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Abstract. We describe a generating set for the variety of simple graphs that
admit a k-ary near-unanimity polymorphism. The result follows from an anal-
ysis of NU polymorphisms of strongly bipartite digraphs, i.e. whose vertices are
either a source or a sink but not both. We show that the retraction problem
for a strongly bipartite digraph H has finite duality if and only if H admits
a near-unanimity polymorphism. This result allows the use of tree duals to
generate the variety of digraphs admitting a k-NU polymorphism.
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1. Introduction

The present paper is a companion to [5] where the class of reflexive graphs
admitting a compatible k-NU operation is described by a simple set of generators
via products and retracts; we refer to that paper for a thorough discussion of the
motivations behind the study of such operations on graphs. In the present paper, we
describe a nice generating set for the class of simple graphs admitting compatible
k-NU operations. This result is obtained as a corollary of an analogous result
(Theorem 4.2) for digraphs we call strongly bipartite, i.e. digraphs for which every
vertex is a source or a sink (Definition 2.2). For this class of digraphs, we prove
that the existence of a compatible NU operation is equivalent to the corresponding
constraint satisfaction problem having finite duality (Theorem 3.1). Although the
main idea underlying our characterization of k-NU graphs is essentially the same as
in the case of reflexive graphs, namely by using duals of coloured trees, the present
paper differs from its companion in at least two important aspects: firstly, in the
reflexive case, the equivalence of finite duality and existence of an NU polymorphism
was already known [11] whereas in the case of strongly bipartite digraphs this had
to be proved (Theorem 3.1); secondly, in [5] we introduced the notion of reflexive
duals, a simple analogue of tree dual tailor-made for the study of reflexive graphs;
in the present paper we create our building blocks directly from digraph duals but
the details are a bit more involved. The results for undirected graphs follow from
the strongly bipartite case without much difficulty.

As a consequence of our work, it is shown in [9] that graphs admitting an NU
polymorphism give rise to constraint satisfaction problems solvable in Logspace
via the language Symmetric Datalog. The bipartite analog of our results in [5] on
reflexive absolute retracts can be found in [12] where a more thorough study of
k-absolute retracts for graphs and digraphs is developed.

We now outline the contents of the paper. In the next section we describe the
preliminary notions we’ll require. In Section 3 we prove that a connected, strongly
bipartite digraph admits an NU polymorphism if and only if its retraction problem
has finite duality (Theorem 3.1). In Section 4 we prove the main theorem for
strongly bipartite digraphs, describing the building blocks that generate the class
of k-NU digraphs (Theorem 4.2). In Section 5 we apply the above results to simple
(irreflexive) graphs (Theorem 5.2). We conclude in Section 6 with a short discussion
of the question of recognizing k-NU graphs.

2. Preliminaries

2.1. Structures and homomorphisms. We refer the reader to [4] for basic nota-
tion and terminology. In the present paper we’ll use blackboard fonts such as G, H,
etc. to denote relational structures and their latin equivalent G, H , etc. to denote
their respective universes. A signature τ is a (finite) set of relation symbols with
associated arities. We say that H = 〈H ;R(H)(R ∈ τ)〉 is a relational structure of
signature τ if R(H) is a relation on H of the corresponding arity, for each relation
symbol R ∈ τ .

Let G and H be structures of signature τ . A homomorphism from G to H is a
map f from G to H such that f(R(G)) ⊆ R(H) for each R ∈ τ . We write G→ H to
indicate there exists a homomorphism from G to H. A homomorphism r : H→ R

is a retraction if there exists a homomorphism (called a coretraction) e : R → H

such that r ◦ e is the identity on R and we say R is a retract of H and write REH.
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Notice that the relation E is transitive. A structure H is called a core if every
homomorphism from H to itself is a permutation of H ; note that a retract of H
of minimum cardinality is a core, and is unique up to isomorphism, and hence we
may speak of the core of the structure H.

Let H be a τ -structure. We denote by CSP(H) the class of all τ -structures G that
admit a homomorphism to H, and by ¬CSP(H) the complement of this class. We
say that CSP(H) has finite duality if there exist finitely many τ -structures T1, . . . ,Ts

such that the following holds: for every τ -structure G, there is no homomorphism
from G to H precisely if there is some Ti that admits a homomorphism to G. The
set {T1, . . . ,Ts} is called a duality for H. From a complexity-theoretic point of view,
CSPs with finite duality are the simplest of all constraint satisfaction problems.

Throughout this paper we consider the usual product of τ -structures, namely if
G and H are τ -structures then their product is the τ -structure G×H with universe
G ×H and where R(G × H) = R(G) × R(H) for all R ∈ τ . We shall consider the
notations

∏n

i=1 Gi and such to be self-evident.
Let H be a τ -structure. The retraction problem for H is the following: given

a structure G containing a copy of H, decide if G retracts to H. It is in fact
equivalent under positive first-order reductions to the one-or-all list-homomorphism
problem for H: an input consists of a τ -structure G with certain vertices coloured
by a pre-assigned value from H , and the problem is to determine if there exists a
homomorphism from G to H that extends these values. For brevity’s sake we shall
still refer to the latter as the retraction problem. Formally, we “add constants” to
structures, i.e. we add, as basic unary relations to a given structure, each of its
one-element sets:

Definition 2.1. Let H be a τ-structure. For each h ∈ H, let Sh be a unary relation
symbol. Let τH = τ ∪ {Sh : h ∈ H}, and let Hc denote the τH-structure obtained
from H by adding all relations Sh(H

c) = {h}. The problem CSP (Hc) is called the
retraction problem for H. Let G be a τH-structure. We say that a vertex x ∈ G is
coloured if it belongs to some unary relation Sh(G) and refer to h as its colour (a
vertex may have several colours). Let Gτ denote the (reduct) τ-structure obtained
from G by simply removing the relations indexed by the Sh.

LetH be a non-empty set, let θ be anm-ary relation onH and let f : Hk → H be
a k-ary operation on H . We say that f preserves θ if the following holds: if a k×m
matrix M has each column in θ, then applying f to the rows of M yields a tuple of
θ. If H is a τ -structure, and f preserves each of its basic relations (equivalently, if
f is a homomorphism from Hk to H), we say that f is a polymorphism of H, or that
H admits f ; one also says that f is compatible with H, see [4] and [17] for instance.
Recall that f is a k-ary near-unanimity (k-NU) operation if it satisfies, for every
1 ≤ i ≤ k the identity

f(x, . . . , x, y
︸︷︷︸

i

, x, . . . , x) = x.

A structure is said to be k-NU if it admits a k-NU polymorphism.

