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Best Cost-Benefit Clinical Data Next to Investigate at Each Diagnostic Step 
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In 2008, we devised a computer program capable of diagnosing diseases in actual patients, as 

opposed to previous existing programs only usable as training or educational tools for internal 

medicine.  Essentially every computer diagnostic program, provided with patient’s clinical data 

(symptoms, physical signs, and results of tests or diagnostic procedures), retrieve quite a long list of 

potential diagnoses that integrate a differential diagnosis list.  To determine which of these 

diagnoses correspond to the disease or diseases afflicting an actual patient, it is necessary to 

calculate for each of them the probability of achieving this goal, confirming one or more and ruling 

out the remaining.  An accurate and efficient instrument to calculate the mentioned probabilities is 

our novel mini-max procedure, superior to Bayes formula and other methods used to this purpose.  

The mini-max procedure (core of our diagnostic system) and its several properties, among them 

discriminating competing and concurrent diagnoses, have been explained in detail in our previous 

publications [1], [2].  An extremely important function of our program is to recommend at each 

step of the diagnostic quest the best cost-benefit clinical data next to investigate in the patient, to 

reach a successful end of the diagnostic quest with the smallest overall cost and greatest efficiency.  

Here again, our mini-max procedure is most useful, coupled with other novel devises, to minimize 

prescription of futile tests and procedures, in favor of those that are more accurate and efficient, 

saving valuable medical resources, while benefiting patients, physicians, nurses, health insurance 

companies, and the entire medical establishment.  Such program is also expected to reduce 

unjustified malpractice suits. 
 

The best cost-benefit clinical datum next to investigate for presence or absence in a patient is an important 

function that can substantially shorten and reduce the cost of a diagnostic quest by precluding 

investigation of futile clinical data.  This has important socioeconomic implications, especially in this era 

of managed care, when insurance companies curtail tests and procedures, and when physicians are rated 

by their proficiency in ordering tests in general. 

 

Computers are faster and more accurate than the human brain in selecting the most convenient clinical 

datum next to investigate for presence or absence in the patient at each diagnostic step, based on 

probabilistic calculations. 

 

Because the term best cost-benefit clinical datum next to investigate in a patient is lengthy, we shorten it 

to best cost-benefit clinical datum. 

 

Initial clinical data collection was achieved during the medical history and physical examination.  We 

accepted whatever clinical data were revealed, without considering their rule-in or rule-out power.  

Subsequent clinical data collection is more selective, because we have a differential diagnosis list and a 

better-structured diagnostic process that enables to apply statistical and probabilistic concepts, and choose 

the best cost-benefit clinical datum, based on cost, positive predictive value (PP value), and 

sensitivity (S). 

 

A practical way to calculate S of a specific clinical datum for a given disease is to determine statistically 

the fraction of patients afflicted by this disease who manifest the clinical datum: 

 

     𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑐𝑎𝑠𝑒𝑠 𝑚𝑎𝑛𝑖𝑓𝑒𝑠𝑡𝑖𝑛𝑔 𝑡𝑕𝑒 𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑑𝑎𝑡𝑢𝑚

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑐𝑎𝑠𝑒𝑠
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In our program we calculate PP value with the following equation: 

                                                

                                                      𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 𝑖 =
𝑆𝑖

𝑆1 + ⋯ +  𝑆𝑖 + ⋯ +  𝑆𝑛
                                                          (1) 

                                                                                                     
Where  PP value i  =   positive predictive value of the clinical datum for the disease i under consideration 

 

               Si  =  sensitivity of the clinical datum for the disease i under consideration 

 

               S1… Sn     =   sensitivities of the same clinical datum for corresponding diseases 

  

In our context cost to obtain a clinical datum involves not only expense, but also risk and discomfort 

resulting from the required test or procedure.  We assign to each clinical datum one of four overall cost 

categories: no cost (clinical data typically obtained through medical history and physical examination), 

small cost (e.g., obtained through routine laboratory analysis, ECG, and other ancillary studies), 

intermediate cost (e.g., colonoscopy, lymph node excision biopsy), and great cost (e.g., liver biopsy, 

laparoscopy, laparotomy).  Benefit of a clinical datum is measured by the magnitude of change it 

produces in the probability (P) of the respective diagnosis, in turn depending on the magnitude of 

PP value of clinical data present, which increase P, and the magnitude of S of clinical data absent, which 

decrease P.  The mini-max procedure calculates these P for corresponding diagnoses.  Detailed 

explanations and examples can be found in our previous publication [2]. 

 

A recommended best cost-benefit clinical datum can be evaluated—before actually accomplishing the 

corresponding test or procedure—by virtually considering it either present or absent, while observing 

how much it improves the diagnostic outcome. 

