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Mini-Max Procedure versus Bayes Formula to Calculate Probabilities of 

Medical Diagnoses* 

 
*The mini-max procedure is the core of our practical computer program that diagnoses diseases in actual patients, which 

complete details can be found in our more theoretical book [6] or more practical book [8].  Other partial aspects of this diagnostic 

system will be published separately: Best Cost-Benefit Clinical Datum Next to Investigate, Recommended Set of Best Cost-

Benefit Clinical Data Next to Investigate, and Complex Clinical Presentations and their Models. 
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In the 18
th

 century, Thomas Bayes, a theologian and mathematician, proposed his formula for 

calculating conditional probabilities, which was posthumously published in 1763.  To our 

knowledge, Ledley and Lusted [1], in 1959, committed the original sin to apply this formula to 

calculate the probability of a specific diagnosis, given the manifestations—clinical data—of a 

disease.  After that, Bayes formula gained widespread dissemination in the field of medical 

diagnosis.  The inaccuracy of Bayes formula for calculating the posterior probability of a diagnosis 

given clinical data that are not independent has been recognized by many researchers.  Their 

excuse for using Bayes despite this realization is that they consider the introduced error not to 

substantially affect the final result [2].  Our novel mini-max procedure, meant for computerized 

diagnosis, calculates the probability of a specific diagnosis, processing clinical data present—

favoring the diagnosis—and clinical data absent—disfavoring the diagnosis.  It is more accurate 

than Bayes formula and has remarkable additional properties, which enable diagnosis of 

concurrent diseases and recommendation of the best cost-benefit set of clinical data further to 

investigate to reach end of diagnostic quest through the most efficient and less costly pathway.  

 

Bayes formula is accurate only when three conditions are fulfilled [3] [4] [5]: 

 

1. Clinical data used for calculation of the conditional probability of a diagnosis must be independent: 

that is, a specific clinical datum—symptom, physical sign, diagnostic test result, or diagnostic 

procedure result—should neither favor nor disfavor any other clinical datum of the same disease.  In 

other words, the probability that one clinical datum is manifested by a specific disease, should not 

depend on the presence of another clinical datum.  This is not true for actual clinical cases, where 

clinical data result from a chain of reactions that originate in a common cause or lesion and are 

necessarily related.  These clinical data configure syndromes that by definition are associations of 

related clinical data (e.g., jaundice, increased blood bilirubin, and dark urine.) 

 

2. The diseases must be incompatible, which means that clinical data justified by one disease cannot be 

justified by another disease.  When concurrent diseases occur, some clinical data may be caused by 

more than one of them.  Because Bayes formula is only capable to calculate probabilities of 

competing diagnosis, which are incompatible because only one can become a final diagnosis, it is 

unsuitable to handle concurrent diseases.  To solve the problems of independence and incompatibility, 

so-called Bayesian networks have been devised, but their application to diagnostic algorithms is 

excessively complicated and hard to compute.  We created the mini-max procedure (to be explained 

later), which identifies concurrent diagnoses despite manifesting shared clinical data, and calculates 

the probability (P) of such diagnoses independently, circumventing the incompatibility condition of 

Bayes’ formula. 

 

3. The number of diseases processed by Bayes must be exhaustive: all known diseases must be included 

in the database, enabling inclusion in the denominator of the formula of all corresponding diagnoses 

that manifest a clinical datum.  If this condition is violated, some clinical datum originated by a 

disease not included in the formula will distort the calculated result.  Accordingly, the calculated 
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probability of the diagnosis under consideration will be incorrect and will adversely affect the 

differential diagnosis.  Still worse, the excluded disease will never be included in the differential 

diagnosis.  This is why computer programs based on Bayes formula but circumscribed to a restricted 

area of diseases—such as congenital cardiopathies or nephropathies—are inherently inaccurate. 

 

Our novel mini-max procedure is able to calculate the probability of a specific diagnosis, processing 

simultaneously clinical data present—favoring the diagnosis—and clinical data absent—disfavoring the 

diagnosis.  It is more accurate than Bayes formula and has remarkable additional properties: 

 

 It identifies and processes concurrent diseases. 
 
 It precludes reduction of great probability of a confirmed diagnosis (strongly supported by clinical 

data present) by some relatively unimportant clinical datum absent. 
 
 It facilitates the recommendation, at each diagnostic stage, of the best cost-benefit clinical datum next 

to investigate in the patient, and even a set of such clinical data to be investigated simultaneously. 

 

The mini-max procedure became the core of our diagnostic algorithm, which is discussed in great detail 

in our book: A Practical Computer Program that Diagnoses Diseases in Actual Patients [8]. 

 

To understand how our mini-max procedure works, we must first review the principles upon which it is 

based. 

 
 

PRINCIPLES OF OUR DIAGNOSTIC COMPUTER PROGRAM 
 

 

DISEASE MODEL 

 

A disease model (Table 1), as defined in this study, is an abstract concept that comprises all clinical data 

that can be manifested by all patients with a specific disease.  A single patient typically never manifests 

all clinical data that the disease potentially can provoke.  Integration of a specific disease model with all 

of its possible manifestations requires statistical study of a large patient population.  Each clinical form, 

stage, degree, or complication of a disease has its own disease model.  Because death and 

iatrogenic diseases are diagnoses that must be established clinically, the corresponding disease models 

must also be created. 

 

Each disease model is stored in the database, listing all the clinical data that a given disease potentially 

can manifest. 

 

 
DISREGARD QUALITIES OF CLINICAL DATA 

 

Clinical data, especially subjective symptoms, typically have diverse non-exclusive qualities.  For 

example, chest pain of angina pectoris typically is retrosternal, radiating to the neck, jaw, and upper 

extremities; is oppressive, lasting only a few minutes; is exertion related and relieved by nitroglycerine.  

Some authors confer values to these pain qualities, their chronology, and their evolution.  This is correct, 

when such qualities, powerfully suggest a diagnosis.  Nevertheless, our algorithm purposely does not 

consider such clinical data qualities; we believe that computation of clinical datum qualities is not 

critical for calculation of probability of a diagnosis.  Reasons are: clinical data qualities and chronology 

are subjective and widely variable; chest pain of angina pectoris sometimes is mild, referred to the upper  
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DISEASE MODEL FOR ACUTE APPENDICITIS 

Symptoms                                           S      PP value        Cost                        Masked by 

Anorexia  0.93   0.20     none 

Pain in right lower abdomen  0.95   0.30     none  ‡ (analgesics, antibiotics) 

Vomiting  0.66  0.16     none ‡ (antiemetics) 

Nausea   0.64  0.15     none 

Fever/chills  0.29  0.07     none ‡ (antipyretics, antibiotics) 

Constipation  0.70  0.02     none 

      ∶                                          ∶          ∶             ∶ 
Signs 

Rebound tenderness                     0.86       0.18            none               ‡ (analgesics, antibiotics) 

Fever (>37.5 C)                                  0.36       0.08            none           ‡ (antitermics, antibiotics) 

      ∶                                          ∶          ∶             ∶ 
Laboratory 

Increased white blood cell count        0.96        0.21           small      

Albumin in urine                     0.19        0.04           small 

      ∶                                          ∶          ∶              ∶ 
Abdominal ultrasound 

Swollen appendix or abscess        0.60       0.95       intermediate      

                ∶                                ∶          ∶              ∶ 
Laparotomy finding                         1.00       1.00            great 

 
TABLE 1.  Example of disease model; S, sensitivity; PP value, positive predictive value; cost of obtaining the 

clinical datum; ‡, interacting drugs.  The numeric values for S and PP value in the above examples were not 

obtained from actual statistics or calculations. 
 

 

abdomen, not radiating, is burning, or even absent in patients with diabetes.  Accordingly, these qualities 

may not be reliable.  Anxious or hypochondriac patients can imagine such qualities.  To confirm angina 

pectoris, more reliable tests, such as stress ECG and sometimes angiogram are needed, which provide 

clinical data with greater supporting value that anyway will supersede the oppressive quality of chest pain 

that has a lesser supporting value.  Disregarding these unreliable qualities simplifies the diagnostic 

process without losing accuracy.  It would be difficult, if not impossible, to determine the sensitivity, 

necessary to calculate the supporting positive predictive value of each diverse quality that thousand of 

known clinical data and diseases can manifest.  In the especial case where the quality of a clinical datum 

is essential, such as the case of prolonged retrosternal pain for myocardial infarction, this quality can be 

included as a separate clinical datum in the corresponding disease model. 

 

 

DISREGARD DISEASE PREVALENCE 

 

Prevalence of a disease is the number of existing cases in a given population at a specific time.  

Prevalence statistics are of epidemiological importance.  However, it may be harmful to include 

prevalence values when calculating the probability of a patient having a rare disease.  This happens 

because the small prevalence value for such a rare disease could considerably reduce the probability of 

the corresponding diagnosis, causing it to be improperly ruled out.  If a patient has a disease afflicting 

only one in a million persons, the probability of that diagnosis would be very small, but for him it 
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represents one hundred percent.  A perfect program should diagnose every possible disease, including 

those that are rare.  After all, we do not need a computer to diagnose a common cold during an epidemic.  

Furthermore, accurate epidemiological information is difficult to obtain because many disease cases 

remain unreported.  Accordingly, our diagnostic algorithm purposely does not take prevalence into 

account; this is equivalent to assuming that all diseases occur with the same probability. 

 

 

INDICES OF CLINICAL DATA 

 

In our database, three indices are associated with each clinical datum: sensitivity, positive predictive 

value, and cost. 