2.2. Graphs and digraphs. A digraph is a relational structure equipped with a
single, binary relation. A graph H is a relational structure H = 〈H,E(H)〉 where
E(H) is a binary relation which is symmetric, i.e. (x, y) ∈ E(H) if and only if
(y, x) ∈ E(H). The graphH is reflexive (irreflexive) if (x, x) ∈ E(H) ((x, x) 6∈ E(H))
for all x ∈ H .



4 T. FEDER, P. HELL, B. LAROSE, M. SIGGERS, AND C. TARDIF

In the present paper, it will be convenient for us to consider both undirected
and directed bipartite graphs; for this purpose we’ll require a bit of notation and
terminology.

Definition 2.2. A digraph H is strongly bipartite if its vertex set can be partitioned
into two sets D and U such that every arc (x, y) of H satisfies x ∈ D and y ∈ U .

Notice that H is strongly bipartite precisely if it admits a homomorphism to a
single arc; or equivalently, if each vertex is a source or a sink but not both.

Let G be any digraph; then we let Gu denote the underlying undirected graph,
i.e. E(Gu) consists of all pairs (x, y) such that (x, y) or (y, x) is in E(G). Let
H be a digraph. We say H is connected if the graph Hu is connected; if H is not
connected, a set G of vertices of H is a connected component of H if it is a connected
component of Hu.

The next two results will allow us to consider only connected digraphs in what
follows.

Lemma 2.3. Let H be a bipartite graph or strongly bipartite digraph with colour
classes D and U , and assume H is connected. Let k ≥ 3, let (x1, . . . , xk) ∈ Hk and
let ∆ ⊆ {1, . . . , k} denote the set of indices i such that xi ∈ D.

(1) If (x1, . . . , xk) and (y1, . . . , yk) are in the same connected component of Hk

then ∆ = {i : yi ∈ D} or ∆ = {i : yi ∈ U};
(2) if H is a graph or if |∆| ∈ {0, k} then the above condition is also sufficient;
(3) if H is a digraph and 0 < |∆| < k then (x1, . . . , xk) is an isolated vertex of

Hk.

Proof. The first and third statements are straightforward. For the second, let
x̄ = (x1, . . . , xk) and ȳ = (y1, . . . , yk) be tuples whose entries in D are precisely
those with a coordinate in ∆. Since H is connected we may find for each i a path
from xi to yi, and by repeating vertices if necessary we may choose these paths
to be of the same length; it follows that we have a path in Hk from x̄ to ȳ. The
argument if yi ∈ D precisely for coordinates i 6∈ ∆ is similar. �

Proposition 2.4. Let H be an irreflexive graph or a strongly bipartite digraph.
Then H admits a k-NU polymorphism if and only if each of its subgraphs induced
by a connected component does.

Proof. Let f be a k-NU polymorphism of H. We modify f so that it preserves
every connected component H1 of H, i.e. we redefine f on Hk

1 , if necessary, so
that f(Hk

1 ) ⊆ H1. Let K be a connected component of Hk
1 . If K contains a tuple

of the form (x, . . . , x, y, x, . . . , x), then clearly f(K) ⊆ H1 so there is nothing to
do. Otherwise, redefine f on K as the projection on the first coordinate. The
resulting map is clearly an NU polymorphism that preserves H1. This can be done
independently for each component of H.

For the converse, suppose that H has connected components H1, . . . , Hn and
that fi is a k-NU polymorphism of the induced subgraph Hi for each 1 ≤ i ≤ n.
Define a k-ary operation f on H by defining it on each block Hi1 × · · · × Hik as
follows: if all the indices are equal to i let f = fi; if exactly k− 1 of the indices are
identical, let f be the projection on the leftmost repeated index; otherwise, let f
be the first projection. It is easy to see that this is a homomorphism and that it is
NU. �
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For the remainder of the paper, unless otherwise stated, the signature

τ is that of digraphs, i.e. it consists of a single, binary relation symbol.

3. NU Polymorphisms of Strongly Bipartite Digraphs

and Finite Duality

In this section we link the existence of NU polymorphisms of strongly bipartite
digraphs to finite duality. It is known that if H is a core and CSP (H) has finite
duality, then H admits an NU polymorphism [10]. Although the converse does not
hold in general (not even for reflexive digraphs), it is known to hold for reflexive
graphs [11]; the main result of this section states that this is also true for strongly
bipartite digraphs:

Theorem 3.1. Let H be a connected, strongly bipartite digraph. Then CSP(Hc)
has finite duality if and only if H admits an NU polymorphism.

To prove this result we’ll appeal to an analog for posets proved in [13]. Recall
that a digraph is a poset if it is reflexive, antisymmetric and transitive. In [13], it
is proved that a finite connected poset admits an NU polymorphism if and only
if it has finitely many poset “zigzags”, i.e. critical poset obstructions. We restate
this result for our needs. Let P be a τ -structure which is a connected poset. We’ll
say that a τP-structure Q is a P-coloured poset if Qτ is a poset. Let CSPp(P

c)
denote the class of P-coloured posets in CSP (Pc). We’ll say that CSPp(P

c) has
finite duality if there exist finitely many P-coloured posets Z1, . . . ,Zs such that, for
any P-coloured poset Q, Q 6→ Pc if and only if there exists i such that Zi → Q. In
other words, CSPp(P

c) has finite duality if the decision problem has finite duality
when considering only instances that are P-coloured posets.

Theorem 3.2 ([13]). Let P be a connected poset. Then CSPp(P
c) has finite duality

if and only if P admits an NU polymorphism.

Let H be a connected strongly bipartite digraph. Let D and U denote the colour
classes of H such that E(H) ⊆ D× U . If X ⊆ D let N(X) denote the set of y ∈ U
such that (x, y) ∈ E(H) for all x ∈ X ; similarly if X ⊆ U let N(X) denote the set of
y ∈ D such that (y, x) ∈ E(H) for all x ∈ X . If X = {x} we write N(x) instead of
N({x}). If X ⊆ D orX ⊆ U let N2(X) = N(N(X)). It is immediate that if X ⊆ Y
then N(X) ⊇ N(Y ) and N2(X) ⊆ N2(Y ). Notice finally that A×B ⊆ D×U is a
maximal bipartite clique of Hu precisely when N(A) = B and A = N(B). Define
a poset P = PH as follows: its vertices are the sets A×B ⊆ D×U such that either

(1) A×B = {d} ×N(d) for some d ∈ D, or
(2) A×B = N(u)× {u} for some u ∈ U , or
(3) |A|, |B| ≥ 2 and A×B is a maximal bipartite clique of Hu.

The ordering of P is defined by A × B ≤ C × D if A ⊆ C and B ⊇ D. In
particular, vertices of type (1) are the minimal elements of P and vertices of type
(2) are the maximal elements of P. Notice that the substructure of P induced by
its extremal elements is isomorphic to the digraph H. Through this isomorphism,
any τH-structure can be viewed as a τP-structure by renaming the colours in the
obvious way.