 

The best cost-benefit clinical datum function enables us to predict which new clinical datum will most 

increase or decrease the total probability (P) of a diagnosis, reducing the number of clinical data required 

to achieve a final diagnosis. 

 

To select a best cost-benefit clinical datum, several steps must be followed: 

 

Step 1.  Select clinical data not yet investigated in the patient 
 

The program examines every diagnosis in the differential diagnosis list and selects from its respective 

disease model in the database (disease listing all potential clinical data it can manifest) all clinical data 

not yet investigated.  These clinical data differ from those initially collected; they are expected to be 

numerous because each disease model will contribute many new clinical data.  However, only clinical 

data of appropriate cost and either of great PP value or great S need be investigated for presence or 

absence. 

 

Step 2.  Organize clinical data not yet investigated according to cost category, diagnosis,     

PP value, and S 
 

Clinical data not yet investigated are organized according to three hierarchical levels (Fig. 1). 

 

The first level is COST CATEGORIES, comprising four categories: none, small, intermediate, and 

great.  The second level is DIAGNOSES, comprising all diagnoses in the differential diagnosis list, 
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COST CATEGORIES  
NONE 

   ∶ DIAGNOSES-P 

 DIAGNOSIS 1 

         ∶  CLINICAL DATA-PP VALUE 

               CLINICAL DATUM-PP value
          

PP value loop* processes 
                            ∶                                    diagnosis 1 clinical data 
               CLINICAL DATUM-PP value         by decreasing PP value

 

 

               CLINICAL DATA-S                     S loop processes same 

               CLINICAL DATUM-S                           clinical data 
                            ∶                                         by decreasing S                    Diagnosis Loop 
               CLINICAL DATUM-S                                                                   processes diagnoses 

                                                                                                                           by decreasing P 

         DIAGNOSIS n 

         ∶  CLINICAL DATA-PP VALUE 

               CLINICAL DATUM-PP value        PP value
 
loop processes 

                            ∶                                    diagnosis n clinical data 
               CLINICAL DATUM-PP value         by decreasing PP value

                                                                              
 

                                                                                                                                                                  Cost loop 
               CLINICAL DATA-S                                                                                                            processes cost 

               CLINICAL DATUM-S                   S loop processes same                                                   by increasing 
                            ∶                                            clinical data                                                               category 
               CLINICAL DATUM-S                         by decreasing S                                                             

 

SMALL 

    ∶ DIAGNOSES-P 

         ∶  CLINICAL DATA-PP VALUE 

               CLINICAL DATA-S 

                        ∶ 

INTERMEDIATE 

    ∶ DIAGNOSES-P                                           SAME ARRANGEMENT AS ABOVE 

         ∶  CLINICAL DATA- PP VALUE 

               CLINICAL DATA-S 

                        ∶ 
GREAT 

    ∶ DIAGNOSES-P 

        ∶   CLINICAL DATA- PP VALUE 

  CLINICAL DATA-S 

                        ∶ 
 

 

FIGURE 1.  Nested loops for selecting best cost-benefit clinical datum. 

* A loop is a program fragment that is iterated with fresh operands until a terminal condition is attained; it will be 

discussed later.  
 

 

identically repeated in each cost category, in order of decreasing P value.  The third level is CLINICAL 

DATA, comprising two lists that we call PP VALUE LIST and S LIST containing only those clinical 

data that have a cost similar to the corresponding cost category.  Both lists contain the same clinical data, 

but sorted according to decreasing PP value
 
and decreasing S value respectively, and consequently these 

clinical data are shown with different sequence in each list. 
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Step 3.  Recommend a new clinical datum as best clinical datum assuming it present 
 

Our program creates for each clinical datum present entered in the computer what we call a clinical 

datum list that has for heading this clinical datum and lists all diagnoses capable of manifesting such 

clinical datum. 

 

Our diagnostic algorithm considers that the greatest PP value of related clinical data present supporting a 

specific diagnosis better represents the P of this diagnosis than any arithmetical combination of the 

individual PP values. 

 

For each diagnosis in the differential diagnosis list, our program looks in the entire set of clinical datum 

lists and selects the greatest PP value that supports this diagnosis.  The selected greatest PP value equals 

the P of this diagnosis. 

 

                                                                        𝑃 = max   𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 1 …  𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 𝑛                                      (2) 

 

Where   𝑃  =  probability of the diagnosis under consideration 

 

max  =  maximum of 

 

PP value
 
1… PP value

 
n  =  positive predictive values of clinical data present, that support the diagnosis 

under consideration 

 

The algorithm then iterates the same routine to determine the P of each diagnosis in the differential 

diagnosis list. 

