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Most previous computerized diagnosis programs do not include in their databases all the currently 

known diseases and corresponding clinical data (symptoms, physical signs, and diagnostic tests and 

procedures).  This limitation introduces inaccuracies in calculation of differential diagnoses 

probabilities with almost any method applied; still worse, the diagnosis of the excluded disease will 

never be included in the differential diagnosis list.  This is why computer programs based on Bayes 

formula or other methods, but circumscribed to a restricted area of diseases—such as congenital 

cardiopathies or nephropathies—are inherently inaccurate.  To overcome this problem, we devised 

an artifice that compensates for the mentioned deficiency. 

 

This paper is part of our complete medical diagnostic system, described in detail in our book [2]. 

 

We summarize here only basic concepts of previous publications; for better understanding of this paper, 

the reader is encouraged to consult these publications. 

 

Sensitivity (S) is the cornerstone of our diagnostic system.  A practical way to calculate S of a specific 

clinical datum for a given disease is to determine statistically the fraction of patients afflicted by this 

disease who manifest the clinical datum: 

 

     𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑐𝑎𝑠𝑒𝑠 𝑚𝑎𝑛𝑖𝑓𝑒𝑠𝑡𝑖𝑛𝑔 𝑡𝑕𝑒 𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑑𝑎𝑡𝑢𝑚

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑐𝑎𝑠𝑒𝑠
             

 

 

Positive predictive value (PP value) is the best index to determine the strength with which a specific 

clinical datum present in a patient supports a specific diagnosis.  Our algorithm calculates PP value with 

the following equation: 

                                                

                                                      𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 𝑖 =
𝑆𝑖

𝑆1 + ⋯ +  𝑆𝑖 + ⋯ +  𝑆𝑛
                                                          (1) 

                                                                                                     
Where  PP value i  =   positive predictive value of the clinical datum for the disease i under consideration 

 

               Si  =  sensitivity of the clinical datum for the disease i under consideration 

 

               S1… Sn     =   sensitivities of the same clinical datum for corresponding diseases 

 

Disease model, as defined in our system, is an abstract concept that comprises all clinical data that can be 

manifested by all patients with a specific disease.  A single patient typically never manifests all clinical 

data that the disease potentially can provoke.  Integration of a specific disease model with all of its 

possible manifestations requires statistical study of a large patient population.  Each clinical form, 

stage, degree, or complication of a disease has its own disease model.  Because death and 

iatrogenic diseases are diagnoses that must be established clinically, the corresponding disease models 

must also be created. 

 



Probability (P) of a diagnosis is calculated with our novel mini-max procedure, core of our diagnostic 

system, considering PP value of clinical data present (favoring corresponding diagnosis) and S of clinical 

data absent (disfavoring diagnosis).  These values are processed by a specific formula: 
 

𝑃𝑖 =
𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 𝑖 (1 − 𝑆𝑖)

𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 1  1 − 𝑆1 +  … +  𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 𝑖  1 − 𝑆𝑖 + … +  𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 𝑛  1 − 𝑆𝑛 
         (2) 

 

Where  Pi         =   probability of a diagnosis i  
 

PP valuei =  positive predictive value of the clinical datum present  
 

Si =   sensitivity of the clinical datum absent  
 

PP value1…PP valuei … PP valuen = positive predictive value of the same clinical datum 

present for each respective diagnosis in the differential diagnosis list 
 

S1 … Si … Sn =  sensitivity of the clinical datum absent for each respective diagnosis in the 

differential diagnosis list  

    

We confirmed that mini-max procedure is superior to Bayes formula and other probabilistic or rating 

methods.  Detailed explanations and examples can be found in our previous publication [2]. 

 

Cost to obtain a clinical datum involves, in our context, not only expense but also risk and discomfort 

resulting from the required test or procedure.  We assign to each clinical datum one of four overall cost 

categories: no cost (clinical data typically obtained through medical history and physical examination), 

small cost (e.g., obtained through routine laboratory analysis, ECG, and other ancillary studies), 

intermediate cost (e.g., colonoscopy, lymph node excision biopsy), and great cost (e.g., liver biopsy, 

laparoscopy, laparotomy).  Benefit of a clinical datum is measured by the magnitude of change it 

produces in the probability (P) of the respective diagnosis, in turn depending on the magnitude of 

PP value of clinical data present, which increase P, and the magnitude of S of clinical data absent, which 

decrease P.  The mini-max procedure calculates these P for corresponding diagnoses. 