Definition 3.3. Let H be a strongly bipartite digraph, and let G be a τH-structure.
We say that G is an H-coloured, strongly bipartite digraph if Gτ is a strongly
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bipartite digraph; furthermore we’ll say it is consistently coloured if its vertex set
can be partitioned into sets A and B such that

(1) E(G) ⊆ A×B, and
(2) if a vertex of A is coloured then it has a unique colour and it belongs to D,

and
(3) if a vertex of B is coloured then it has a unique colour and it belongs to U .

Lemma 3.4. Let H be a connected strongly bipartite digraph, and let P = PH.
If CSPp(P

c) has finite duality, then CSP (Hc) has finite duality.

Proof. Let G be a consistently H-coloured strongly bipartite digraph. As we re-
marked after the definition of P earlier, we can interpret such a G as an input
to CSP (Pc): we claim that in fact G → Hc if and only if G → Pc. Indeed, if
f : G→ Hc, define F : G→ Pc by

F (x) =

{
{f(x)} ×N({f(x)}), if x ∈ A,
N({f(x)})× {f(x)}, if x ∈ B.

Clearly F is both edge- and colour-preserving (it is just a reinterpretation of f
within Pc). Conversely, let f : G → Pc. For every x ∈ A let f ′(x) be any minimal
element of Pc below f(x) and for x ∈ B let f ′(x) be any maximal element of Pc

above f(x). It is clear that f ′ is a homomorphism from G to Pc whose image is
contained in the set of extremal elements of Pc; it is then immediate that f ′ can be
interpreted as a homomorphism from G to Hc.

For any τP-structure G, let Gl denote the τP-structure obtained from G by adding
all loops to the underlying digraph Gτ . Let Z1, . . . ,Zs be P-coloured posets that
witness the fact that CSPp(P

c) has finite duality. Consider the class F that consists
of the following τP-structures (see Figure 2):

(1) for all distinct a, b ∈ H , a single vertex coloured with a and b;
(2) for every u ∈ U , a single directed edge (x, y), with x coloured by u;
(3) for every d ∈ D, a single directed edge (x, y), with y coloured by d;
(4) the directed path of length 2 (with no colours);
(5) all structures Q such that Ql is a homomorphic image of some Zi.

We claim that F is a finite duality for Hc. Indeed, it is is clear that F is finite, and
that no member of it admits a homomorphism to Hc. Now suppose that a structure
G admits no homomorphism to Hc. If one of the structures in (1), (2), (3) or (4)
maps to G we are done. Otherwise, Gτ is a consistently coloured strongly bipartite
digraph. By the above argument, G 6→ Pc, and in fact Gl 6→ Pc. Clearly Gl is a
P-coloured poset, thus there exists some Zi → Gl. Let Q denote the τP-structure
obtained from the homomorphic image of Zi in G by removing all its loops. Then
Ql is a homomorphic image of Zi and thus Q ∈ F , and Q→ G. �

Lemma 3.5. Let H be a connected strongly bipartite digraph. If H admits a k-ary
NU polymorphism then so does PH.

Proof. Let D and U denote the colour classes of H such that E(H) ⊆ D × U . Let
f : Hk → H be a k-ary NU polymorphism. Notice that since f is idempotent and
H is connected we have f(Dk) ⊆ D and f(Uk) ⊆ U .

For every d ∈ D define Id to be the following set of vertices of Pk
H

Id = {(A1×B1, . . . , Ak×Bk) : Ai ×Bi = {d} ×N(d) for at least k − 1 values of i},
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and for every u ∈ U define

Ju = {(A1×B1, . . . , Ak×Bk) : Ai ×Bi = N(u)× {u} for at least k − 1 values of i}.

Since k ≥ 3 it is clear that all these subsets of Pk are disjoint. Notice also that
for any d, Id is an ideal of Pk, i.e. if x ≤ y ∈ Id then x ∈ Id; dually, for every u the
set Ju is a filter of Pk i.e. if x ≥ y ∈ Ju then x ∈ Ju.

If A1, . . . , An ⊆ D, let f(A1, . . . , Ak) denote the set

{f(a1, . . . , ak) : ai ∈ Ai, i = 1, . . . , k}.

Define F : Pk → P as follows:

F (A1×B1, . . . , Ak×Bk) =







{d} ×N(d), if (A1 ×B1, . . . , Ak ×Bk) ∈ Id,
N(u)× {u}, if (A1 ×B1, . . . , Ak ×Bk) ∈ Ju,
N2(f(A1, . . . , Ak))×N(f(A1, . . . , Ak)) otherwise.

We first prove that F is well-defined: we must verify that in the case the input of
F does not lie in some Id nor in a Ju the value is indeed in P. Let α = f(A1, . . . , Ak).
Suppose first that |N2(α)| = 1. Then N2(α) ⊇ α implies N2(α) = α so N2(α) ×
N(α) = {d} × N(d) for some d ∈ D. If on the other hand |N(α)| = 1, then
clearly N2(α)×N(α) = N(u)×{u} for some u ∈ U . So we may now suppose that
|N2(α)|, |N(α)| ≥ 2, so we must prove that N2(α) × N(α) is a maximal bipartite
clique of Hu; for this it clearly suffices to prove that N(N2(α)) = N(α). Since
α ⊆ N2(α) we have that N(α) ⊇ N(N2(α)). Now let y ∈ N(α) and z ∈ N2(α): by
definition of N2, z is a neighbour of y so y ∈ N(N2(α)) and we’re done.

Next we prove that F obeys the near-unanimity identities. Fix some 1 ≤ j ≤ k

and let Ai × Bi = A × B for all i 6= j and let Aj × Bj = A′ × B′. If there
is some d ∈ D such that (A1 × B1, . . . , Ak × Bk) ∈ Id or some u ∈ U such that
(A1×B1, . . . , Ak×Bk) ∈ Ju then by definition we have that F (A1×B1, . . . ) = A×B.
Otherwise, we have that |A|, |B| ≥ 2 and N(A) = B and N(B) = A. We claim
that

f(A, . . . , A,A′, A, . . . , A) = A.

Indeed, if a ∈ A then for any x ∈ A′ we have

a = f(a, . . . , a, x, a, . . . , a) ∈ f(A, . . . , A,A′, A, . . . , A)

so one inclusion is taken care of. Now let ai ∈ A for i 6= j and let x ∈ A′. Since
A = N(B), for every b ∈ B we have (ai, b) ∈ E(H) for all i 6= j. Since H is
connected, x has some neighbour y ∈ U . Thus

(f(a1, . . . , aj−1, x, aj+1, . . . , ak), f(b, . . . , b, y, b, . . . , b)) ∈ E(H)

and since f(b, . . . , b, y, b, . . . , b) = b it follows that

f(a1, . . . , aj−1, x, aj+1, . . . , ak) ∈ N(b).