 
Example: a patient presents with cough, hemoptysis, dyspnea, expectoration, and Mycobacterium tuberculosis 

(Mycobacterium TB) in sputum.  Five clinical datum lists are generated: 

 

 

Cough   S        PP value Hemoptysis    S       PP value 

Pulmonary tuberculosis   0.80        0.276      Pulmonary tuberculosis      0.40       0.222 

Pulmonary embolism      0.50        0.172      Pulmonary embolism  0.60       0.333 

Bronchiectasis                 0.90        0.310     Bronchiectasis             0.30       0.167 

Lung cancer                    0.70       0.241     Lung cancer                 0.50       0.278 

 

Dyspnea      S        PP value  Expectoration    S       PP value 
Pulmonary tuberculosis 0.20        0.148      Pulmonary tuberculosis 0.80       0.417 

Pulmonary embolism  0.50        0.370      Pulmonary embolism  0.02       0.010 

Bronchiectasis            0.05        0.037      Bronchiectasis            0.90       0.469 

Lung cancer                0.60        0.444      Lung cancer                 0.20       0.104 

 

Mycobacterium TB   S         PP value 

Pulmonary tuberculosis 0.70        1.000 

Pulmonary embolism  0.00        0.000 

Bronchiectasis            0.00        0.000 

Lung cancer                0.00        0.000 
 

 

S values in the above example are for demonstration purposes only and do not represent actual statistics.  PP values were 

calculated by applying equation 1 to these S values.  We assume that only the four listed diagnoses exist and that any of them 

could account for the five clinical data.  Highlighted values refer to clinical data that are not elements of a specific disease model; 

accordingly, their S and PP value values equal 0.  Such clinical data have no influence on calculated probabilities. 

 

In the entire set of clinical datum lists, the greatest PP value for pulmonary tuberculosis is 1.000 and equals P for this diagnosis.  

Similarly, 0.370 for pulmonary embolism, 0.469 for bronchiectasis, and 0.444 for lung cancer  
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If clinical data absent were not considered so far, then these greatest values would represent P of the 

diagnoses.  But when clinical data absent were previously considered, which may reduce these P, the 

mini-max procedure must be applied to calculate resulting P (for details of how mini-max procedure 

processes information and calculates P of diagnoses, please refer to our previous publication [2]; here we 

will summarize only the basics). 

 

Mini-max procedure requires to create clinical data pairs, each comprising one clinical datum present and 

one absent; applying equation 3 (see below) to each of these pairs yields a partial probability (partial P) 

for the corresponding diagnosis.  All the partial P are transferred to the so called mini-max tables—one 

table for each diagnosis—(see example, Table 1, below), and the partial P that is at the same time the 

smallest in its row and the greatest in its column is called the determining partial P because it equals the 

total P of the diagnosis.  The specific clinical data pair that yielded the determining partial P is called the 

determining clinical data pair. 

 
 

𝑃𝑖 =
𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 𝑖 (1 − 𝑆𝑖)

𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 1  1 − 𝑆1 +  … +  𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 𝑖  1 − 𝑆𝑖 + … +  𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 𝑛  1 − 𝑆𝑛 
         (3) 

 

Where  Pi         =   probability of a diagnosis i  
 

PP valuei =  positive predictive value of the clinical datum present  
 

Si =   sensitivity of the clinical datum absent  
 

PP value1…PP valuei … PP valuen = positive predictive value of the same clinical datum 

present for each respective diagnosis in the differential diagnosis list 
 

S1 … Si … Sn =  sensitivity of the clinical datum absent for each respective diagnosis in the 

differential diagnosis list 

 

 
Mini-max table for lung cancer 

 

LUNG CANCER 

PP value = partial P 

before considering 

clinical data absent 

Partial P with Cavity 

absent 

S = 0.3 

Partial P with Fever 

absent 

S = 0.1 

MINIMUM 

VALUE 

IN EACH ROW 

Cough              present 0.241 0.231 0.297 0.231 

Hemoptysis     present 0.278 0.254 0.349 0.254 

Dyspnea          present 0.444 0.402 0.540 0.402 

Expectoration present 0.104 0.109 0.135 0.104 

MTb               present 0.000 0.000 0.000 0.000 

MAXIMUM VALUE 

IN EACH COLUMN 
0.444 0.402 0.540 Total P = 0.402 

 

TABLE 1.  The total probability of lung cancer at this diagnostic step is the maximum value (0.402) in the last column. 