 

Indices 
 

1. Sensitivity (S) 

 
Sensitivity is defined as the conditional probability P of a clinical datum C, given a disease D: 

 

                                                                          S = P (C|D)                                                                        (1) 

  

Where: S = sensitivity of clinical datum C for disease D 

  

A practical way to calculate S of a specific clinical datum for a given disease is to determine statistically 

the fraction of patients afflicted by this disease who manifest the clinical datum: 

  

                     Number of disease cases manifesting the clinical datum 

       Sensitivity (S) =                                                                                                                       (2)          

                Total number of disease cases 

 

Sensitivity can be expressed either as a decimal (e.g., 0.30), or as a percentage (e.g., 30%.) 

 

A given clinical datum can be manifested by more than one disease.  Accordingly, both the clinical datum 

and the disease that manifests it, determine the value of S.  This value is stored in the database linked to 

the corresponding clinical datum and disease model. 

 

If the numerator and denominator of equation 2 are equal, the sensitivity (S) of the datum will equal 1, 

which is unlikely, as it requires that all clinical cases so far reviewed manifested the clinical datum.  

Otherwise, the numerator will always be smaller than the denominator, S will be smaller than 1, and an 

additional clinical case will increase S if the clinical datum is present, or reduce it if the datum is absent.  

Accordingly, the computer recalculates the sensitivity of each clinical datum each time the database is 

updated with new cases.  The greater the number of cases analyzed, the greater the accuracy of S.  If a 

clinical datum never is manifested by a specific disease, its S equals 0 for this disease.  When sufficient 

number of cases have been reviewed, the disease model will include all the clinical data this disease can 

potentially manifest, and the sensitivities will approach their true values. 

 

2. Positive predictive value (PP value) 

 

Next, it is necessary to define an index that represents the strength with which each clinical datum present 

in the patient supports a specific diagnosis.  S cannot be used directly because it only expresses how 

frequently a disease manifests a clinical datum, but not how often it occurs with other diseases.  We 
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consider that positive predictive value (PP value) best accomplishes this function.  PP value is defined as 

the conditional probability P of a disease D, given a clinical datum present C: 

 

                                                                    PP value = P (D|C)                                                                  (3) 

 

Let’s start with Bayes formula, which calculates conditional probabilities: 

 

                                                                            P (Di) P (C|Di) 

                           P (Di|C)  =                                                                                                                         (4) 

                                           P (D1) P (C|D1) +…+ P (Di) P (C|Di) +…+ P (Dn) P (C|Dn) 

 

Where: P (Di)  =  probability of disease Di; also called prior probability because it is the probability 

of the disease before considering clinical datum C 
 
   P (Di|C) =  probability of disease Di, given specific clinical datum C; also called posterior 

probability of the disease because it is the result of the equation after considering 

clinical datum C 
 
   D1…Dn    =  all diseases that manifest clinical datum C, including Di 
 

 P (C|D)  =  probability of clinical datum C, given a disease D; it equals the sensitivity (S) of the 

clinical datum for this disease D:  P (C|D) = S.  This is valid for any disease (D1…Dn) 

that manifests clinical datum C 

  

We explained earlier the reasons why we purposely do not take into account prevalence of diseases, 

called prior probability of diseases here in Bayesian context.  This is equivalent to assuming that all 

diseases have the same prior probability [P (D)]; accordingly, we can simplify equation 4 by deleting the 

prior probability of all diseases [P (D1)…P (Di)…P (Dn)].  Then, if we replace P (D|C) with PP value 

(according to equation 3), and P (C|D) with S (according to equation 1), we obtain the following equation: 

 

                                                                                   Si      

                                                      PP valuei   =                                                                                           (5)                                                    
                                                                       S1+…+ Si +… + Sn 

 

Where:  PP valuei   =  positive predictive value of the clinical datum for the disease i under consideration 
 
              Si        =  sensitivity of the clinical datum for the disease i under consideration 
 
              S1…Sn      =  sensitivities of the same clinical datum for corresponding diseases* 

 
*     ―Corresponding diseases‖ could either refer only to diseases that manifest the clinical datum, or alternatively to 

all known diseases.  For either of these alternatives, the resulting PP value will be identical, because S of a 

clinical datum for a disease that never manifests such datum is zero.  Adding zeros to the value of the 

denominator established by S of the diseases that manifest the clinical datum will neither change the value of 

the denominator nor the result of the equation. 

 

Equation 5 shows that Si (numerator of the right member) and PP valuei are directly proportional. 

 

This equation is convenient because it expresses PP value as a function of sensitivities (S), being S the 

cornerstone of our algorithm. 

 

PP value = 1 when the clinical datum is manifested only by the disease under consideration (that is, when 

for all other diseases S = 0); conversely, PP value approaches 0 when the clinical datum is always 
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manifested in all other diseases (that is, when for all other diseases S = 1), a theoretical situation.  In 

remaining situations, PP value takes an intermediate value between 0 and 1. 

 

PP value quantifies how characteristic or exclusive a clinical datum is for a specific disease or diagnosis.  

According to equation 5, the fewer the number of diseases that manifest a given clinical datum (number 

of S terms in the denominator) and the fewer this clinical datum is manifested by each of these diseases 

(the smaller each S value in the denominator), the greater the PP value of the clinical datum and the 

probability of the specific diagnosis or disease.  For example, the presence of Mycobacterium 

tuberculosis in sputum is pathognomonic of pulmonary tuberculosis because no other disease manifests 

this clinical datum; accordingly PP value = 1.  We believe that PP value
 
is the most accurate index of 

how strongly a clinical datum present supports a diagnosis or disease. 
 

Calculated PP
 
values are linked to the corresponding clinical data in the disease models.  Because 

PP values
 
are based on statistically established sensitivities stored in the database, they do not depend on 

specific clinical cases, and therefore can be pre-calculated (before the diagnostic program is applied to 

actual clinical cases) saving computing real time.  These values remain fixed unless new disease models 

are added to the database or revised statistics change the values of the sensitivities upon which PP values 

are based.  Should such changes occur as a result of an occasional update, all PP values must be 

recalculated.  Our program, with a limited number of disease models in the database, recalculates at each 

diagnostic step the PP value of each clinical datum present related to the diagnoses in the differential 

diagnosis list. 

 

Definition of PP value based on equation 5 is rational, simple, accurate, practical, and novel. 

 

3.  Cost  
 

Cost to obtain each clinical datum is another index that is attached to this datum.  In our context it 

involves not only expense, but also risk and discomfort resulting from the required test or procedure.  

Expense is quantifiable in dollars or any other currency.  Risk can be statistically quantified by outcomes 

of the procedure, although it also depends on operator skill.  Discomfort is a subjective feeling that 

depends in part on the invasiveness of the procedure and in part on patient apprehension, although the 

latter can be controlled with sedation or anesthesia.  Discomfort cannot be expressed as an exact 

numerical value, but only can be assigned an estimated qualitative level such as none, small, intermediate, 

or great.  Expense, risk, and discomfort—like apples and oranges—cannot be arithmetically combined 

into an exact overall cost.  However, expense and risk can be qualitatively expressed in levels similar to 

discomfort, to make the latter comparable to the former two.  It is practical to consider the maximum 

qualitative level of expense, risk, and discomfort, as representative of overall cost level. 

 

Cost = max (expense, risk, discomfort) 

 

Because cost does not participate in the calculation of the probability of diagnoses, its inexactness is not 

critical; it is considered only when selecting the most suitable clinical datum next to investigate in the 

patient. 

 

We assign to each clinical datum one of four overall cost categories: no cost (clinical data typically 

obtained through medical history and physical examination), small cost (e.g., obtained through routine 

laboratory analysis, ECG, and other ancillary studies), intermediate cost (e.g., colonoscopy, lymph node 

excision biopsy), and great cost (e.g., liver biopsy, laparoscopy, laparotomy). 
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Cost must be compared to the benefit expected to result from acquiring a clinical datum.  Benefit has two 

components: a quantitative component and a qualitative component.  The quantitative component 
depends on the positive predictive value (PP value) and sensitivity (S) of the clinical datum, which in turn 

determine the probability (P) of the corresponding diagnoses.  PP value of a clinical datum present in a 

patient tends to increase the P of the corresponding diagnoses; S of a clinical datum absent tends to reduce 

the P of the corresponding diagnoses.  The clinical datum that has the greatest PP value or the greatest S 

will result in the greatest P change.  The magnitude of increment of P, produced by PP value, or 

decrement of P, produced by S, approaching P respectively to the confirmation or deletion threshold 

quantifies the benefit of the clinical datum that produces it.  The quantitative component of benefit can be 

determined before actually investigating a clinical datum for presence or absence in the patient, by 

virtually testing with the computer program both possible outcomes. 
 

The qualitative component of benefit cannot be quantified; it depends on multiple factors such as 

patient health status and ability to tolerate the procedure, patient financial condition, insurance company 

approval, prognosis, involved physician liability, and existence of efficacious and available treatments for 

the diseases listed in the differential diagnosis.  Benefit must equal or exceed cost.  The evaluation of 

cost-benefit of a clinical datum and the decision to implement a procedure to obtain it must be discussed 

with and approved by the patient.  If the patient is wealthy, is not discouraged by the risk, or can tolerate 

discomfort, a procedure that incurs a greater cost may be acceptable.  Confirmation of an uncertain 

diagnosis of a potentially life-threatening but treatable disease also may justify implementation of a more 

costly procedure. 
 

Because cost and benefit cannot be accurately quantified, neither can cost-benefit ratio.  If all of the 

aforementioned qualitative factors could be given an empiric value, it might be possible to devise an 

algorithm to assist the physician in better evaluating cost-benefit. 