Since this holds for all b ∈ B, we conclude that

f(A, . . . , A,A′, A, . . . , A) ⊆ N(B) = A
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which proves our claim. Then

F (A1 ×B1, . . . , Ak ×Bk) = N2(f(A, . . . , A,A′, A, . . . ))×N(f(A, . . . , A,A′, A, . . . ))

= N2(A)×N(A)

= N(B)×B

= A×B.

Finally we show that F is order-preserving. Let

α = (A1 ×B1, . . . , Ak ×Bk) ≤ (C1 ×D1, . . . , Ck ×Dk) = δ,

i.e. Ai ⊆ Ci and Bi ⊇ Di for all 1 ≤ i ≤ k. If α ∈ Ju for some u ∈ U or
if δ ∈ Id for some d ∈ D then F (α) = F (δ). If α ∈ Id for some d ∈ D and
δ ∈ Ju for some u ∈ U then F (α) ≤ F (δ) since k ≥ 3. Next suppose that α is
in some Id and that δ lies in no Id and no Ju. Then F (α) = {d} × N(d) and
F (δ) = N2(ǫ) × N(ǫ) where ǫ = f(C1, . . . , Ck). Since d ∈ Ci for all but one
index i we have that d = f(d, . . . , d, x, d, . . . ) ∈ ǫ ⊆ N2(ǫ) and N(d) ⊇ N(ǫ),
thus F (α) ≤ F (δ). The case where δ is in some Ju and α lies in no Id and no
Ju is similar. So now assume that α and δ lie in no Id and in no Ju. Then
F (α) = N2(β) × N(β) and F (δ) = N2(ǫ) × N(ǫ) where β = f(A1, . . . , Ak) and
ǫ = f(C1, . . . , Ck). Since Ai ⊆ Ci for all i it is immediate that β ⊆ ǫ, and hence
N(β) ⊇ N(ǫ) and N2(β) ⊆ N2(ǫ) so F (α) ≤ F (δ).

�

Proof of Theorem 3.1. Since Hc is a core, if CSP (Hc) has finite duality then Hc,
and hence H, admits an NU polymorphism by Corollary 4.5 of [10]. Conversely,
suppose that H admits an NU polymorphism. Then by Lemma 3.5 P = PH also
admits an NU polymorphism, so by Theorem 3.2 CSPp(P

c) has finite duality and
by Lemma 3.4 CSP(Hc) has finite duality. �

4. Strongly bipartite k-NU digraphs

We now state the main result of this paper, whose proof will be split into several
lemmas. The theorem asserts that the following digraphs constitute a generating
set for the class of k-NU strongly bipartite digraphs.

Definition 4.1. Let T be a non-trivial tree and let D and U be its colour classes.
Define a strongly bipartite digraph G(T) as follows1: its vertices are of the form
(0, X) where X is a set of edges of T satisfying the condition that for every d ∈ D
of degree greater than 1 there exists a unique e ∈ X incident to d, and of the form
(1, Y ) where Y is a set of edges of T satisfying the condition that for every u ∈ U
of degree greater than 1 there exists a unique e ∈ Y incident to u. There is an arc
from (i,X) to (j, Y ) if and only if (i, j) = (0, 1) and X ∩ Y = ∅.

Example. Let T be the tree in Figure 1, a star with three leaves; let D = {d} be
the central vertex and let U = {a, b, c} be T’s leaves. The digraph G(T) is pictured
in Figure 1.

Theorem 4.2. Let k ≥ 3. Let H be a connected, strongly bipartite digraph. Then
the following are equivalent:

1
Note. Strictly speaking, the digraph G(T) depends on the choice of D and U , however if we

exchange their role we simply obtain G(T) with all arcs reversed. To simplify the discussion we
shall not consider this technicality, as this should not create any confusion.
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a b c

d

1 2 3

1 2 3

123 1323 12 123φ

T G(T)

Figure 1. The tree T and its digraphG(T); all edges are implicitly
directed bottom to top. In G(T)’s diagram, the bottom vertices
are those of the form (0, X), the top ones of the form (1, Y ), and
the labels indicate the corresponding set of edges, for instance the
vertex (1, {1, 2}) is labelled simply 12.

(1) H is a k-NU digraph;
(2) H is a retract of a product of finitely many digraphs of the form G(T) where

T is a tree with at most k − 1 leaves.

4.1. Finite duality and duals of τ-trees. For the remainder of this subsection
let τ be an arbitrary signature. Let T and H be τ -structures. We say that T

is an obstruction of H if there is no homomorphism from T to H; furthermore if
every proper substructure of T admits a homomorphism to H we say T is a critical
obstruction of H. The following is a very slight adaptation of a result of Zádori
[18], its proof can be found in [5]:

Lemma 4.3. Let H be a τ-structure. Then the following are equivalent:

(1) H is a k-NU structure;
(2) Hc is a k-NU structure;
(3) every critical obstruction of Hc has at most k − 1 coloured elements.

We shall require the notion of a τ -tree [10]. Let T be a τ -structure. We define
the incidence multigraph Inc(T) of T as the bipartite multigraph with parts T and
Block(T) which consists of all pairs (R, r) such that R ∈ τ and r ∈ R(T), and
with edges ea,i,B joining a ∈ T to B = (R, (x1, . . . , xr)) ∈ Block(T) when xi = a.
Roughly speaking, one colour class consists of all vertices of T, the other (Block(T))
consists of all tuples that appear in the relations R(T) (with repetitions: if a tuple
appears in several relations it will appear as many times in the multigraph); a
vertex t is adjacent to a tuple if it appears in it. The structure T is a τ -tree if its
associated multigraph is a tree, i.e. it is connected and acyclic.

Theorem 4.4 ([15]).

(1) Let H be a τ-structure with finite duality. Then there exists a duality for H

consisting of finitely many τ-trees;
(2) (Existence of duals) Let T be a finite family of τ-trees. Then there exists a

τ-structure D such that T is a duality for D.

4.2. Digraph duals. We now give an explicit description, in the case where τ is
the signature of digraphs, of a structure D(T) which is a dual to the τH-tree T.
In Lemma 4.14 we will see how the structures D(T) are related to the digraphs
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described in Definition 4.1. It is not difficult to see that if T is a τH-tree then (Tτ )u

is a tree and each of its coloured vertices is a leaf.

Definition 4.5 ([16]). Let τ be the signature of digraphs. Let H be a τ-structure
and let T be a τH-tree. The τH-structure D(T) has universe

{f : T → Block(T) : [t, f(t)] ∈ E(Inc(T)) for all t ∈ T },

and (f, g) is not an arc of D(T) if there exists an arc e = (s, t) of T such that
f(s) = e = g(t); the map f does not belong to Sh(D(T)) if there exists some t ∈ Sh

such that f(t) = (t).