 

 

To calculate P of diagnoses, when clinical data absent are involved, the algorithm moves to the lowest 

as-yet-unprocessed COST category, selects the as-yet-unprocessed DIAGNOSIS with greatest P, and 
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from the corresponding PP VALUE LIST, selects the as-yet-unprocessed clinical datum with the greatest 

PP value.  This PP value then is compared to the PP value of the clinical datum present in the current 
determining clinical data pair.  An example of only one clinical data pair, from all possible combinations, 

and results of equation 3 applications follows:  

 
Dyspnea-Cavity              PP value            S         numerators  denominator      Partial P  

Pulmonary tuberculosis 0.148  ×  (1-0.60)   =  0.059 ÷  0.774  =  0.077 

Pulmonary embolism   0.370  × (1-0.00)   =  0.370 ÷  0.774  =  0.478 

Brochiectasis                0.037  ×  (1-0.10)   =  0.033 ÷  0.774  =  0.043 

Lung cancer                  0.444  ×  (1-0.30)   =  0.311 ÷  0.774  =  0.402 

                                                                                      0.774                                 1.000  

 

The greatest PP value of current clinical data present (0.444) appears in the bottom cell of the second 

column of the mini-max table for this diagnosis (e.g., lung cancer), and equals the current P of the 

diagnosis before processing clinical data absent.  New clinical data with equal or smaller PP value can be 

disregarded because—even if present—they will not change the current P of this diagnosis; the algorithm 

moves to Step 4.  When the new clinical datum has a PP value that exceeds the current P of the diagnosis 

before considering clinical data absent (bottom cell of second column), the algorithm recommends it as 

best cost-benefit clinical datum.  The user then verifies whether this clinical datum is absent or present.  

When this clinical datum is absent, it is disregarded, because if able to change the total P of the diagnosis, 

it will be detected by the S loop at the next Step 4, which processes clinical data assumed absent.  When 

the recommended best cost-benefit clinical datum is present (e.g., pulmonary mass evidenced by X-ray 

plain films) it is entered in the computer, the program is iterated, applying the entire mini-max procedure 

from start.  A new clinical datum list headed by this datum and listing all diagnoses able to manifest it is 

generated, and the partial P of the diagnosis before considering clinical data absent assumes the PP value 

of this new datum.  To recalculate the total P of the diagnosis after considering clinical data absent, 

several new clinical data pairs, combination of the new best cost-benefit clinical datum present with each 

previous clinical datum absent, are generated and the partial P values for the diagnoses are calculated with 

equation 3.  A new row with these values is inserted in each mini-max table and the total P values of the 

corresponding diagnoses are established. 

 
Mini-max table for lung cancer when pulmonary mass is present 

 

LUNG CANCER 

PP value = P before 

considering absent 

clinical data 

Cavity absent 

S = 0.3 

Fever absent 

S = 0.1 

MINIMUM 

VALUE 

IN EACH ROW 

Cough             present 0.241 0.231 0.297 0.231 

Hemoptysis     present 0.278 0.254 0.349 0.254 

Dyspnea          present 0.444 0.402 0.540 0.402 

Expectoration  present 0.104 0.109 0.135 0.104 

MTb                 present 0.000 0.000 0.000 0.000 

Pulmonary mass present 0.857 0.875 0.925 0.857 

MAXIMUM VALUE 

IN EACH COLUMN 
0.857 0.875 0.925 Total P = 0.857 

 
TABLE 2.  MTb, Mycobacterium tuberculosis 
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Example (continues): 

 

Assume we need to know whether the clinical datum pulmonary mass as evidenced by X-ray plain films, when present, can 

increase the current total P of lung cancer (see mini-max table for lung cancer above).  The PP value of a pulmonary mass for 

lung cancer, stored in the disease model in the database, is 0.857.  Mini-max procedure states that the greatest PP value of the 

clinical data supporting a diagnosis equals the P value of this diagnosis: 

 

P lung cancer   = max (PP valuecough, PP valuehemoptysis, PP valuedyspnea, PP valueexpectoration, PP valueMTb, PP value 
mass) 

 

                  = max (0.241, 0.278, 0.444, 0.104, 0.000, 0.857) = 0.857 

 

Accordingly, the previous P of lung cancer (0.444), before considering clinical data absent (bottom cell of second column in 

the lung cancer mini-max table), is increased to its new value of 0.857.  The algorithm then creates a new clinical datum list, 

headed by the clinical datum and listing the diagnoses capable of manifesting this datum: 

 

Pulmonary mass                    S          PP value 

Lung cancer  0.9  0.857 

Pulmonary tuberculosis 0.1 0.095 

Pulmonary embolism 0.05 0.048 

Bronchiectasis  0.0 0.000 

 

To determine the total P of the diagnosis, after considering clinical data absent, the algorithm creates two new clinical data 

pair tables and calculates the partial P values for lung cancer, applying equation 2: 

 

Mass-Cavity                               PP value            S                                        Partial P 

Lung cancer                 0.857  ×  (1-0.30)   =  0.600   ÷  0.686   =  0.875 

Pulmonary tuberculosis              0.095  ×  (1-0.60)   =  0.038 

Pulmonary embolism    0.048  ×  (1-0.00)   =  0.048 

Bronchiectasis                 0.000  ×  (1-0.10)   =  0.000 

                                                                                             0.686 

 