 

Summarizing how the three indices of clinical data—S, PP value, and cost—are determined: S depends 

on the clinical datum and corresponding disease; it is determined statistically with equation 2.  PP value 

depends on S of the clinical datum for the disease under consideration and S of the same clinical datum 

for all diseases that manifest this datum; it is determined with equation 5.  Cost—expense, risk, and 

discomfort—depends on the nature of the test or procedure needed to obtain the clinical datum; it is 

assigned one of four empirical categories: none, low, intermediate, or great. 

 

Before explaining how our algorithm relates to sensitivity, positive predictive value, and cost, we must 

discuss the ruling in and ruling out of diagnoses. 

 

 

RULING IN AND RULING OUT DIAGNOSES 

 

A diagnosis is ruled in when it is included in the differential diagnosis (a list of potential diagnoses); this 

occurs whenever a patient clinical datum matches a clinical datum in the respective disease model. 

 

A diagnosis is ruled out when it is deleted from the differential diagnosis; this occurs whenever the 

probability of the diagnosis falls below an empirical threshold.  Clinical data that reduce the probability of 

a diagnosis favor this deletion.   

  

These statements imply that a diagnosis must be ruled in before it can be ruled out. 

 

When a new patient, for whom no clinical data are known, comes to our attention, we first collect clinical 

data manifested by the patient.  These clinical data present, when matched with diseases model clinical 
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data, introduce the respective diagnoses in a differential diagnosis list, gradually incrementing the number 

of such potential diagnoses; this process is called ruling in diagnoses.  The greater PP value
 
of a clinical 

datum that is present, the more likely the corresponding diagnosis.  For example, microhemagglutination 

for Treponema pallidum test (MHA-TP) is a clinical datum of great PP value for syphilis; accordingly, 

if positive, it rules in this disease with great probability, because few other diseases manifest this clinical 

datum.  A clinical datum that is present, with great PP value, strongly rules in the diagnosis, even if its S 

is small, meaning that this clinical datum is not frequently found; but as it is already present in this case, S 

is irrelevant.  For example, filarias present in a blood sample is a clinical datum with great PP value for 

filariasis, confirming this diagnosis, despite a small S. 

 

On the other hand, a clinical datum present, typically would not favor a diagnosis only because it has a 

great S; it simply tells that this clinical datum is frequently manifested by the specified disease, but many 

other diseases also may manifest it (small PP value).  For example, weight loss has a great S for 

hyperthyroidism, but a small PP value; therefore, to rule in hyperthyroidism, a clinical datum with a 

greater PP value, such as suppressed thyroid stimulating hormone (TSH) must be investigated.  A clinical 

datum that is present, with small S, typically would not rule in a diagnosis, because it simply means that 

this clinical datum is rare for the disease, which is not a reason per se to rule in the disease; for example, 

diarrhea (small S and small PP value) for duodenal ulcer.  Accordingly, ruling in a diagnosis relies on 

a clinical datum that is present and the greater the PP value the more it will support this diagnosis.  

S is irrelevant if the clinical datum is present.     

 

Once some diagnoses have been ruled in, integrating the differential diagnosis list, we consider clinical 

data absent in the patient.  For example, when we notice that he is a male, we realize that he cannot have 

an ovarian cancer; because he is young, prostate cancer is unlikely, and so forth.  This process is called 

ruling out potential diagnoses.  To rule out a potential diagnosis, we rely on the sensitivity of clinical 

data that are absent in the patient.  The greater the S of a clinical datum that is absent, the less likely the 

corresponding diagnosis, even if the PP value is great, because the clinical datum is absent.  For example, 

microhemagglutination test for Treponema pallidum (MHA-TP) is a clinical datum of great S for 

syphilis; accordingly, if negative, it rules out this disease because it is positive in essentially all cases of 

syphilis (false negative tests are rare).  As mentioned in the previous paragraph, weight loss is a clinical 

datum with great S for severe hyperthyroidism, because it is manifested in all such cases; accordingly, if 

this clinical datum is absent, this diagnosis tends to be ruled out.  A clinical datum that is absent, with 

small S, has little influence on the probability of the diagnosis, even if PP value is great; for example, 

filarias negative in blood (great PP value, but small S) for filariasis.  Small sensitivity of an absent clinical 

datum does not rule out the corresponding diagnosis because it only means that the clinical datum is rare 

for the disease; absence of a rare clinical datum does not exclude a diagnosis.  For example diarrhea with 

small S and small PP value for duodenal ulcer, if absent, does not rule out this diagnosis.  Accordingly, 

ruling out a diagnosis relies on clinical data that are absent and with great S; PP value
 
is 

irrelevant if the clinical datum is absent. 

 

In summary: A clinical datum present rules in the corresponding diagnosis with strength proportional to 

its positive predictive value (PP value).  A clinical datum absent rules out the corresponding diagnosis 

with strength proportional to its sensitivity (S). 

 

Table 2 shows how PP value and S of a clinical datum affect the probability (P) of a diagnosis, and ruling 

in or ruling out of a diagnosis according to whether the datum is present or absent in the patient. 
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Clinical 

datum 
PP value S P 

Effect on 

Diagnosis  
Example Comments 

Present 

Great Great Increased 
Strongly 

ruled in 

MHA-TP test 

for syphilis 

Ruling in a 

diagnosis relies 

on clinical data 

present, with 

great PP value; 

S is irrelevant 

Great Small Increased 
Strongly 

ruled in 

Filariae in blood 

for filariasis 

Small Great Unchanged 
Weakly 

ruled in 

Weight loss for 

hyperthyroidism 

Small Small Unchanged 
Weakly 

ruled in 

Diarrhea for 

duodenal ulcer 

Absent 

Great Great Decreased 
Strongly     

ruled out 

MHA-TP test 

for syphilis 

Ruling out a 

diagnosis relies 

on clinical data 

absent, with 

great S; 

PP value is 

irrelevant 

Great Small 

Slightly 

changed 

according to 

value of S 

Weakly      

ruled out 

Filariae in blood 

for filariasis 

Small Great Decreased 
Strongly     

ruled out 

Weight loss for 

hyperthyroidism 

Small Small 

Slightly 

changed 

according to 

value of S 

Weakly      

ruled out 

Diarrhea for 

duodenal ulcer 

 

TABLE 2.  MHA-TP, microhemagglutination for Treponema palladium, a highly exclusive and sensitive 

test for syphilis; PP value, positive predictive value; S, sensitivity; P, probability of diagnosis. 

 

 

Eight combinations are possible—clinical datum present with great PP value and great S, clinical datum 

present with great PP value and small S, clinical datum present with small PP value and great S, clinical 

datum present with small PP value and small S, clinical datum absent with great PP value and great S, clinical 

datum absent with great PP value and small S, clinical datum absent with small PP value and great S, and 

clinical datum absent with small PP value and small S.  Of these eight combinations, only two are useful—

clinical datum present with great PP value and clinical datum absent with great S—because only they can 

significantly change the P of the corresponding diagnosis; all other combinations are discarded. 
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OPERATION OF OUR DIAGNOSTIC PROGRAM 
 

 

INITIAL CLINICAL DATA COLLECTION 

 

The diagnostic process begins with collection of initial clinical data gleaned from the patient’s history, physical 

examination, and previous consultations.  These initial clinical data, entered in the computer, are unrefined 

because we do not know yet their PP value or S.  Each of these values depend on the clinical datum collected, 

but also on the corresponding as yet not ruled in diagnosis.  Initially, collection is focused primarily on clinical 

data present because only these can rule in diagnoses.  At this early phase, clinical data processing is purely 

categorical because we have not yet applied any probabilistic calculation; the diagnostic process is called 

ill structured [7].  Any clinical datum present may be significant because it selects diseases, regardless of its as 

yet undetermined PP value or S.  Only after potential diagnoses are selected can S and PP value of clinical data 

be determined, a differential diagnosis list be created, and the probability (P) of each diagnosis be calculated; the 

diagnostic process then is said to be well structured.  Once P of diagnoses are established, only clinical data 

with great PP value or great S are able to significantly change this P.  Then, if warranted, diagnoses can be ruled 

out by processing clinical data absent. 

  

 

SELECTING POTENTIAL DIAGNOSES 

 

Following initial clinical data collection, the algorithm must compare each clinical datum manifested by the 

patient with all clinical data listed in all disease models stored in the database, selecting those disease models that 

contain one or more matching clinical data.  Such disease models represent potential diagnoses that will become 

the differential diagnosis list.  This task involves important difficulties that are, in our opinion, a major reason 

why a satisfactory diagnostic algorithm has not earlier been achieved: 

   

 A disease typically never manifests all clinical data listed in its disease model. 
 
 The cost of obtaining some of these clinical data may be prohibitive. 
 
 Diverse diseases can manifest similar clinical data; in other words, most clinical data are not exclusive or 

pathognomonic. 
 
 After selection of potential diagnoses, the algorithm must establish whether they are competing for a single 

final diagnosis or whether they correspond to concurrent diseases. 

 

Later on we will explain how our algorithm deals with these problems. 

 

 

CLINICAL DATUM LISTS 

 

Having selected the matching disease models that now represent potential diagnoses, the algorithm creates, for 

each clinical datum present, a list that has for heading this clinical datum and comprises all potential diagnoses 

able to manifest such clinical datum. 