Theorem 4.6 ([16]). Let H be a τ-structure and let T be a τH-tree. Then {T} is a
duality for D(T).

More generally, it is immediate by the definition of product that if T1, . . . ,Ts

are τH-trees, then {T1, . . . ,Ts} is a duality for
∏s

i=1D(Ti).

Definition 4.7. Let H be any digraph. Let P1(H) denote the τH-structure consisting
of a single arc (0, 1) and such that both 0 and 1 belong to every Sh, h ∈ H.

The structure P1(H) is pictured in the lower right corner of Figure 3, it is the
dual of the path of length 2. We shall just write P1 when there is no confusion
possible.

Lemma 4.8. Let s be a positive integer. Let H be a connected strongly bipartite
digraph. Then the core of the structure Ps

1 ×Hc is isomorphic to Hc.

Proof. Let D and U be the colour classes of H. Notice first that the substructure
of Ps

1 ×Hc induced by the set of vertices

{(0, . . . , 0, d) : d ∈ D} ∪ {(1, . . . , 1, u) : u ∈ U}

is isomorphic to Hc via the projection on the last coordinate, and that the map
(x1, . . . , xs, h) 7→ h is a retraction of Ps

1 ×Hc onto Hc. �

We distinguish a handful of basic critical obstructions (and their duals) that will
be useful in what follows. We’ll say a structure is non-trivial if it has at least 2
vertices.

Lemma 4.9. Let H be a non-trivial, connected, strongly bipartite digraph with
colour classes D and U . Then the following are critical obstructions of Hc (see
Figure 3):

(A) for all a, b ∈ H distinct, a single vertex coloured with a and b;
(B) for every d ∈ D, a single arc with sink coloured by d;
(C) for every u ∈ U , a single arc with source coloured by u;
(D) the directed path of length 2 (with no colours).

Furthermore, for each S in the above list, the associated dual D(S), the digraph
P1 ×D(S), and its core are pictured in Figure 3.

Proof. This is a simple exercise. �

Definition 4.10. Let H be a non-trivial, connected, strongly bipartite digraph, and
let T be a τH-tree. If T is a consistently H-coloured strongly bipartite digraph whose
coloured vertices are exactly the leaves of (Tτ )u, we’ll say that T is a good τH-tree
(see Figure 4).
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d
a b

u

Figure 2. Basic critical obstructions.

d

all

all but d

all but d

all but d

all

all

a b

all but b

all but a

all but a all but b
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all but u
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all but d
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all

S D(S) P1 ×D(S) core (P1 ×D(S))

Figure 3. For each τH-tree S of Lemma 4.9, the associated dual
D(S), the digraph P1 ×D(S) and its core.

Lemma 4.11. Let H be a non-trivial, connected, strongly bipartite digraph. Then
every τH-tree which is a critical obstruction of Hc other than those mentioned in
Lemma 4.9 is a good τH-tree.

Proof. Let T be a τH-tree which is a critical obstruction of Hc not of the form (A)-
(D) in Lemma 4.9; it is easy to see that in fact, because T is critical, no obstruction
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u u'

d d' d''

u u'''

Figure 4. A good τH-tree. All edges are implicitly directed bot-
tom to top.

of type (A)-(D) can admit a homomorphism to T. In particular, by (A) we get that
no vertex of T can have more than one colour, and by (D) every vertex of T is a
source or a sink but not both, and by (B) and (C) T is consistently coloured, i.e.
T is a consistently coloured strongly bipartite digraph. It is clear that no leaf of T
is uncoloured since T is critical (one can retract this vertex). Finally, suppose that
some vertex x of T is coloured and has (without loss of generality) out degree 2 or
more; removal of the vertex x creates several subtrees of T; to each of these we add
back a copy of the vertex x with its original colour. By minimality of T there exist
homomorphisms from each of these structures to Hc, and since they all agree at x
we can “glue” these maps back together to get a full homomorphism from T to Hc,
a contradiction. �

For our purposes, H is a strongly bipartite path if it is strongly bipartite and Hu

is a path.

Lemma 4.12. Let T be a path of length s. Then G(T) is the disjoint union of a
strongly bipartite path of length s+ 2 and isolated vertices.

Proof. Let T be a path of length 2s, s ≥ 1; the case where T has odd length is
similar. Assume that |D| = |U | + 1 and let the edges of the path T be labelled
simply by {1, 2, . . . , 2s} (see Figure 5). By definition, the vertices of G(T) consist
of pairs (0, X) and pairs (1, Y ) where X and Y have the following form. A set
Y ⊆ {1, . . . , 2s} contains exactly one element of each pair {2j−1, 2j} for 1 ≤ j ≤ s.
A set X ⊆ {1, . . . , 2s} contains exactly one element of each pair {2i, 2i + 1} for
1 ≤ i ≤ s− 1, and may also contain 1 and/or 2s.

Notice that if X contains a pair {2j − 1, 2j} where 1 ≤ j ≤ s then (0, X)
is an isolated vertex; similarly if Y contains {2i, 2i + 1} where 1 ≤ i ≤ s − 1,
then (1, Y ) is isolated. We may thus restrict our attention to the vertices (0, Xi)
where X0 = {1, 3, . . . , 2s − 1}, X1 = {3, 5, . . . , 2s − 1}, Xs = {2, 4, . . . , 2s − 2},
Xs+1 = {2, 4, . . . , 2s}, and

Xi = {2, . . . , 2i− 2, 2i+ 1, . . . , 2s− 1}, 2 ≤ i ≤ s− 1;

and (1, Yj) where Y1 = {2, 4, . . . , 2s}, Ys+1 = {1, 3, . . . , 2s− 1}, and

Yj = {1, 3, . . . , 2j − 3, 2j, . . . , 2s}, 2 ≤ j ≤ s.

Now observe that Yj is disjoint from Xi only if i = j−1 or i = j. So the vertices
(0, X0), (1, Y1), (0, X1), (1, Y2), . . . , (1, Ys+1), (0, Xs+1) make up the path of length
2s+ 2 that we needed to exhibit (see Figure 5).

�
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1 2 3 4 2s-1 2s
.......

0

.......

1

1

2

2 s s+1

s+1

Figure 5. Above, the labelling of the edges of T used in the proof
of Lemma 4.12. Below, the resulting path of length 2s+2 in G(T).

We now associate to every good τH-tree T a τH-structure R(T). It turns out this
structure is homomorphically equivalent to the product of P1(H) and the dual of
T. Secondly, the underlying digraphs of these structures are precisely the building
blocks we seek. Notice that R(T) is similar to (the product of the arc with) the
dual construction, except that functions are restricted to the colour classes of the
tree.