Mass-Fever                                 PP value            S                                        Partial P 

Lung cancer                 0.857  ×  (1-0.10)  =  0.771 ÷  0.833  =  0.925 

Pulmonary tuberculosis              0.095  ×  (1-0.70)  =  0.028 

Pulmonary embolism    0.048  ×  (1-0.30)  =  0.034 

Bronchiectasis                 0.000  ×  (1-0.00)  =  0.000 

                                                               0.833 

 

In the mini-max table for lung cancer, the algorithm creates a new row that shows these partial P values; then, the total P of this 

diagnosis after considering clinical data absent is calculated: 

 
 
The total P of lung cancer at this diagnostic step is the maximum value (0.857) in the last column.  Because of pulmonary mass 

present in chest X-ray plain films, the total P of lung cancer increased from 0.402 (before the new row Pulmonary mass 

present was introduced) to 0.857.  In this particular case, the clinical data absent did not reduce P of lung cancer. 

 

Each new best cost-benefit clinical datum present creates a new clinical datum list (pulmonary mass in 

our previous example) that includes the diagnosis from which disease model it was selected (lung cancer).  

This diagnosis appears in some or all previous clinical datum lists because it originated the search for the 

new clinical datum; the latter just increases the number of clinical data that support this diagnosis and also 

its P.  Some of the new clinical datum lists created may include previously unlisted diagnoses (e.g., 
hydatid cyst; see Fig. 2) that also may manifest this clinical datum (pulmonary mass).  When this occurs, 

such new diagnoses will not have clinical data in common with any previous diagnosis because they were 

not included in previous clinical datum lists; accordingly, previous and new diagnoses, if confirmed as 

final, must be concurrent.  New clinical datum lists select new diagnoses; these, in turn, select new 

clinical data.  At first thought, this cycle may seem to iterate indefinitely until the universe of clinical data 

is exhausted.  In reality, this does not occur, because a single patient cannot manifest all clinical data.  At 

some point, the newly recommended best cost-benefit clinical datum will simply be absent and will not 
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create a new clinical datum list, aborting the cycle; still, it must be investigated so as to confirm its 

absence.  Neither can a patient be afflicted by a multitude of concurrent diseases.  Another factor limiting 

the number of diagnoses is that a best cost-benefit clinical datum is selected for its great PP
 
value and 

accordingly is either pathognomonic for a single diagnosis or supportive of only a few diagnoses.  

 

 

    Clinical datum lists 

             

    Clinical datum 1      Clinical datum 2      Clinical datum 3      New clinical datum 6 
           (Cough)                                 (Hemoptysis)                            (Dyspnea)                     (Pulmonary mass) 

 

    Diagnosis A                        Diagnosis A                     Diagnosis A                 Diagnosis A 
     (Lung cancer)                             (Lung cancer)                          (Lung cancer)                    (Lung cancer) 

 

    Diagnosis B                        Diagnosis B 

    Diagnosis C 

    Diagnosis D                        Diagnosis D                     Diagnosis D 

    Diagnosis J 

    Diagnosis R 

                                                                                                                           Diagnosis W 

                                                                                                                        (e.g., hydatid cyst) 

                                                                                                                                              concurrent if confirmed 
                                                                                                                   

                                                                                                                   

                                                                                                                  Differential diagnosis list 

 

                        INITIAL CLINICAL DATA COLLECTION                       BEST COST-BENEFIT 

                                                                                                                     CLINICAL DATUM 

 
FIGURE 2.  To increase probability of diagnosis A, supported by clinical data 1, 2, and 3 (dotted box), 

clinical datum 6 is recommended as best cost-benefit clinical datum.  Clinical datum 6, confirmed present in the 

patient, creates clinical datum list 6 that includes diagnosis A from which PP list clinical datum 6 was selected; this 

increases P of diagnosis A and also the number of supporting clinical data.  Previously unlisted diagnosis W, also 

supported by clinical datum 6, is included in the differential diagnosis list as a new diagnosis; if it reaches 

confirmation threshold, it will become a concurrent final diagnosis. 

  

Step 4.  Recommend a new clinical datum as best clinical datum assuming it absent 

 
Typically, the greater the S of a clinical datum absent, the more it decreases the total P of a diagnosis.  

However, with the mini-max procedure, a clinical datum absent can occasionally increase total P.  It also 

can occur that a clinical datum with a smaller S can decrease total P more than another clinical datum 

absent with a greater S.  This paradox is due to broken monotony* or a particular interaction of partial P 

values in the corresponding mini-max table.  When broken monotony occurs, the resultant P is only 

slightly different from the expected P and does not compromise the efficiency of our program. 

 

* Broken monotony 
 

Typically, the partial P values in the rows of the mini-max table present a monotone relation; this means that when in one row the 

partial P value increases or decreases from one cell to the next, in the other rows the changes occur in the same direction.  

