a conservative near-unanimity function if g(x1, x2, . . . , xk) ∈ {x1, x2, . . . , xk} for all
(x1, . . . , xk). Conservative near-unanimity functions have also been called choice or
projective and are of particular interest since if H admits a conservative NUF, then
the list-homomorphism problem for H is polynomial time solvable.

The computational complexity of LIST-HOMH has been determined for any fixed
(general) graph H. In [11] a new class of intersection graphs called bi-arc graphs is
introduced. The LIST-HOMH problem is polynomial time solvable if H is a bi-arc
graph and is NP-complete if H is not a bi-arc graph. This result generalizes the work
of [9, 10] since a reflexive graph is a bi-arc graph if and only if it is an interval graph,
and an irreflexive graph is a bi-arc graph if and only if it is a complement of a circular
arc graph of clique covering number two.

The polynomial time algorithm of [11] is established by showing that every bi-arc
graph admits a conservative NUF3. Under the assumption that P �= NP, the bi-arc
graphs are precisely the graphs with a conservative NUF3. We now establish this
result without the assumption P �= NP.

Let C be a circle with two specified points p and q. A bi-arc is an ordered pair
of arcs (N,S) on C such that N contains p but not q, and S contains q but not p. A
graph G is a bi-arc graph if there is a family of bi-arcs {(Nx, Sx) : x ∈ V (G)} such
that, for any not necessarily distinct vertices x, y ∈ V (G), the following hold:

(i) if x and y are adjacent, neither Nx intersects Sy nor Ny intersects Sx;
(ii) if x and y are not adjacent, both Nx intersects Sy and Ny intersects Sx.

(Note that there cannot be bi-arcs (N,S), (N ′, S′) such that N intersects S′ but
S does not intersect N ′ or vice versa.)

We begin by showing that the irreflexive graphs that admit a conservative NUF3

are precisely the complements of circular arc graphs of clique covering number two.

An edge-asteroid in a bipartite graph with the bipartition (X,Y ) is a set of 2k+1
edges u0v0, u1v1, . . . , u2kv2k (k ≥ 1 and each ui ∈ X and vi ∈ Y ) and 2k + 1
paths, P0,1, P1,2, . . . , P2k,0, where each Pi,i+1 joins ui to ui+1, such that for each
i = 0, 1, . . . , 2k there is no edge between {ui, vi} and {vi+k, vi+k+1} ∪ V (Pi+k,i+k+1)
(subscripts are modulo 2k + 1). We refer to the (odd) integer 2k + 1 as the or-
der of the edge-asteroid. An edge-asteroid which has no edge between {u0, v0} and
{v1, v2, . . . , v2k}∪V (P1,2)∪V (P2,3)∪ . . .∪V (P2k−1,2k) is called a special edge-asteroid.

We will use the following structural characterization.

Theorem 5.1 (see [10]). An irreflexive bipartite graph H is the complement of
a circular arc graph if and only if H is chordal bipartite and contains no special
edge-asteroids.

Theorem 5.2. Let H be an irreflexive graph. The following are equivalent:

(a) H is bipartite and the complement of a circular arc graph;
(b) H admits a conservative NUF3;
(c) H admits a conservative NUFk for some k ≥ 3.

Proof. In [11], it is shown that every complement of a circular arc graph of clique
covering number two has a conservative NUF3. Clearly, if H has a conservative NUF3,
then H has a conservative NUFk for some k.

To complete the proof, assume to the contrary that H is not the complement of
a circular arc graph of clique covering number two, but H does admit a conservative
NUFk, say, g. If H is not bipartite, then by Proposition 4.12 H does not admit a
NUFk for any k. Therefore, H is bipartite.
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Suppose H contains an induced (even) cycle, say, C, of length at least six with
vertex set 0, 1, 2, . . . , 2n− 1. In light of Proposition 2.5, g is a conservative NUFk on
the cycle C. Consider the following path in Ck:

(0, 0, . . . , 0, 0, 2) ∼ (2n− 1, . . . , 2n− 1, 1, 3) ∼ (0, . . . , 0, 2, 2)

∼ (2n− 1, . . . , 2n− 1, 1, 3, 3) ∼ (0, . . . , 0, 2, 2, 2)

∼ · · · ∼ (2n− 1, 1, 3, . . . , 3, 3) ∼ (0, 2, 2, . . . , 2, 2).

By near unanimity, the first vertex of the path must map to 0. The vertices of the
form (2n− 1, . . . , 2n− 1, 1, 3, . . . , 3) cannot map to 1, since such vertices are distance
n − 2 from (n + 1, . . . , n + 1, n − 1, n + 1, . . . n + 1) and 1 is distance n from n + 1.
Thus the second vertex of the path must map to 2n− 1, the third to 0, the fourth to
2n− 1, etc. By parity, the final vertex maps to 0, which is a contradiction.