Definition 4.13. Let H be a strongly bipartite digraph, let T be a good τH-tree and
let D and U denote the colour classes of the tree (Tτ )u. Define the τH-structure
R(T) as follows: its universe consists of

{

(0, f)

∣
∣
∣
∣
f : D → Block(T) such that [d, f(d)] ∈ E(Inc(T)) for all d ∈ D

}
⋃

{

(1, g)

∣
∣
∣
∣
g : U → Block(T) such that [u, g(u)] ∈ E(Inc(T)) for all u ∈ U

}

;

the pair ((i, f), (j, g)) is not an arc of D(T) if either (i, j) 6= (0, 1) or there exists
an arc e = (d, u) of T such that f(d) = e = g(u); (i, f) does not belong to Sh(R(T))
if there exists some t ∈ Sh such that f(t) = (t).

Example. Let H be a strongly bipartite digraph with colour classes D and U . Let
c1, c2, and c3 in U have a common neighbour in D. Let T be the τH-tree consisting
of the arcs 1 = (d, u1), 2 = (d, u2), and 3 = (d, u3) and coloured vertices ui ∈ Sci(T)
for i = 1, 2, 3. Observe that the reduct Tτ is the first graph, T, shown in Figure
1, (with (u1, u2, u3) = (a, b, c)). We now describe R(T). The reduct R(T)τ is
the graph G(T) of Figure 1 where vertex labels in the figure are now interpreted as
follows. For vertices on the bottom, the label i represents the vertex (0, fi) where fi
is the function mapping d to i. For vertices on the top, the label S ⊂ [3] represents



14 T. FEDER, P. HELL, B. LAROSE, M. SIGGERS, AND C. TARDIF

the vertex (1, gS) where gS : {a, b, c} → Block(T) is defined by gS(ui) = i if i ∈ S
and gS(ui) = ui ∈ Sci(T) otherwise. Further R(T) contains the following coloured
vertices: (0, fi) is in Sh(R(T)) for all h ∈ H and (1, gS) is in Sh(R(T)) for all h ∈ H

except h = ci for i ∈ [3] \ S.

Lemma 4.14. Let H be a connected, non-trivial strongly bipartite digraph, and let
T be a good τH-tree. Let T′ denote the tree (Tτ )u. Then

(1) The structures R(T) and P1 ×D(T) are homomorphically equivalent;
(2) R(T)τ , the underlying digraph of R(T), is isomorphic to G(T′).

Proof. Let D and U denote the colour classes of T′. (1) First define a map φ :
P1 ×D(T)→ R(T) as follows:

φ((i, f)) =

{
(0, f |D), if i = 0,
(1, f |U ), if i = 1.

It is immediate that this map preserves arcs and colours.
Now we define a homomorphism ψ : R(T) → P1 × D(T). For every u ∈ U let

e(u) be some fixed arc of T incident to u, and for each d ∈ D let e(d) be some fixed
arc of T incident to d. Let ψ((i, f)) = (i, fi) where fi(t) = f(t) if either t ∈ D

and i = 0 or t ∈ U and i = 1, and fi(t) = e(t) otherwise. It is easy to verify
that ψ is a structure homomorphism. Indeed, for any arc ((0, f), (1, g)) of R(T),
((0, f0), (1, g1)) is an arc of P1 × D(T), as for any arc (d, u) of T, f and f0 agree
on d while g and g1 agree on u. Further, for (i, f) ∈ R(T), (i, fi) belongs to all
relations Sh that (i, f) does, as f is extended to fi by mapping everything to arcs
of T.

(2) Define a map β : R(T)→ G(T′) as follows: β((i, f)) = (i, Ef ) where

Ef = {e ∈ E(T) : ∃t ∈ T, f(t) = e}.

First we show that this map is well-defined, i.e. that the sets Ef satisfy the con-
ditions of the definition of G(T′). Let i = 0, and let d ∈ D have degree greater
than 1; since T is a good tree d is not coloured and hence f(d) is an edge incident
to d, and it is obviously the only such edge in Ef . The argument for i = 1 is
identical. This last argument also shows that β is a one-to-one map. To show it
is onto, let (0, E) ∈ G(T′), and define a map f as follows: for d ∈ D, if there
exists an edge e ∈ E incident to d then it is unique, and let f(d) = e; if no edge
incident to d belongs to E, then d is a leaf and hence has a colour h so we define
f(d) = {h}. It is clear that Ef = E. We proceed similarly for (1, g) ∈ G(T′). Now
let β((0, f)) = (0, Ef ), β((1, g)) = (1, Eg). Then by definition of β, there is an edge
e = (d, u) that lies in Ef ∩Eg if and only if f(d) = e = g(u), i.e. if and only if there
is no arc from (0, f) to (1, g), thus β is a digraph isomorphism. �

4.3. Proof of the existence of the NU.

The following description of the building blocks for k-NU reflexive graphs is from
[5].

Definition 4.15 ([5]). Let T be a tree with colour classes D and U and edges
e1, . . . , em. Define a graph K(T) as follows: its vertices are the tuples (x1, . . . , xm)
such that

(1) xi ∈ {0, 1, 2} for every 1 ≤ i ≤ m;
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(2) for each d ∈ D of degree greater than 1, xi = 0 for exactly one edge i

incident to d;
(3) for each u ∈ U of degree greater than 1, xi = 2 for exactly one edge i

incident to u.

Tuples (x1, . . . , xm) and (y1, . . . , ym) are adjacent if |xi − yi| ≤ 1 for all i.

Definition 4.16. Define two equivalence relations β and θ on the vertex set of
K(T) as follows:
let (x1, . . . , xm)β (y1, . . . , ym) when both tuples have 0 in exactly the same coordi-
nates, and (x1, . . . , xm) θ (y1, . . . , ym) if they have 2 in exactly the same coordinates.
Define a digraph Q whose vertices are pairs (0, U) with U a β-block and (1, V ) with
V a θ-block; there is an arc from (i, U) to (j, V ) if (i, j) = (0, 1) and U ∩ V 6= ∅.
Notice that if U ∩ V 6= ∅ the intersection consists of exactly one tuple.

Lemma 4.17. Q is isomorphic to the subdigraph of G(T) induced by non-isolated
vertices.

Proof. Indeed, let U be a β-block, let I be the set of positions i such that xi = 0 for
all tuples in U and let XU = {ei : i ∈ I}. Similarly if V is a θ-block let J be the set
of positions j such that xj = 2 for all tuples in T and let YV = {ej : j ∈ J}. Define
a map from the vertex set of Q to G(T) that sends, for each β-block U , (0, U) to
(0, XU ) and for each θ-block V , sends (1, V ) to (1, YV ). Clearly this a well-defined
map. If α = ((0, X), (1, Y )) is an arc of G(T), define the tuple (x1, . . . , xm) where
xi = 0 if ei ∈ X , xi = 2 if ei ∈ Y and xi = 1 otherwise. It is clear that the
β-block of this tuple maps to (0, X) and that its θ-block maps to (1, Y ): notice in
fact that this correspondence is a one-to-one correspondence between pairs (U, V )
where U ∩ V 6= ∅ and arcs of G(T), and the result follows. �

Corollary 4.18. Let k ≥ 3 and let T be a tree with at most k − 1 leaves. Then
G(T) is a k-NU digraph.