However, sometimes this monotone relation is broken.  This is due to the especial interrelation among the diverse S and 

PP values in the clinical data pair tables, and has several consequences; however, our new diagnostic program ignores broken 
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monotony, and proved to remain accurate and efficient.  The interested reader will find more details on this subject in our 

previous publications [1], [2]. 
 

To verify whether a new clinical datum absent will indeed decrease the total P, the mini-max procedure 

needs not always be applied in its entirety; to save computer time (although this is unlikely to be critical, 

considering the great speed of today’s computers), we devised the 3-Step method.  Our current diagnostic 

program does not apply the 3-Step method because it proved to be unnecessary, at least for the limited 

number of diseases we are currently processing; however, with a database including all known diseases, 

this method might be significantly computer time saving.  The 3-Step method is described with examples 

in our previous book [1] to which we refer the interested reader. 

 

To process clinical data absent, the algorithm moves now to the S LIST, in the same COST category and 

DIAGNOSIS in which a new best cost-benefit clinical datum assumed present was processed involving 

PP value list.  From this S LIST, it selects the as-yet-unprocessed clinical datum with the greatest S value.  

This S value then is compared to the S value of the clinical datum present in the current determining 

clinical data pair.  New clinical data with equal or smaller S value can be disregarded because—even if 

absent—they are assumed not to change the current P of this diagnosis.  When the new clinical datum has 

an S value that exceeds the current S in the current determining clinical data pair, it replaces the 

current S.  Equation 3 is applied to this new clinical data pair and if resulting P of corresponding 

diagnosis is smaller than the current one, the algorithm recommends the clinical datum as best cost-

benefit clinical datum.  This processing represents a simplified mini-max procedure, equivalent to 

calculate only one cell [2] (expected new determining partial P) in the new inserted absent data column of 

the mini-max table, ignoring potential broken monotony.  The user then verifies whether this clinical 

datum is absent or present. 

 

When this clinical datum is present, it is disregarded, because if able to change the total P of the 

diagnosis, it would have been detected by the PP value loop at previous Step 3, which processes clinical 

data assumed present.  When the recommended best cost-benefit clinical datum is absent it is entered in 

the computer, the program is iterated and equation 3 is now applied to all clinical data pairs possible to 

create, calculating the new determining partial P with the complete mini-max procedure that will fill in 

all the cells of the mentioned column, yielding a more accurate P of the diagnosis.  If this new 

determining partial P is smaller than the current P it will replace this current value; otherwise, it will be 

disregarded. 

 

Disregarding best cost-benefit clinical data selected from the S list, because they are present, same as 

disregarding data selected from the PP value list, because they are absent, can be questioned.  These data, 

although not expected to change diagnosis P, may however produce a slight improvement of this P, now 

calculated with all cells of the mini-max table as opposed to only one cell in the new column.  At least, 

the mentioned disregarded clinical data should be entered in the computer as a reminder that they were 

already processed and will not be recommended again. 

 
Example: Assume we need to know whether the clinical datum pulmonary mass as evidenced by chest X-ray plain films, 

if absent, can decrease the total P of lung cancer, that was 0.402 before considering this datum present in previous example (see 

lung cancer table 1, above).  The P of lung cancer before considering clinical data absent was 0.444 (equals greatest PP value in 

the second column, corresponding to dyspnea present); S of pulmonary mass on X-ray films for lung cancer is 0.9, as shown in 

the corresponding S LIST. 

 

To calculate resultant P that a best cost-benefit clinical datum assumed absent confers to each respective diagnosis, we calculate 

new partial P only for one cell in the new column of corresponding mini-max table; but as we must achieve this for all diagnoses 

in the differential diagnosis list, we apply equation 3 to each of these diagnoses in the clinical data pair Dyspnea-Mass: 
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Dyspnea-Mass          PP value            S                                       Partial P 

Pulmonary tuberculosis      0.148   × (1- 0.10)  =  0.133 ÷ 0.566 = 0.235 

Pulmonary embolism    0.370   × (1- 0.05)  =  0.352 ÷ 0.566 = 0.622 

Bronchiectasis               0.037   × (1- 0.00)  =  0.037 ÷ 0.566 = 0.065 

Lung cancer                   0.444   × (1- 0.90)  =  0.044 ÷  0.566  =  0.078 

                                                                              0.566                    1.000 

 

For this example we show equation 3 below, applied only to the diagnosis lung cancer and the corresponding mini-max table: 

 

P lung cancer = 

PP value 
lung cancer (1- S lung cancer) 

= 

      PPvaluelung cancer (1-S lung cancer) + PPvalueTB (1-STB) + PPvalueembolism (1-Sembolism) + PPvaluebronchiectasis (1-S bronchiectasis) 