 
A CLINICAL DATUM LIST is a list of diagnoses (e.g., bronchitis, asthma, lung cancer) that a single clinical datum (e.g., cough) evokes 

in the mind of the physician, which is analogous to the matching of a single clinical datum with clinical data in disease models by the 

computer.  Such diagnoses, as opposed to diseases, are in the mind of the physician; the patient is not afflicted by all of them.  Each of 

these potential diagnoses has a probability to become a final diagnosis, the latter ideally being concordant with the disease that afflicts 

the patient.  A proper denomination for clinical datum list would be Potential Diagnoses List for a Single Clinical Datum, which is 

lengthy and cumbersome.  For that reason, we abbreviate it to Clinical Datum List, because despite being a list of diagnoses, the clinical 
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datum identifies the list and is its heading.  Clinical Datum List should not be mistaken with Disease Model, which has a disease as its 

heading and lists all clinical data that this disease can manifest. 

  

Matching disease model 1 → Potential diagnosis 1 

Matching disease model 2 → Potential diagnosis 2         

                    ∶                                     ∶ 
Matching disease model n → Potential diagnosis n 

 

Examples of clinical datum lists: the sensitivity (S) and positive predictive value (PP value) of the clinical 

datum for each potential diagnosis is shown.  The diagnoses are sorted by decreasing S and PP value. 

 

Hemoptysis                                         S      PP value 
(bleeding from respiratory tract) 

Tuberculosis 0.70      0.35 * 

Lung cancer 0.40  0.20 

Lung infarction 0.30 0.15 

Bronchitis 0.05  0.025 

Pneumonia  0.03  0.015 

        ∶    ∶           ∶ 
 

Dyspnea (difficulty to breathe)       S      PP value 

Asthma 0.98  0.208 

Congestive heart failure 0.80  0.17 

Foreign body aspiration 0.80 0.17 

Pneumonia 0.40 0.085 

Emphysema 0.39 0.083 

Carbon monoxide intoxication 0.22 0.047 

Lung cancer 0.20  0.042 

Lung infarction   0.19 0.04 

Tuberculosis 0.17  0.036 

Intense anemia 0.12  0.025 

        ∶                                               ∶         ∶  
 

Cough                                                  S      PP value 

Foreign body aspiration 1.00 0.20  

Bronchitis 0.98 0.196 

Tuberculosis 0.70 0.14 

Lung cancer 0.50 0.10 

Lung infarction 0.40 0.08 

Pneumonia 0.20 0.04 

        ∶                                               ∶           ∶ 
 

*  The numeric values for S and PP value in the above examples were not obtained from actual statistics or calculations.  

Cost is omitted for the sake of simplicity.          

 

In a complete clinical datum list, the sum of PP values equals 1.  The fewer diagnoses a clinical datum list 

comprises, the more the clinical datum supports those diagnoses and the greater the corresponding PP values.  

When a clinical datum list contains only one diagnosis, PP value = 1, meaning the clinical datum is exclusive or 

pathognomonic for this diagnosis.  Conversely, the more diagnoses a clinical datum list comprises, the less the 

clinical datum supports those diagnoses, and the smaller their corresponding PP values. 
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DIFFERENTIAL DIAGNOSIS LIST 

 

This step creates a differential diagnosis list that comprises potential diagnoses transferred from the clinical 

datum lists. 

 

The difference between clinical datum list and differential diagnosis list is that the former lists all diagnoses 

matched by a single clinical datum present, whereas the latter lists all diagnoses matched by all clinical data 

present in the patient. 

 

Example of differential diagnosis list based on the previous clinical datum lists: 

 

Differential diagnosis list                 P 

Tuberculosis  0.35 

Asthma  0.208 

Lung cancer  0.20 

Foreign body aspiration  0.20 

Bronchitis  0.196 

Congestive heart failure  0.17 

Lung infarction  0.15 

Pneumonia   0.085 

Emphysema  0.083 

Carbon monoxide intoxication  0.047 

             ∶                                                       ∶ 

 

 
PROBABILITY OF DIAGNOSES.  MINI-MAX PROCEDURE 

 

At this point we have a well-structured diagnostic problem with a differential diagnosis list.  Next, the algorithm 

must determine which of these potential diagnoses will become one or more final diagnoses. 

 

We devised a procedure for calculating the probability (P) of a diagnosis by combining the PP value of clinical 

data when present (favoring a diagnosis) with the S of clinical data when absent (disfavoring a diagnosis).  We 

call it the mini-max procedure*.  In successive steps, we will explain this procedure with examples. 
 

* Our term mini-max is reminiscent of a similar term used in game theory, but not previously applied in combination with 

Bayes formula to calculate probability of medical diagnoses. 

 

Step 1.  Process clinical data present 
 

To establish the value of P, other diagnostic programs add, subtract, multiply, or average the sensitivities, 

specificities, predictive values, estimated values of clinical data supporting a diagnosis, or iterate Bayes formula 

with each additional clinical datum.  These approaches have flaws. 

 

For example, jaundice, dark urine, light colored feces, and increased direct serum bilirubin are clinical data 

related by similar pathophysiologic mechanisms generated by a single lesion: biliary tract obstruction.  Were we 

arithmetically to combine the individual PP values of these three equivalent and ―redundant‖ clinical data, P of 

diagnosis biliary tract obstruction would be improperly increased thereby providing an undue advantage to this 

diagnosis, as compared to competing diagnoses.  Furthermore, assume that an endoscopic retrograde 

cholangiopancreatography (ERCP) shows a biliary stone obstructing the common bile duct—a clinical datum 

that alone has a confirmatory PP value of 1 for biliary duct lithiasis.  If we add the PP values
 
of other supporting 
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clinical data, the P of the diagnosis obstructing gallstones would exceed 1, which is probabilistically impossible.  

If we average or multiply these PP values, the confirmatory PP value 1 would be unduly reduced. 

 

With our algorithm, the PP value
 
of gallstone obstruction, which equals 1, supersedes all other clinical data with 

smaller PP value (jaundice, dark urine, increased serum bilirubin) because—whether present or absent—they 

would not change the diagnosis of obstructing gallstones already confirmed by ERCP.  Accordingly, we consider 

that the greatest PP value of these related clinical data better represents the P of the diagnosis than any 

arithmetical combination of the individual values. 

 

For each diagnosis in the differential diagnosis list, our algorithm looks in the entire set of clinical datum lists 

and selects the greatest PP value that supports this diagnosis.  The selected greatest PP value equals the P of this 

diagnosis.   
 

                                                   Pi  =  max (PP value
 
1…PP value

 
i…PP value

 
n)                                                  (6) 

 

Where  Pi   =  probability of the diagnosis under consideration 
 

max   =  maximum of 
 
PP value

 
1… PP value

 
i… PP value

 
n  =  positive predictive values of clinical data present, that support 

the diagnosis under consideration 

 

The algorithm then iterates the same routine to determine the P of each diagnosis in the differential diagnosis list. 

 

Example: a patient presents with cough, hemoptysis, dyspnea, expectoration, and Mycobacterium tuberculosis 

(Mycobacterium TB) in sputum.  Five clinical datum lists are generated: 

 

Cough   S        PP value Hemoptysis   S       PP value  

Pulmonary tuberculosis    0.80        0.276      Pulmonary tuberculosis      0.40       0.222 

Pulmonary embolism       0.50        0.172      Pulmonary embolism  0.60       0.333 

Bronchiectasis                  0.90        0.310     Bronchiectasis             0.30       0.167                                                            

Lung cancer                      0.70        0.241     Lung cancer                 0.50       0.278 

 

Dyspnea      S         PP value  Expectoration    S       PP value 

Pulmonary tuberculosis 0.20        0.148      Pulmonary tuberculosis 0.80       0.417 

Pulmonary embolism  0.50        0.370      Pulmonary embolism  0.02       0.010   

Bronchiectasis            0.05        0.037      Bronchiectasis            0.90       0.469 

Lung cancer                0.60        0.444      Lung cancer                 0.20       0.104 

 

Mycobacterium TB   S         PP value 

Pulmonary tuberculosis 0.70        1.000 

Pulmonary embolism  0.00        0.000 

Bronchiectasis            0.00        0.000 

Lung cancer                0.00        0.000 

 

S values in the above example are for demonstration purposes only and do not represent actual statistics.  

PP values were calculated by applying equation 5 to these S values.  We assume that only the four listed 

diagnoses exist and that any of them could account for the five clinical data.  Highlighted values refer to clinical 

data that are not elements of a specific disease model; accordingly, their S and PP values
 
equal 0.  Such clinical 

data have no influence on calculated probabilities. 
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In the entire set of clinical datum lists, the greatest PP value
 
for pulmonary tuberculosis is 1.000 and equals P for 

this diagnosis.  Similarly, 0.370 for pulmonary embolism, 0.469 for bronchiectasis, and 0.444 for lung cancer. 

 

A differential diagnosis list is created, with each diagnosis showing the respective P that competes with the P of 

the other diagnoses for a final diagnosis.  The diagnoses are sorted by decreasing P values. 

 

Differential diagnosis list              P 

Pulmonary tuberculosis  1.000                       

Bronchiectasis                     0.469 

Lung cancer                          0.444 

Pulmonary embolism         0.370 

 

Except for confirmed pulmonary tuberculosis, these P values do not yet satisfy thresholds that enable to rule out 

the other diagnoses or confirm some as concurrent final diagnosis.  To satisfy this threshold requirement, our 

algorithm automatically determines which additional best cost-benefit clinical data should next be investigated 

for their presence or absence.  Fever is first recommended, followed by pulmonary cavity lesion:  

 

Fever   S         PP value  Cavity   S         PP value 

Pulmonary tuberculosis 0.70  0.636 Pulmonary tuberculosis 0.60    0.600  

Pulmonary embolism  0.30  0.273 Pulmonary embolism  0.00    0.000 

Bronchiectasis            0.00  0.000 Bronchiectasis             0.10    0.100  

Lung cancer                0.10  0.091 Lung cancer                     0.30         0.300 

  

Were fever and a pulmonary cavity lesion also present in the patient, we would now have a total of seven 

clinical datum lists.  Were the PP value associated with any of the diagnoses in these 2 new clinical datum lists to 

exceed the P of the same diagnosis, that greater PP value
 
would replace this existing P. 