Proof. In the proof of Lemma 4.2 of [5], we have the following k-NU polymorphism
of K(T): let e1, . . . , em denote the edges of T. For each 1 ≤ i ≤ m define an integer
ci as follows: remove the edge ei from T to obtain two connected components,
exactly one of which contains a vertex u ∈ U incident to ei. Let ci denote the
number of leaves of T that are in this component. Clearly 1 ≤ ci ≤ k− 2. Viewing
elements of K as columns for convenience of notation, define f : (K(T))k → K(T)
by

f











x1,1
...

xm,1




 · · ·






x1,k
...

xm,k









 = r






f1(x1,1, . . . , x1,k)
...

fm(xm,1, . . . , xm,k)






where fi returns the (ci + 1)-th smallest entry in row i, i.e. if {xi,1, . . . , xi,k} =
{u1, . . . , uk} where ui ≤ uj when i ≤ j then fi(xi,1, . . . , xi,k) = uci+1, and

r






x1
...
xk




 =






y1
...
yk






where yi is defined as follows: if xi = 0, and ei is incident to a vertex d ∈ D such
that there exists an edge ej incident to d with j < i and xj = 0, or if xi = 2, and
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ei is incident to a vertex u ∈ U such that there exists an edge ej incident to u with
j < i and xj = 2, then let yi = 1; otherwise let yi = xi.

Notice first that f preserves both equivalences β and θ since these depend only on
the set of positions where the tuples are 0 and 2 respectively. Thus we may define a
partial map on the digraphQ define above by setting φ((0, B1), . . . , (0, Bk)) = (0, B)
where B is the β-block containing f(x1, . . . , xk) for any choice of xi ∈ Bi; similarly
let φ((1, T1), . . . , (1, Tk)) = (1, T ) where T is the θ-block containing f(x1, . . . , xk)
for any choice of xi ∈ Ti. By Lemma 2.3 (3) and the preceding discussion, φ
trivially extends to a full map from G(T)k to G(T). Since f obeys the k-NU
identities so does φ, and it remains only to verify that φ is arc-preserving, but this
is immediate: if xi ∈ Bi ∩ Ti for all 1 ≤ i ≤ k then f(x1, . . . , xk) belongs to B ∩ T
where φ((0, B1), . . . , (0, Bk)) = (0, B) and φ((1, T1), . . . , (1, Tk)) = (1, T ). �

4.4. Proof of Theorem 4.2.

Proof of Theorem 4.2.

(⇐) By Corollary 4.18 every digraph G(T) admits a k-ary NU polymorphism,
and it follows that their product and any retract of it also admits a k-NU polymor-
phism, see the proof of (2)⇒ (1) of Theorem 3.9 of [5].

(⇒) If the strongly bipartite digraph H is k-NU then so is Hc by Lemma 4.3;
by Lemma 3.1 it follows that Hc has finite duality, and hence has finitely many
obstructions T1, . . . ,Ts. We may assume these obstructions are critical τH-tree
obstructions (this is easy, see for instance the proof of Theorem 3.9 in [5]). By
Lemma 4.3 again, each of these τH-trees has at most k − 1 coloured vertices. By
Theorem 4.6 and the remark following it, Hc and the product of the duals of the
Ti are homomorphically equivalent:

Hc ←→
s∏

i=1

D(Ti).

By taking the product on each side with s copies of the structure P1 = P1(H) and
applying Lemma 4.8, we obtain

Hc ←→ Ps
1 ×Hc ←→

s∏

i=1

(P1 ×D(Ti)).

Let Tr+1, . . . ,Ts denote the good τH-trees in our set of obstructions (notice that,
by Lemma 4.11, it follows that T1, . . . ,Tr are basic obstructions of one of the forms
(A)-(D) in Lemma 4.9.) Let Fi denote the core of P1 ×D(Ti) for 1 ≤ i ≤ r. By
Lemma 4.14 (1) we have that

Hc ←→
r∏

i=1

Fi ×
s∏

i=r+1

R(Ti)

and since Hc is a core, we conclude that

Hc
E

r∏

i=1

Fi ×
s∏

i=r+1

R(Ti).
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Now consider only the digraph part of these structures: since taking reducts com-
mutes with products, it follows from Lemma 4.14 (2) that

H E

r∏

i=1

(Fi)
τ ×

s∏

i=r+1

G(T′

i)

where T′

i = (Tτ
i )

u. It is immediate by Lemma 4.9 (and see Figures 3 and 6) that
each digraph (Fi)

τ is a retract of a product of strongly bipartite paths; by Lemma
4.12 each such path is a connected component of a digraph G(T) for some path
T; and thus we conclude that H is indeed a retract of a product of digraphs G(T)
where the T are trees with at most k − 1 leaves.

�

X

Figure 6. The digraph on the left is a retract of the product of
the two paths.

5. Irreflexive k-NU graphs

In this section, when we say graph, we mean an undirected, irreflexive graph.
We now apply our work on strongly bipartite digraphs to the case of graphs. Recall
that if G is a (irreflexive) digraph then Gu denotes the underlying (undirected)
graph. Let H be a connected graph; if H is bipartite with colour classes D and U ,

let
−→
H denote the digraph obtained from H by orienting every edge from D to U ,

i.e. E(
−→
H ) consists of all pairs (d, u) ∈ D × U such that (d, u) ∈ E(H). Clearly the

digraph obtained this way is strongly bipartite.2

Lemma 5.1. Let H be a connected graph.

(1) If H admits an NU polymorphism then it is bipartite;

(2) if H is bipartite then H is k-NU if and only if
−→
H is k-NU.

Proof.

(1) The result follows from the fact that any graph that admits a so-called
Taylor polymorphism must be bipartite, see [3] (in fact, if a graph admits an NU
polymorphism it dismantles to an edge and hence it must be bipartite [8]).

(2) Let D and U denote the colour classes of H such that x → y in
−→
H implies

that x ∈ D and y ∈ U .

2As we remarked earlier, strictly speaking the digraph obtained is dependent on the choice of
D and U .
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Let f be a k-NU polymorphism of H. Let d ∈ D and u ∈ U ; since H is connected
there exists a large enough (even) integer N such that there exists a path of length
N from any x ∈ D to d, and similarly for every y ∈ U to u. Since f is idempotent
it follows that f(Dk) ⊆ D and f(Uk) ⊆ U . It is then clear that f preserves the

edge structure of
−→
H also.