Hence H is chordal bipartite. We conclude that H contains a special edge-asteroid.
Let the path P0,1 be u0, p1, p2, . . . , pt, u1. Consider the following path in Hk:

(u0, . . . , u0, u0, uk+1) ∼ (v0, . . . , v0, p1, vk+1)

∼ (u0, . . . , u0, p2, uk+1) ∼ (v0, . . . , v0, p3, vk+1)

∼ · · · ∼ (u0, . . . , u0, u1, uk+1).

Notice that, in this path, all coordinates with the exception of coordinate k − 1
alternate between ui and vi. We will describe this situation by saying that coordinate
k − 1 traverses that path P0,1 while all other coordinates alternate.

We claim g(u0, . . . , u0, u1, uk+1) = u0. Clearly the first vertex of the path is
mapped to u0. Since g is a conservative function and there is no edge between
{uk+1, vk+1} and {v0, v1}∪P0,1, we know that no vertex in the above path is mapped to
{uk+1, vk+1}. If g(u0, . . . , u0, u1, uk+1) = u1, then we look at the path from (u0, . . . , u0,
u1, uk+1) to (u0, . . . , u0, u1, uk+2) where the last coordinate traverses the path
Pk+1,k+2 while all other coordinates alternate. Since there is no edge from {u1, v1}
to {vk+1, vk+2} ∪ Pk+1,k+2, the image of the entire path must alternate between u1

and v1, and thus g(u0, . . . , u0, u1, uk+2) = u1. Similarly, we consider the path from
(u0, . . . , u0, u1, uk+2) to (u0, . . . , u0, u2, uk+2) where coordinate k − 1 traverses P1,2

while all other coordinates alternate. Again there is no edge between {uk+2, vk+2} ∪
{u0, v0} and {v1, v2}∪P1,2. Thus g(u0, . . . , u0, u2, uk+2) = u2. Continuing in this man-
ner, we can move coordinate k down to u0 and coordinate k − 1 up to uk. We find
that g(u0, . . . , u0, uk, u0) = uk, which is a contradiction. This proves the claim.

Consider the path from (u0, . . . , u0, u1, uk+1) to (u0, . . . , u0, uk+1, uk+1), where
the (k − 1)st coordinate traverses all the paths P1,2, P2,3, . . . , Pk,k+1 while the other
coordinates alternate. Since there is no edge from {u0, v0} to any of these paths
Pi,i+1, the image of the entire path must alternate between u0 and v0, and thus,
g(u0, . . . , u0, uk+1, uk+1) = u0. Continuing in this manner, we can show that
g(u0, . . . , u0, uk+1, . . . , uk+1) = u0 and thus g(u0, uk+1, . . . , uk+1) = u0, which is a
contradiction.

We conclude by characterizing all graphs that admit a conservative near-unanimity
function.

Theorem 5.3. Let H be a graph. The following are equivalent.
(a) H is a bi-arc graph;
(b) H admits a conservative NUF3;
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(c) H admits a conservative NUF.
Proof. Assume H is a bi-arc graph. In [11], it is shown that H admits a conser-

vative NUF3. Clearly, if H admits a conservative majority function, then it admits a
conservative NUF.

Thus assume H admits a conservative NUF. Let H∗ = H × K2. Note that H∗

is irreflexive since K2 is irreflexive. We have established how to construct a NUF for
the product of two graphs given that both factors admit a NUF (see Proposition 2.7).
This construction preserves the conservative property. Consequently, H∗ is bipartite
and the complement of a circular arc graph by Theorem 5.2. Using Proposition 3.1 of
[11], we have H is a bi-arc graph.

Note that by Corollary 2.3 and Theorem 5.3, H admits a conservative NUF3 if
and only if H admits a conservative NUFk for all k ≥ 3.

It is shown in [11] that the reflexive bi-arc graphs are precisely the interval graphs
and the irreflexive bi-arc graphs are precisely the complement of circular arc graphs
of clique covering number two. Thus we have the following.

Corollary 5.4. A reflexive graph admits a conservative NUF if and only if it
is an interval graph and an irreflexive graph admits a conservative NUF if and only
if it is the complement of a circular arc graph of clique covering number two.

It is easy to construct a conservative NUF for a reflexive (resp., irreflexive) bi-arc
graph using an interval (resp., a circular arc) representation of the graph. In [11], a
direct construction of a conservative NUF is given for bi-arc trees. However, a direct
construction for general bi-arc graphs still remains elusive.
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