 

PP value of a clinical datum present can only increase the probability of a diagnosis (equation 6). 

  

Step 2.  Process clinical data absent 
 

Only those clinical data absent that are related to diagnoses in the differential diagnosis list are processed. 

 

We presented a rational explanation and example of why we believe that the greatest PP value of all the clinical 

data present that supports a specific diagnosis equals the P of this diagnosis.  This is consequent to the fact that 

clinical data present are related by a common lesion or cause; adding the PP values
 
of these clinical data would 

excessively increase this P.  We discussed how the sensitivity (S) of a clinical datum absent typically reduces 

the P of the corresponding diagnosis.  To reduce P of the corresponding diagnosis, some authors arithmetically 

combine S of all absent clinical data, or sequentially apply Bayes formula to each S of such clinical data.  We 

observed that this procedure excessively decreases the P of the diagnosis to a value that might incorrectly rule 

out the corresponding disease.  For this reason, to reduce the P of a diagnosis, we use only the greatest S of all 

clinical data absent.  This approach for disfavoring a diagnosis is less intuitive than using the greatest PP value
 
of 

clinical data present for supporting a diagnosis.  Clinical data absent are not related by a common lesion or 

cause; however, they might be related by a specific characteristic of patient’s body that is responsible for the 

failure to react, or the cause of diseases is too weak and the lesions too small to manifest all potential clinical 

data.  This common denominator justifies considering only the datum absent of greatest S as the representative of 

all clinical data absent.  The next example supports this approach: 

 

Consider again a patient with a suspected common bile duct obstruction by gallstones.  An endoscopic retrograde 

cholangiopancreatography (ERCP) in this case was negative—i.e., no gallstones were present in the common 
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bile duct—an absent clinical datum of great S (close to 1) for the mentioned diagnosis.  To rule out this 

diagnosis, it is unnecessary to consider additional clinical data absent of smaller S, such as right upper abdominal 

pain or vomiting. 

 

So far, we have explained how clinical data present and their associated PP values
 
determine the P of a diagnosis.  

Now we will explain how clinical data absent and their associated S values further influence this P.  Originally, 

we tried this equation: 

                                                                       P = PP value
 × (1-S)                                                                       (7) 

 

Where  PP value
 
= probability of a diagnosis before considering the sensitivity of a clinical datum absent; this 

probability equals the greatest PP value
 
of all clinical data present that support this diagnosis 

(equation 6) 
 
 P  = probability of the this diagnosis after considering the S of a clinical datum absent pertaining to the 

same diagnosis 
 
 S  = sensitivity of a clinical datum absent pertaining to the same diagnosis 

 

With equation 7, the greater the S of a clinical datum absent, the more it reduces the P of a diagnosis. 

 

Let’s assume that fever and cavity in a previous example, were investigated and found absent and let’s apply 

equation 7.  Mycobacterium tuberculosis was found in the sputum, a clinical datum present with a 

PP value 
 
= 1, which confers a P = 1 to tuberculosis, confirming this diagnosis.  Next, our example considers 

fever, a clinical datum absent with S = 0.7.  Applying equation 7, we obtain: 

 

P = PP value
 × (1-S)  = 1 × (1-0.7) = 0.3 

 

Notice that the absence of fever decreases tuberculosis P from 1 to 0.3.  It is unacceptable that a relatively 

unimportant clinical datum absent, such as fever, should cause a substantial decrease in P, which tends to rule out 

the already confirmed diagnosis of tuberculosis. 

 

To temper this unacceptable decrease in P caused by equation 7, we instead use: 
 

                                                                      PP value
 
i (1-Si) 

                   Pi  =                                                                                                                                           (8) 

                              PP value
 
1 (1-S1) + … + PP value

 
i (1-Si) + … + PP value

 
n (1-Sn) 

 

Where  Pi         =   probability of a diagnosis (e.g., tuberculosis) 
 

PP valuei =  positive predictive value of the clinical datum present (e.g., Mycobacterium 

tuberculosis in sputum for tuberculosis) 
 
Si =   sensitivity of the clinical datum absent (fever for tuberculosis) 
 
PP value1…PP valuei…PP valuen = positive predictive value of the same clinical datum present     

(Mycobacterium tuberculosis in sputum) for each respective diagnosis in the 

differential diagnosis list (4 diagnoses per our example) 
 
S1…Si…Sn  =  sensitivity of the clinical datum absent (fever) for each respective diagnosis in the 

differential diagnosis list (4 diagnoses per our example) 
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Notice that the numerator of equation 8 is identical to the right member of equation 7, and that a denominator has 

been introduced, the effect of which is to ―temper‖ the result.  This denominator comprises several terms, each of 

which refers to a diagnosis in the differential diagnosis list.  Each comprises the PP value
 
of the clinical datum 

present (Mycobacterium tuberculosis) and the S of the clinical datum absent (fever).  These clinical data 

present and absent remain unchanged for all terms; but their respective PP values
 
and S values change to 

values associated with each diagnosis.  Equation 7 is then applied to these values in the numerator and each 

denominator term of equation 8.  

 

Although equation 8 is related to Bayes formula, it does not violate clinical data independence condition because 

each of its terms refer to only one and the same clinical datum present, and to only one and the same clinical 

datum absent.  The clinical datum present and the clinical datum absent are independent. 

 

Referring to our example of Mycobacterium tuberculosis present in sputum and fever absent, we now apply 

equation 8 to calculate the probability of tuberculosis (PTB):  
 

PTB  = 

PP value
 
TB (1-STB) 

   

     PPvalueTB(1-STB)+PPvaluebronchiectasis(1-Sbronchiectasis)+PPvaluecancer(1-Scancer)+PPvalueembolism(1-Sembolism) 

 

Substituting PP value and S with values from the clinical datum lists, we obtain: 

 

1.00 (1-0.70) 

                       PTB =                                                                                                        = 

1.00 (1-0.70) + 0.00 (1-0.00) + 0.00 (1-0.10) + 0.00 (1-0.30) 

 

                                                      0.30 

                              =                                           = 1.00 

                                     0.30 + 0.00 + 0.00 + 0.00 

 

Notice that equation 8 retains the correct value of P = 1.00 for confirmed tuberculosis, instead of P = 0.30, as 

was obtained with equation 7. 
 

Equation 8 yields identical result if all PP values of the clinical datum present are substituted with the corresponding S′ of the same 

clinical datum, S otherwise typically used with clinical data absent: 
 

                                                 PP value 
i (1-Si)                                                                                 S i′ (1-Si) 

Pi  =                                                                                                                 =                                    

          PP value1 (1-S1) + … + PP valuei (1-Si) + … + PP valuen (1-Sn)            S1′ (1-S1) + … + Si′ (1-Si) + … + Sn′ (1-Sn) 

 

Notice that the value of S′ (sensitivity of the clinical datum present) is not the same as the value of S (sensitivity of the clinical datum 

absent).  Equation 8, with PP values, yields identical result as with S′ because PP value and S′ of a given clinical datum for a given 

diagnosis are directly proportional.  When all PP values are substituted with the right member of equation 5, equation 8 can be simplified 

to its substituted form (right member) shown above.  This simplification is possible because the sum S1+…+Si+…+Sn in the numerator 

and denominator of equation 8 have identical values and cancel each other. 

 

The denominator of equation 8—modified Bayes formula—can be seen as a weighted average of S′ of a clinical datum present for 

diverse diseases, weighted by S values of the clinical datum absent.  Comparing the S′ of the clinical datum present for a specific disease 

with the average of S′ values for all diseases indicates the relative significance of the clinical datum for this specific disease. 

                                                                                                                                                                  

For clarity and consistency, we will retain the original equation 8 (with PP values) for all further calculations, but the substituted form 

(with S′ values) might be useful for computer programming. 
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Equation 8 is then iterated to calculate the P that the clinical data pair Mycobacterium tuberculosis-fever 

confers to the remaining diagnoses in the differential diagnosis list.  PP value and S value corresponding to each 

diagnosis must be substituted in the numerator; the denominator remains unchanged.  Equation 8 normalizes the 

probabilities of the diagnoses, meaning that their sum (PTB + Pbronchiectasis + Pcancer + Pembolism) now equals 1.   

 

Referring to our example: 
 

Mycobacterium TB - Fever    PP value                          S                                                       P 

Pulmonary tuberculosis 1.000 ×  (1-0.70)  = 0.300  (numerator)  ÷ 0.300  (denominator)  = 1.000 

Pulmonary embolism   0.000 ×  (1-0.30)  = 0.000  (numerator)  ÷  0.300  (denominator)  = 0.000 

Bronchiectasis               0.000 ×  (1-0.00)  = 0.000  (numerator)  ÷  0.300  (denominator)  = 0.000 

Lung cancer                   0.000 ×  (1-0.10)  = 0.000  (numerator)  ÷  0.300  (denominator)  = 0.000 

                                                                      Sum = 0.300 (denominator)                          Sum   = 1.000 

                                                                         

Step 3.  Create clinical data pairs 

 
As remarked above, each term of equation 8 comprises a clinical datum present and a clinical datum absent; we 

call this clinical data combination a clinical data pair.  Each clinical data pair confers a partial probability to 

a diagnosis.  To calculate the total probability of each diagnosis, the mini-max procedure must create all 

possible clinical data pairs with all thus-far investigated clinical data present and absent.  The number of 

clinical data pairs created will equal the number of clinical data present multiplied by the number of clinical data 

absent. 