 

                                                                     0.444 (1- 0.90) 

P lung cancer  = 

                         0.444 (1- 0.90) + 0.148 (1- 0.10) + 0.370 (1- 0.05) + 0.037 (1- 0.00) 

 

                                                     0.044 

                                =                                                      =  0.078 

                                     0.044 + 0.133 + 0.352 + 0.037 

 

 

Mini-Max Table for Lung Cancer when pulmonary mass is absent 

 

LUNG CANCER 

PP value = 

partial P before 

considering 

absent clinical 

data 

Cavity absent 

S = 0.3 

Fever absent 

S = 0.1 

Mass absent 

S = 0.9 

MINIMUM 

VALUE 

IN EACH ROW 

Cough              present 0.241 0.231 0.297   

Hemoptysis      present 0.278 0.254 0.349   

Dyspnea           present 0.444 0.402 0.540 0.078 0.078 

Expectoration  present 0.104 0.109 0.135   

MTb                 present 0.000 0.000 0.000   

MAXIMUM VALUE 

IN EACH COLUMN 
0.444 0.402 0.540  Total P = 0.078 

 
TABLE 3.  MTb, Mycobacterium tuberculosis 
 
 

According to the above explanation, as expected, total P (0.078) is smaller than the current P (0.402), ―Mass absent‖ is 

recommended as best cost-benefit clinical datum.  If this datum is confirmed absent, entered in the computer, and processed, the 

complete mini-max procedure is applied and all cells of the mini-max tables, including the new column, will be filled with 

partial P.  This requires the creation of all corresponding clinical data pairs; we show only the results in the Table 4. 
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Mini-Max Table for Lung Cancer 

 

LUNG CANCER 

PP value = 

partial P before 

considering 

absent clinical 

data 

Cavity absent 

S = 0.3 

Fever absent 

S = 0.1 

Mass absent 

S = 0.9 

MINIMUM 

VALUE 

IN EACH ROW 

Cough           present 0.241 0.231 0.297 0.032 0.032 

Hemoptysis  present 0.278 0.254 0.349 0.039 0.039 

Dyspnea        present 0.444 0.402 0.540 0.078 0.078 

Expectoration present 0.104 0.109 0.135 0.012 0.012 

MTb             present 0.000 0.000 0.000 0.000 0.000 

MAXIMUM VALUE 

IN EACH COLUMN 
0.444 0.402 0.540 0.078 Total P = 0.078 

 

TABLE 4.  MTb, Mycobacterium tuberculosis 
 
Mini-Max Table after absence of Mass was confirmed 

 

 

In summary, to select the best cost-benefit clinical datum to investigate next, the algorithm loops at three 

nested levels (Fig. 1, above): outer, intermediate, and inner.  (1) The outer cost loop processes clinical 

data not yet investigated in order of increasing cost category: none, small, intermediate, and great.  

(2) Within each cost category, the intermediate diagnosis loop processes the diagnoses of the differential 

diagnosis list in order of decreasing P because those with greatest P values, are the best candidates for a 

final diagnosis, and can sooner conclude the diagnostic quest.  (3) The inner clinical data loop 

comprises two sub-loops: the first begins at the top of the PP
 
value

 
list and terminates when no clinical 

datum exists able to increase current P of the corresponding diagnosis.  The second sub-loop begins at the 

top of the S list and terminates when no clinical datum exists able to decrease current P of the 

corresponding diagnosis. 

 

All diagnoses in each cost category are similarly processed.  The user is prompted each time the loop goes 

to a greater cost category.  The remaining differential diagnoses with their P are displayed and the user is 

asked whether he wants to proceed in the greater cost category or prefers a deferred diagnosis, diagnosis 

by exclusion, or empirical treatment [1], [2].  The entire looping process terminates when all final 

diagnoses are obtained and competing diagnoses are ruled out, the cost of investigating recommended 

clinical data exceeds the benefit, or all the clinical data able to change P of diagnoses are processed.  

Clinical data that have the greatest PP
 
value or the greatest S typically involve costly pathological 

investigations, such as biopsy or even autopsy.  To request a biopsy or even an autopsy for a patient with 

tonsillitis would be crazy.  This exaggeration emphasizes the importance of initially considering the cost 

of a clinical datum, before evaluating its PP
 
value or S.  However, in an emergency or when a patient’s 

condition is deteriorating, investigation of confirmatory clinical data of great PP
 
value takes priority over 

cost. 

 

The recommended best cost-benefit clinical datum could be a common symptom quickly asked or 

immediately observed by the physician.  Should obtaining a clinical datum require an involved test or 

procedure, the diagnostic process must be interrupted until the result becomes available.  The ―position of 

the game board‖, so to say, must be saved in the computer and opportunely retrieved to continue the 

―game‖, because each new clinical datum, with its presence or absence in the patient, sets a new stage for 

recommending the next best cost-benefit clinical datum.  A disease is not a static process.  If the clinical 
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picture changes considerably before obtaining the diagnostic test or procedure result, a new diagnostic 

process must be accomplished, sometimes from the beginning. 