The converse is very similar to the proof of Proposition 2.4. Let f be a k-

NU polymorphism of
−→
H . We define a map F : Hk → H as follows: let x =

(x1, . . . , xk) ∈ Hk, and let ∆ = {i : xi ∈ D}. If |∆| ∈ {0, k} let F (x) = f(x). If
|∆| ∈ {1, k − 1} let F (x) = xi where i is the smallest index in the repeated block,
i.e. if x ∈W × · · · ×W ×Z ×W × · · · ×W where {W,Z} = {D,U} and Z appears
in the j-th position, then i is the smallest index different from j. Otherwise let
F (x) = x1. It is easy to see, using Lemma 2.3, that F is a graph homomorphism,
and it is clearly NU. �

Theorem 5.2. Let k ≥ 3 and H be a connected graph. Then the following are
equivalent:

(1) H is a k-NU graph;
(2) H is a retract of a product of finitely many graphs of the form G(T)u with

T a tree with at most k − 1 leaves.

Proof. (⇐) By Corollary 4.18 and Lemma 5.1, every graph G(T)u admits a k-ary
NU polymorphism, and it follows that their product and any retract of it also
admits a k-NU polymorphism.

(⇒) We may assume that H is non-trivial. By Theorem 4.2 and Lemma 5.1 the

digraph
−→
H is a retract of a product of digraphs G(Ti), i = 1, . . . , s where each Ti

is a tree with at most k − 1 leaves, i.e.

−→
H E

s∏

i=1

G(Ti),

which easily implies that

H = (
−→
H )u E

(
s∏

i=1

G(Ti)

)u

.

Claim. Let C be a non-trivial, connected graph and let A,B be strongly bipartite
digraphs. If CE (A× B)u then CE Au × Bu.

Proof of Claim. For X ∈ {A,B} let DX and UX denote the colour classes of X
such that (v, w) ∈ E(X) implies v ∈ DX and w ∈ UX . It is easy to see that (i)
Au × Bu is the disjoint union of its subgraphs V and W induced respectively by
(DA ×DB) ∪ (UA × UB) and (DA × UB) ∪ (UA ×DB); (ii) the subgraph of (A× B)u

induced by (DA×UB)∪(UA×DB) consists of isolated vertices only; (iii) the subgraph
V′ of (A × B)u induced by (DA ×DB) ∪ (UA × UB) is isomorphic to V. Since C is
non-trivial and connected, its image R in (A×B)u under the coretraction must lie
in V′; we may then retract V ∼= V′ onto R and W onto any edge of R and we’re
done.

It follows by the claim that

H E

s∏

i=1

G(Ti)
u

and this concludes the proof. �
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The following corollary, one of the motivations for our work, can be proved by
combining results from [1], [3] and [7], but is an easy consequence of our results. A
majority operation is a 3-ary NU operation.

Corollary 5.3. Let H be a connected graph. Then the following are equivalent:

(1) H admits a compatible majority operation;
(2) H is a retract of a product of paths.

Proof. Immediate by Lemma 4.12 and Theorem 5.2. �

6. The Decision Problem

We conclude with a few remarks concerning the problem of recognizing NU
graphs.

Definition 6.1. Let u, and v be vertices of a graph H. We say u dominates v in H if
every neighbour of v is also a neighbour of u. Let H be a bipartite graph with colour
classes D and U , and let ∆ = {(x, x) : x ∈ H}. We’ll say that H2 dismantles to the
diagonal if the following holds: there is a sequence of pairs {(xi, yi) : i = 1, . . . ,m}
such that

(1) {(x1, y1), . . . , (xm, ym)} = D2 ∪ U2 \∆;
(2) for each 1 ≤ i ≤ m the vertex (xi, yi) is dominated in the subgraph of H2

induced by {(xi, yi), . . . , (xm, ym)} ∪∆.

In other words, H2 dismantles to the diagonal if, in the subgraph induced by
D2 ∪ U2, we can obtain the diagonal by successively removing dominated vertices.
One can show that if H2 dismantles to the diagonal, the removal can be done
greedily, in any order. In particular, one can determine in polynomial time if H2

dismantles to the diagonal.

Theorem 6.2. There is a poly-time algorithm to recognize NU graphs. More pre-
cisely, the bipartite graph H is an NU graph if and only if H2 dismantles to the
diagonal.

Proof. As we noted in Lemma 5.1, the graphH is NU if and only if it is bipartite and

the digraph
−→
H is NU. By Theorem 3.1, this is equivalent to the problem CSP (

−→
H c)

having finite duality, and since the structure
−→
H c is a core, we can determine if it

has finite duality using the dismantling algorithm from Theorem 6.2 in [10]. Since
pairs (x, y) ∈ (D × U) ∪ (U × D) have neither in- nor out-neighbours in H2 and
hence are dominated by any other pair, it is easy to see that the algorithm will
succeed precisely when H2 dismantles to the diagonal, as defined above. �

The following is a special case of an algorithm due independently to Mároti and
to Barto and Kozik.

Theorem 6.3 ([2],[14]). For each fixed k ≥ 3, there is a poly-time algorithm to
recognize k-NU graphs. In fact, the algorithm produces a k-NU polymorphism if
there is one.

Proof. Let H be a graph, and as before let τH denote the signature of the structure
Hc. Let G be the following τH-structure: its underlying τ -structure is the graph
Hk, and we colour each vertex of the form (x, . . . , x, y, x, . . . , x) with the colour
x. Obviously H is a k-NU graph precisely if G admits a homomorphism to Hc.
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It is known that if H admits an NU polymorphism, then the problem CSP (Hc)
has bounded width, i.e. can be solved (in polynomial time) by local consistency
checking [6]. This algorithm has the property that, whatever the nature of the
target, if it returns a NO answer, it is always correct. So proceed as follows: run
the algorithm on instance G; if it returns NO then H is not k-NU and we stop.
Otherwise, choose an uncoloured vertex of G, colour it and run the algorithm. If
the algorithm returns NO, repeat with a different colour until either (a) all colours
give NO and hence H is not k-NU or (b) some colour returns YES. In that case
keep the colour, choose another uncoloured vertex and repeat. Note that the total
number of calls we make to the bounded width algorithm is O(|H |k+1). Unless we
get a NO answer for every colour assigned to a vertex, in which case H is not k-NU
and we are done, we shall obtain a fully defined NU map from Hk to H . It now
suffices to check that the map is a homomorphism; if it is, Hk is k-NU, and otherwise
it is not (if H were NU the algorithm could not return a false positive.) �
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[16] J. Nešeťril and C. Tardif. Short answers to exponentially long questions: extremal aspects of

homomorphism duality. SIAM Journal on Discrete Mathematics, 19(4):914–920, 2005.
[17] A. Szendrei. Clones in Universal Algebra, volume 99 of Seminaires de Mathematiques Su-

perieures. Université de Montréal, 1986.
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