 

Returning to our previous example, we had 5 clinical data present (cough, expectoration, hemoptysis, dyspnea, 

and Mycobacterium tuberculosis) and 2 clinical data absent (cavity and fever), creating a total of 10 clinical 

data pairs (cough-cavity, cough-fever, hemoptysis-cavity, hemoptysis-fever, dyspnea-cavity, dyspnea-fever, 

expectoration-cavity, expectoration-fever, Mycobacterium tuberculosis-cavity, and Mycobacterium 

tuberculosis-fever). 

 

Because PP value and S value vary with each diagnosis, the total number of resulting partial P values equals 

the number of clinical data pairs created multiplied by the number of diagnoses in the differential diagnosis list.  

In our example, we had 10 clinical data pairs and 4 diagnoses (pulmonary tuberculosis, pulmonary embolism, 

bronchiectasis, and lung cancer), yielding a total of 40 partial P values. 

 

Step 4.  Create clinical data pair tables 
 

We then organize the 40 partial P values as 10 clinical data pair tables, one table for each clinical data pair.  

Each table is headed by the clinical data pair; its first column lists the diagnoses in the differential diagnosis list; 

intermediate columns apply equation 8, and its last column lists the resultant partial P values.  For our example: 

 

Clinical data pair tables 

 

Cough-Cavity                          PP value           S                                          Partial P 

Pulmonary tuberculosis           0.276  ×  (1-0.60)   =  0.110   ÷  0.730   =  0.151 

Pulmonary embolism    0.172  ×  (1-0.00)   =  0.172   ÷  0.730  =  0.236 

Brochiectasis                 0.310  ×  (1-0.10)  =  0.279 ÷  0.730  =  0.382 

Lung cancer                 0.241  ×  (1-0.30)  =  0.169 ÷  0.730  =  0.231 

                                                                               

                                                                                   0.730    1.000 
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Cough-Fever 

Pulmonary tuberculosis 0.276  ×   (1-0.70)  =  0.083 ÷  0.731 =  0.113 

Pulmonary embolism   0.172  ×   (1-0.30)  =  0.121 ÷  0.731 = 0.165 

Brochiectasis                0.310  ×   (1-0.00)  =  0.310 ÷  0.731 =  0.425 

Lung cancer                  0.241  ×   (1-0.10)  =  0.217 ÷  0.731 =  0.297 

     

     0.731        1.000 

 

Hemoptysis-Cavity 

Pulmonary tuberculosis 0.222  ×  (1-0.60)  =  0.089  ÷  0.767  =  0.116 

Pulmonary embolism   0.333  ×  (1-0.00)  =  0.333 ÷  0.767  =  0.435 

Brochiectasis                0.167  × (1-0.10)  =  0.150 ÷  0.767  =  0.196 

Lung cancer                  0.278  ×  (1-0.30)  = 0.194 ÷  0.767  =  0.254 

                                                                                          

     0.767                     1.000     

 

Hemoptysis-Fever 

Pulmonary tuberculosis 0.222  ×  (1-0.70)  =  0.067 ÷  0.717  = 0.093 

Pulmonary embolism   0.333  ×  (1-0.30)  =  0.233 ÷  0.717  = 0.325 

Brochiectasis                0.167  ×  (1-0.00)  =  0.167 ÷  0.717  = 0.233 

Lung cancer                  0.278  ×  (1-0.10)  =  0.250 ÷  0.717  = 0.349 

  

     0.717    1.000    

Dyspnea-Cavity 

Pulmonary tuberculosis 0.148  ×  (1-0.60)  =  0.059 ÷  0.774  =  0.077 

Pulmonary embolism   0.370  × (1-0.00)  =  0.370 ÷  0.774  =  0.478 

Brochiectasis                0.037  ×  (1-0.10)  =  0.033 ÷  0.774  =  0.043 

Lung cancer                  0.444  ×  (1-0.30)  =  0.311 ÷  0.774  =  0.402 

 

     0.774    1.000 

Dyspnea-Fever 

Pulmonary tuberculosis 0.148  ×  (1-0.70)  =  0.044 ÷  0.741  = 0.060 

Pulmonary embolism    0.370  ×  (1-0.30)  =  0.259 ÷  0.741  = 0.350 

Bronchiectasis               0.037  ×  (1-0.00)  =  0.037 ÷  0.741  =  0.050 

Lung cancer                  0.444  ×  (1-0.10)  =  0.400 ÷  0.741  =  0.540 

                                                                                 

     0.741     1.000 

Expectoration-Cavity 

Pulmonary tuberculosis 0.417  ×  (1-0.60)  =  0.167 ÷  0.672  =  0.248 

Pulmonary embolism  0.010  ×  (1-0.00)  =  0.010 ÷  0.672  =  0.016 

Bronchiectasis               0.469  ×  (1-0.10)  =  0.422 ÷  0.672  =  0.628 

Lung cancer                   0.104  ×  (1-0.30)  =  0.073 ÷  0.672  =  0.109 

                                                                                    0.672    1.000   

       

Expectoration-Fever 

Pulmonary tuberculosis 0.417  ×  (1-0.70)  =  0.125 ÷  0.695  =  0.180 

Pulmonary embolism  0.010  ×  (1-0.30)  =  0.007 ÷  0.695  =  0.010 

Bronchiectasis               0.469  ×  (1-0.00)  =  0.469 ÷  0.695  =  0.675 

Lung cancer                   0.104  ×  (1-0.10)  =  0.094 ÷  0.695  =  0.135 

 

     0.695                     1.000 
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Mycobacterium TB -Cavity 

Pulmonary tuberculosis 1.000  ×  (1-0.60)  =  0.400 ÷  0.400  =  1.000 

Pulmonary embolism    0.000  ×  (1-0.00)  =  0.000 ÷  0.400  =  0.000 

Bronchiectasis               0.000  ×  (1-0.10)  =  0.000 ÷  0.400  =  0.000 

Lung cancer                   0.000  ×  (1-0.30)  =  0.000 ÷  0.400  =  0.000 

                                                                                    

                                                                       0.400     1.000 

Mycobacterium TB -Fever 

Pulmonary tuberculosis 1.000  ×  (1-0.70)  =  0.300 ÷  0.300  =  1.000 

Pulmonary embolism   0.000  ×  (1-0.30)  =  0.000 ÷  0.300  =  0.000 

Bronchiectasis               0.000  ×  (1-0.00)  =  0.000 ÷  0.300  =  0.000 

Lung cancer                   0.000  ×  (1-0.10)  =  0.000 ÷  0.300  =  0.000 

                                                                                    0.300     1.000 

 

Step 5.  Calculate partial P that each clinical data pair confers to each diagnosis 
 

To calculate the partial P that each clinical data pair confers to each diagnosis in the differential diagnosis list, 

equation 8 is applied to the PP value of the clinical datum present and the S of the clinical datum absent for each 

diagnosis (see clinical data pair tables above). 

  

Notice that throughout these iterations of equation 8, the entire denominator remains unchanged for each clinical 

data pair and table.  However, the numerator does change with each iteration; it assumes the value of the 

denominator term corresponding to the diagnosis being processed. 

 

Step 6.  Create mini-max tables 

 

Now, we must determine the total probability that the partial probabilities mentioned in steps 3, 4, and 5 confer 

to each diagnosis in the differential diagnosis list.  This is achieved by creating a mini-max table for each 

diagnosis (see next page). 

 

The first column of each mini-max table lists each clinical datum present.  The second column lists the PP value 

of each clinical datum present; its bottom cell repeats the greatest of these values, which is the total P of the 

diagnosis before clinical data absent are considered.  The next several columns show the partial P values that 

each clinical data pair confers to the diagnosis; the number of these columns equals the number of clinical data 

absent.  The heading of each column shows the clinical datum absent and its S for the diagnosis.  Each partial P 

value is transferred from the clinical data pair table to the mini-max table cell where the clinical data present and 

absent converge.  The bottom cell of each column repeats the greatest partial P value appearing in the column.  

The last column repeats the smallest value appearing in each row.  The bottom cell of this column, which also is 

the last cell of the mini-max table, repeats the greatest value of the column; it equals the total P of the diagnosis, 

after clinical data absent have been considered. 

 

Step 7.  Determine total P of a diagnosis 
 

In the mini-max table, the last column lists the smallest values of each row; the greatest value in this last column, 

repeated in the last cell of the table, equals the total P of the diagnosis.  Therefore, the algorithm determines the 

total P of a diagnosis based on partial P values; it involves the following concepts: 

 

1. A clinical data pair comprises a clinical datum present and a clinical datum absent. 
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Mini-max table for tuberculosis 

                         

TUBERCULOSIS 

PP value
 
= partial P 

before considering 

clinical data absent 

Partial P with 

Cavity absent        

S = 0.6 

Partial P with 

Fever absent 

S = 0.7 

MINIMUM 
VALUE 

IN EACH ROW 

   Cough             present 0.276           0.151          0.113        0.113 

   Hemoptysis    present 0.222           0.116          0.093        0.093 

   Dyspnea         present 0.148           0.077          0.060        0.060 

   Expectoration present 0.417           0.248          0.180        0.180 

   MTb               present 1.000           1.000          1.000        1.000 

MAXIMUM VALUE 
IN EACH COLUMN 

1.000           1.000          1.000   Total P = 1.000 

 
MTb, Mycobacterium tuberculosis.  The total probability of tuberculosis at this diagnostic step is the 

maximum value (1.000) in the last column. 