 

A new best cost-benefit clinical datum, present or absent, changes the P of the diagnosis from which it 

was selected, and sometimes also some of the other diagnoses that can manifest the same clinical datum.  

We had some doubts whether these P changes in the other diagnoses were legitimate.  However, our 

program processes all diagnoses simultaneously with the mini-max procedure, calculating from the start P 

of all diagnoses, each time a new clinical datum, present or absent is entered in the computer.  Although a 

best cost-benefit clinical datum has been selected from a list related to a specific diagnosis, once entered 

in the computer and processed, the resulting P of every diagnosis in the differential diagnosis list is the 

correct one, irrelevant from which particular diagnosis in mind it was selected. 

 

 

COMMENTS 

 

Clinical data—symptoms, physical signs, test results, and diagnostic procedure results—are collected 

from a patient and matched with diseases models in the database, selecting all diseases that present a 

match as potential diagnoses.  This typically creates a pretty large differential diagnosis list.  The next 

problem is to determine which of these diagnoses are the one or more than one that actually afflict the 

patient, which requires to calculate the probability of each such diagnoses.  Diagnoses that reach a 

probability of certain empirically determined confirmation threshold are considered final and representing 

the diseases that afflict the patient, whereas diagnoses that yield a probability below an empirically 

determined deletion threshold are ruled out.  Bayes formula and other mathematical instruments used in 

previous existing programs do not address satisfactorily this problem; for this reason they are presented as 

training tools or educational tools rather than efficient diagnostic aids.  Most of these programs are not 

capable to diagnose several diseases afflicting simultaneously a single patient (concurrent diseases), a 

situation that occurs frequently in complex clinical presentations.  A computer program executing our 

mini-max procedure provided us with a prototype that proved to diagnose accurately and efficiently when 

challenged with real clinical cases, including concurrent diseases.  

 

Our complete diagnostic program includes several other important functions that are expected to be 

published in coming papers, and currently described in our book Computerized Medical Diagnosis: 

A Novel Solution to an Old Problem [1] that stresses theoretical and historical issues, and in our 

recent and more practical book A Practical Computer Program that Diagnoses Diseases in 

Actual Patients [2].  Some of these functions, not discussed in the present paper are:  

 

 Recommendation of a set of best cost-benefit clinical data to be investigated simultaneously at each 

diagnostic step.  We realize that such clinical data cannot be recommended sequentially one by one; 

this would be too time consuming, particularly in emergencies, and would require an excessive 

number of patient-physician encounters and patient hardship. 

 

 Empirical parameters that enable to reduce the number of recommended clinical data to investigate 

simultaneously, without compromising the accuracy of the diagnosis, and different output lists of 

recommended clinical data that facilitate the selection of such set of data based on preferences and 

diverse medical circumstances. 

  

 Safeguard function that precludes overlooking diagnoses associated with diseases confirmed by our 

program; this function is based on complex clinical presentation models that include diagnoses related 

by pathophysiologic mechanisms or statistical correlations. 
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 Safeguard function that precludes missing a diagnosis (e.g., myocardial infarction), when an 

important clinical datum (chest pain) is masked by interaction with a concurrent disease (diabetes) or 

drug (potent analgesic). 

 

The database of our current diagnostic prototype is integrated with 50 diseases models.  Our diagnostic 

system, once implemented with all known diseases and clinical data, is expected to provide invaluable 

diagnostic benefits to patients, physicians, nurses, health insurance companies, malpractice lawyers, and 

the entire medical establishment. 

 

 

CONCLUSIONS 
 

Our algorithm, although somewhat complex, is straightforward, especially when compared to other 

attempts in this field.  It emulates a clinician’s diagnostic reasoning.  It is logical and mathematically 

simple.  Bayes formula is used with modifications, because it is unable to process properly interdependent 

clinical data (as are most symptoms) and concurrent diseases.  To facilitate implementation and updating 

of the algorithm, we tend to avoid complicated tools of artificial intelligence, such as causal, hierarchical, 

and probabilistic trees and networks.  The algorithm freely uses heuristic procedures, so as to preclude 

excessive proliferation of clinical data and diagnoses.  It promises to be user friendly because it is 

expressed in natural language, is rational, and readily understandable.  Determination of accurate 

sensitivity of clinical data and integration of clinical entities into complex clinical presentation models 

will be labor-intensive.  A complete database with all known diseases, clinical data, clinical presentations, 

and other information can be created; this major task will require a dedicated team of medical specialists.  
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