 

Mini-max table for pulmonary embolism  
                           

PULMONARY 

EMBOLISM 

PP value
 
= partial P 

before considering 

clinical data absent 

Partial P with 

Cavity absent 

S = 0 

Partial P with 

Fever absent 

S = 0.3 

MINIMUM 

VALUE 
IN EACH ROW 

   Cough             present 0.172           0.236          0.165        0.165 

   Hemoptysis    present 0.333           0.435          0.325        0.325 

   Dyspnea         present 0.370           0.478          0.350        0.350 

   Expectoration present 0.010           0.016          0.010        0.010 

   MTb               present 0.000           0.000          0.000        0.000 

MAXIMUM VALUE 
IN EACH COLUMN 

           0.370           0.478          0.350 Total P = 0.350 

The total probability of pulmonary embolism at this diagnostic step is the maximum value (0.350) in the last 

column. 

 

Mini-max table for bronchiectasis  
                           

BRONCHIECTASIS 

PP value
 
= partial P 

before considering 

clinical data absent 

Partial P with 

Cavity absent 

S = 0.1 

Partial P with 

Fever absent 

S = 0 

MINIMUM 

VALUE 

IN EACH ROW 

   Cough              present 0.310           0.382          0.425        0.310 

   Hemoptysis     present 0.167           0.196          0.233        0.167 

   Dyspnea          present 0.037           0.043          0.050        0.037 

   Expectoration present 0.469           0.628          0.675        0.469 

   MTb               present 0.000           0.000          0.000        0.000 

MAXIMUM VALUE 

IN EACH COLUMN 
           0.469           0.628          0.675 Total P = 0.469 

 
The total probability of bronchiectasis at this diagnostic step is the maximum value (0.469) in the last column.  

Were the second column not included in the calculation, total P of this diagnosis would be 0.628; see property 

5 B of mini-max procedure (explained later).  
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Mini-max table for lung cancer  
 

LUNG CANCER 
PP value

 
= partial P 

before considering 

clinical data absent 

Partial P with 

Cavity absent 

S = 0.3 

Partial P with 

Fever absent 

S = 0.1 

MINIMUM 

VALUE 
IN EACH ROW 

   Cough              present 0.241 0.231 0.297 0.231 

   Hemoptysis     present 0.278 0.254 0.349 0.254 

   Dyspnea          present 0.444 0.402 0.540 0.402 

   Expectoration present 0.104 0.109 0.135 0.104 

   MTb               present 0.000 0.000 0.000 0.000 

MAXIMUM VALUE 

IN EACH COLUMN 
0.444 0.402 0.540 Total P = 0.402 

 
The total probability of lung cancer at this diagnostic step is the maximum value (0.402) in the last column. 

 
 

2. A specific clinical data pair, that we call determining clinical data pair, determines the total P of a 

specific diagnosis. 
 
3. Applying equation 8 to the PP value of the clinical datum present and the S of the clinical datum absent in 

the determining clinical data pair, yields a specific partial P that we call determining partial P because it 

determines and equals the total P of the specific diagnosis. 
 

4. A specific cell for this determining partial P exists in the mini-max table of this specific diagnosis. 
 

 In this specific cell, the mentioned clinical datum present converges with the mentioned clinical datum 

absent. 
 

 In this specific cell, the value (italicized) of the determining partial P was transferred from its clinical 

data pair table to the corresponding mini-max table. 
 

 In this specific cell, the value of the determining partial P is at once the smallest in its row and the 

greatest in its column. 

 

To find the determining clinical data pair responsible for the current total P of a diagnosis, we must backtrack the 

steps that led from that pair to the total P.  Start at the last cell (total P) of the mini-max table and ascend 

(following the arrows shown in the tables above) to any cell with the same value, then go left on that row until 

any cell with the same value (the determining partial P) is encountered.  The clinical datum present and the 

clinical datum absent that converge to this cell comprise the requisite determining clinical data pair; the 

respective PP value
 
and S are shown in the mini-max table. 

 
Example: In the mini-max table of Lung Cancer (see above) the last cell shows the current total P (0.402) of this diagnosis.  Following 

the arrows takes us to another cell with the italicized value 0.402, which is the determining partial P.  To this cell converge PP value 

(0.444) of dyspnea present and S (0.3) of pulmonary cavity absent.  The determining clinical data pair dyspnea-cavity is responsible for 

the current determining partial P and total P (0.402). 

 

Mini-max tables are not based on Bayes formula and therefore circumvent the problem of clinical data 

independence and disease incompatibility. 

 
Broken monotony 
 

Typically, the partial P values in the rows of the mini-max table present a monotone relation; this means that when in one row the partial 

P value increases or decreases from one cell to the next, in the other rows the changes occur in the same direction.  However, sometimes 
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this monotone relation is broken.  This is due to the especial interrelation among the diverse S and PP values in the clinical data pair 

tables.  Broken monotony has several consequences: 

 

 A single determining partial P that is at the same time the greatest partial P of its column and the smallest partial P of its row may no 

longer exist. 
 

 The maximum partial P in the last column and the minimum partial P value in the last row do no longer yield the same value, 

equal to total P of the diagnosis, as it occurs when monotony is not broken. 
 
 A clinical datum of smaller PP value is able to increase the total P more than a clinical datum with greater PP value, violating the rule 

that the greatest PP value of clinical data supporting a diagnosis equals the total P of this diagnosis (equation 6). 
 
 A clinical datum of smaller S is able to decrease the total P more than a clinical datum with greater S, which does not occur when 

monotony is preserved. 

 
The interested reader will find more details on this subject in our previous book [6].  Our new diagnostic program ignores broken 

monotony, selecting one (greatest value of last column in mini-max table) of the two different resultant total P values for the same 

diagnosis, because their difference in magnitudes is insignificant, and our program proved to remain accurate and efficient. 

 

Step 8.  Update the differential diagnosis list 

 
Next, we again sort all diagnoses in the differential diagnosis list, according to decreasing total P values: 

 

Differential Diagnosis List       Total P 

Tuberculosis                        1.000 

Bronchiectasis                     0.469 

Lung cancer                         0.402 

Pulmonary embolism          0.350 

 

Notice that the total P values of the diagnoses have changed and are more widely dispersed, but they still do not 

satisfy, except for tuberculosis, our threshold requirements for confirming as final or ruling out each of the other 

diagnoses.  Accordingly, additional clinical data must be investigated.  Then the mini-max procedure must be 

iterated with each additional clinical datum, and the total P of all diagnoses recalculated, until requirements for 

conclusion of the diagnostic quest are satisfied. 

 

The previous example creating mini-max tables is didactic but oversimplified, because it assumed that each 

clinical datum list included a similar number of only four existing diagnoses.  In reality, clinical datum lists 

include diverse number of diagnoses, from only one (when the clinical datum is exclusive—pathognomonic—for 

this diagnosis) to numerous (when the clinical datum, e.g., fever, can be manifested by many diagnoses).  Our 

program integrates the differential diagnosis list including all diagnoses listed in all clinical datum lists (selected 

by clinical data present).  Consequently, the number of diagnoses in the differential diagnosis list will equal the 

number of diagnoses in the longest clinical datum list plus other diagnoses, not included in this longest clinical 

datum list, but listed in other clinical datum lists. 

 

The number of diagnoses in the differential diagnosis list equals the number of terms in the denominator of 

equation 8 and the number of mini-max tables.  New clinical data present or absent will add new rows or 

columns respectively to the existing mini-max tables.  Only when a clinical datum present, creating a new 

clinical datum list that includes a new diagnosis, such diagnosis is added to the differential diagnosis list, the 

corresponding term is added to the denominator of equation 8, and a corresponding new mini-max table is 

generated.  This diagnosis, if confirmed final, will be concurrent to the previous ones because it does not share 

any of previously obtained clinical data; otherwise it would be listed in their clinical datum lists. 

 

The set of mini-max tables can be seen a three-dimensional deck, in which x-axis comprises clinical data absent, 

y-axis comprises clinical data present, and z-axis comprises the diverse mini-max tables (diverse diagnoses).  

Such a set is cubic.  Always remember that normalization is done in the direction of z-axis.  Each cell of each 
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table contains a partial P that is normalized and competes with partial P values of similarly located cells in all the 

other mini-max tables (summating 1), except cells in last column and last row, which contain respectively 

minimum and maximum partial P values.  Conversely, partial P of cells in each single table are not normalized 

with partial P of other cells in this table; they are compared and minimums and maximums are computed in 

x-axis and y-axis directions respectively, determining total P of the corresponding diagnosis with this non-

Bayesian procedure. 

 

*** 

 

Properties of the mini-max procedure 
 

1. Each additional clinical datum present generates a new row in an existing mini-max table. 

 

2. Each additional clinical datum absent generates a new column in an existing mini-max table. 

 

3. Each new diagnosis in the differential diagnosis list generates a new mini-max table. 

 

4. A mini-max table, when monotony is not broken, has only one determining partial P cell, the value of which 

(italicized in the table) is the smallest of its row and the greatest of its column.  The clinical datum 

present and the clinical datum absent that converge to this cell constitute the determining clinical data pair 

that originated this determining partial P, which equals the total P of the diagnosis. 

 

5. When an additional clinical datum present is processed with the mini-max procedure, typically the total P of 

the diagnosis may increase, if its PP value is greater than the current total P before considering clinical data 

absent (last cell of second column).  When an additional clinical datum absent is processed with the mini-

max procedure, typically the greater its S, the more it decreases the P of the diagnosis.  However, exceptions 

to this rule result from the effect this S has on the partial P of the other diagnoses that share its clinical data 

pair table, and from the interaction of the resulting partial P values in the mini-max table.  The total P of the 

diagnosis will either decrease, increase, or remain unchanged: 

 

A. Total P decreases.  Let’s concentrate on a clinical data pair table.  For a specific diagnosis, the S value 

of the clinical datum absent is inversely related to the partial P resulting after applying equation 8 to this 

diagnosis, and directly related to the partial P values resulting after applying equation 8 to the other 

diagnoses.  An additional clinical datum absent typically reduces the total P of a diagnosis if its S is 

greater than the S of the absent clinical datum in the determining clinical data pair, in turn 

responsible for the current determining partial P of the diagnosis.  If this condition is fulfilled, this 

new partial P will be smaller than the current determining partial P and become the new determining 

partial P that equals total P in the mini-max table. 

 

B. Total P increases.  The mini-max procedure is not intended to increase the total P of a diagnosis based 

on clinical data absent.  Nevertheless, this occasionally occurs, but only when a first clinical datum 

absent is processed; because at this point only one clinical datum absent column is generated, smaller 

values do not exist in the rows.  The greatest partial P value in this column becomes the determining 

partial P and if it exceeds the current total P, it will replace the latter.  Any subsequent clinical datum 

absent that is processed—regardless of its S value and resulting partial P—can only decrease the total P, 

because only the smallest partial P in a row can become a determining partial P.  If we do not want a first 

clinical datum absent to increase the current total P of a diagnosis, then the second column of the 

mini-max table must be included in the calculation.  In this way, we avoid violating the general rule that 

a clinical datum absent must never increase the total P.  An example is the mini-max table for 
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bronchiectasis (see above), where the total P of this diagnosis would have been 0.628 (italicized) instead 

of 0.469, were the second column not included in the calculation. 

 

C. Total P does not change, when a clinical datum absent does not fulfill any of the conditions for 

decreasing or increasing total P.  This occurs frequently; furthermore, the total P of a diagnosis is quite 

resistant to change, especially for diagnoses with a great total P.  This is an important advantage of the 

mini-max procedure, because it precludes ruling out a confirmed diagnosis (strongly supported by 

clinical data present) by some relatively unimportant clinical datum absent (as seen in the previous 

example of tuberculosis). 

 

6. The order in which clinical data are processed is irrelevant; it will change only the relative position of the 

generated new row or column without affecting the total probability of the diagnosis.  This commutative 

property is intuitive and consistent with physician’s experience. 

 

7. When an additional clinical datum present or absent is incorporated into a mini-max table, the previously 

calculated partial P values of the diagnosis in the table remain unchanged and need not be recalculated.  Such 

P values are retained in case a need arises to determine which clinical datum pair generated a partial 

probability in a cell.  The algorithm need remember the values in the last column only.  Whenever an 

additional clinical datum is processed, new clinical data pairs are generated and new partial P values are 

calculated.  The algorithm then compares these new partial P values with the existing partial P values in the 

last column and calculates the new total P of the diagnosis.  Although unchanged values in mini-max table 

cells do not need to be recalculated, our algorithm and program iterates the entire mini-max procedure from 

start, recalculating the total P values of the diagnoses, simultaneously processing all present and absent 

clinical data each time an additional clinical datum becomes available.  If a future database, including all 

known diseases and clinical data, creates computer time problems, then the property 7 may be enforced. 

 

8. An interesting property of the mini-max procedure is revealed when the sum of the total P of all diagnoses in 

the differential diagnosis list is substantially greater than 1; it suggests that not all such diagnoses are 

competing, but that some represent concurrent diseases.  The degree of support that a clinical datum gives to 

a diagnosis is directly proportional to its corresponding PP value.  This value can be found in the clinical 

datum list associated with the diagnosis or in the second column of the mini-max table.  If all clinical data 

predominantly support the same diagnosis, the remaining diagnoses tend to compete and the sum of the 

probabilities of all diagnoses in the differential diagnosis list is close to 1.  When some clinical data 

predominantly favor one diagnosis and other clinical data predominantly favor another diagnosis, these 

diagnoses tend to be concurrent; the sum of their probabilities will be considerably greater than 1; each 

concurrent diagnosis can by itself attain a probability up to 1.  The greater the sum of the probabilities, the 

greater the number of concurrent diseases. 

 

9. When a clinical datum present with a PP value that approaches or equals 1 strongly supports or confirms a 

diagnosis, a clinical datum absent—regardless of its S value—cannot reduce the great P that such a clinical 

datum present confers to the diagnosis.  This property also is true for concurrent diagnoses with great 

probability in the differential diagnosis list.  This important advantage precludes a confirmed diagnosis from 

being ruled out by a relatively unimportant clinical datum absent, as mentioned earlier.  However, the P of a 

diagnosis without a confirming clinical datum present may be reduced by the S of such a clinical datum 

absent.  Retaining diagnoses with great P, while simultaneously ruling out diagnoses with a small P, enables 

concurrent diagnoses to be distinguished from competing diagnoses. 

 

What happens when a diagnosis with a great P, based on a clinical datum present with a PP value
 
= 1, is 

confronted with an additional clinical datum absent with an S = 1?  Would the clinical datum present or the 

clinical datum absent win the rule in/rule out contest?  In an actual case, this confrontation would be impossible 
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to occur because S = 1 means that this clinical datum is always present, contradicting its absence.  Furthermore, 

the mini-max procedure precludes the discredit of a diagnosis with a great total P by a clinical datum absent 

(property 9 of mini-max procedure). 

  

Total P of each diagnosis is calculated by its corresponding mini-max table, based on PP value of clinical data 

present, S of clinical data absent, and resulting partial P values, all of which are specific for this diagnosis, 

allowing a certain independence among diverse diagnoses.  This enables that each diagnosis, which P reaches the 

confirmation threshold, is declared final or confirmed diagnosis, irrelevant of how many other diagnoses also 

reach this threshold; all of such diagnoses are considered concurrent.  Competing diagnoses are ruled out, by 

reaching the deletion threshold. 

 

 

COMMENTS 

 

Clinical data—symptoms, physical signs, diagnostic test results, and diagnostic procedure results—are collected 

from a patient and matched with diseases models in the database, selecting all diseases that present a match as 

potential diagnoses.  This typically creates a pretty large differential diagnosis list.  The next problem is to 

determine which of these diagnoses are the one or more than one that actually afflict the patient, which requires 

to calculate the probability of each such diagnoses.  Diagnoses that reach a probability of certain empirically 

determined confirmation threshold are considered final and representing the diseases that afflict the patient, 

whereas diagnoses that yield a probability below an empirically determined deletion threshold are ruled out.  

Bayes formula and other mathematical instruments used in previous existing programs do not address 

satisfactorily this problem; for this reason they are presented as training tools or educational tools rather than 

efficient diagnostic aids.  Most of these programs are not capable to diagnose several diseases afflicting 

simultaneously a single patient (concurrent diseases), a situation that occurs frequently in complex clinical 

presentations.  A computer program executing our mini-max procedure provided us with a prototype that proved 

to diagnose accurately and efficiently when challenged with real clinical cases, including concurrent diseases.  

 

Our complete diagnostic program includes several other important functions that are expected to be published in 

coming papers, and currently described in our book Computerized Medical Diagnosis: A Novel Solution to 

an Old Problem [6] that stresses theoretical and historical issues, and in our recent and more practical 

book A Practical Computer Program that Diagnoses Diseases in Actual Patients [8].  Some of these 

functions, not discussed in the present paper are:  

 

 Best cost-benefit clinical data next to investigate in a patient, which recommends at each diagnostic step the 

clinical data to investigate next, that will most efficiently and at lowest overall cost (price, risk, and 

discomfort) reach end of diagnostic quest, also based on mini-max procedure. 

 

 Adjustable empirical parameters and diverse abridged output lists of recommended clinical data that enable 

to reduce the sometimes great number of recommended clinical data to investigate, without compromising 

the accuracy of the diagnosis. 

 

 Safeguard function that precludes overlooking associated diagnoses with diseases confirmed by our program.  

Based on complex clinical presentation models that include diagnoses related by pathophysiologic 

mechanisms or statistical correlations, the program assures that all these associated diseases are processed 

for presence or absence in the patient. 

 

 Safeguard function that precludes missing a diagnosis (e.g., myocardial infarction), when an important 

clinical datum (chest pain) is masked by interaction with a concurrent disease (diabetes) or drug (potent 

analgesic). 



 26 

 

The database of our current diagnostic prototype is integrated with 50 diseases models.  Our diagnostic system, 

once implemented with all known diseases and clinical data, is expected to provide invaluable diagnostic 

benefits to patients, physicians, nurses, health insurance companies, malpractice lawyers, and the entire medical 

establishment. 

 

 

CONCLUSIONS 
 

Our algorithm, although somewhat complex, is straightforward, especially when compared to other attempts in 

this field.  It emulates a clinician’s diagnostic reasoning.  It is logical and mathematically simple.  Bayes formula 

is used with modifications, because it is unable to process properly interdependent clinical data (as are most 

symptoms) and concurrent diseases.  To facilitate implementation and updating of the algorithm, we tend to 

avoid complicated tools of artificial intelligence, such as causal, hierarchical, and probabilistic trees and 

networks.  The algorithm freely uses heuristic procedures, so as to preclude excessive proliferation of clinical 

data and diagnoses.  It promises to be user friendly because it is expressed in natural language, is rational, and 

readily understandable.  Determination of accurate sensitivity of clinical data and integration of clinical entities 

into complex clinical presentation models will be labor-intensive.  A complete database with all known diseases, 

clinical data, clinical presentations, and other information should be created; this major task will require a 

dedicated team of medical specialists.  
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