 

Best cost-benefit clinical data are recommended at each diagnostic stage to be investigated next in a 

patient, based on mini-max procedure, that predicts, based on probabilistic calculations, which set of such 

data would end the diagnostic quest, more efficiently and at lowest cost.  Recommended best cost-benefit 

clinical data are typically quite numerous, mandating the need to heuristically reduce its number; this is 

achieved in part by certain parameters described elsewhere [2] that can be set at empirically values by 

the user.  A tradeoff exists in each of these parameters: moving the value in one direction may 

significantly reduce the number of recommended data, but reducing also slightly the accuracy of 

diagnostic result, and vice versa.  The effects that these parameters have on the recommendation of best 

cost-benefit clinical data are shown in diverse output files mentioned later. 

 

Our program confirmed the importance of the exhaustiveness condition for calculating probability (P) 

of diagnoses, which states that to obtain accurate results all known diseases must be included in the 

database.  Because we were not able to integrate such an extensive database on our own, we resorted to an 

artifice, creating a fictitious disease model that we called OTHER DISEASES in addition to the limited 

number of disease models that actually integrate our prototype model.  This OTHER DISEASES model 

represents all other known diseases (estimated at several thousands).  Without this artifice, the computer 

program interpreted some irrelevant clinical datum, for example faint heart sounds, as exclusive for 

pericarditis with effusion, simply because this clinical datum was not listed in the remaining limited 

number of disease models.  Without OTHER DISEASES, equation 1 that calculates PP value of the 

mentioned clinical datum, had S = 0.50 in the numerator and S = 0.50 in the denominator being S = 0 for 



all other diagnosis, yielding a PP value = 1.00 resulting in an improperly confirmatory P = 1.00 for the 

diagnosis of pericarditis.  By creating OTHER DISEASES model and including in its long clinical data 

list the clinical datum “faint heart sounds” with a great S, we precluded this situation to occur.  This 

great S added to the denominator of equation 1, reduces considerably the PP value of the mentioned 

clinical datum for pericarditis and P of this diagnosis to a non-confirmatory level. 

 

However, at this point, another problem surfaced.  In OTHER DISEASES, when assigning a great S to a 

clinical datum (e.g., S = 1.00) that happens to be absent for other diagnoses, this S will integrate the 

corresponding terms in the denominator of equation 2 that calculates P of diagnoses.  The corresponding 

term [PP value (1–S)] = [PP value (1–1)] = 0.  One or more terms equaling 0 in the denominator will 

incorrectly increase considerably P of the diagnosis being processed.  To neutralize this untoward effect, 

we had to create an extra OTHER DISEASES SAME model in addition to the OTHER DISEASES 

model, repeating in both models the same clinical data but assigning to each corresponding S half of its 

original value.  Because these S values are added in the denominator of equation 1 that calculates 

PP values, the resulting PP value of a specific clinical datum for a specific diagnosis with half S value in 

both models, will be the same as with only OTHER DISEASES with S equal to the original entire value.  

However, an excessively great P is precluded by processing both mentioned models, because now the 

term [PP value (1–S)] = [PP value (1–0.50)] will yield a greater value and will appear twice in 

denominator of equation 2.  Our program hides OTHER DISEASES and OTHER DISEASES SAME 

diagnoses form showing in the differential diagnosis list and other output files. 

 

In summary, OTHER DISEASES and OTHER DISEASES SAME represent fictitious competing 

diagnoses, which temporarily replace the real competing diagnoses, not yet included in the database.  The 

more frequently and the greater the estimated number of non-included diagnoses manifest a clinical 

datum, the greater must be the estimated S value assigned to this clinical datum in OTHER DISEASES, 

to counterbalance its confirmatory power for the included diagnosis being processed. 

 

 

COMMENTS 

 

Exhaustiveness is a condition of Bayes formula and several other methods of calculating probability of 

diagnoses; if violated, the results are inaccurate and diagnoses are missed.  This condition requires that all 

currently known diseases and corresponding clinical data must be included in the database and processed.  

This task can hardly be accomplished by a single researcher; it requires the cooperation of a team of 

seasoned medical specialists, as it requires S estimation for all clinical data corresponding to each known 

disease.  Our diagnostic prototype program proved that until we have available such exhaustive database, 

a limited amount of diagnoses can be processed, with somewhat less but still satisfactory accuracy, 

resourcing to OTHER DISEASES and OTHER DISEASES SAME artifices, representing all not yet 

included diseases, as described in this paper.   

 

 

CONCLUSIONS 
 

Our algorithm and program, although somewhat complex, is straightforward, especially when compared 

to other attempts in this field.  It emulates a clinician’s diagnostic reasoning.  It is logical and 

mathematically simple.  Bayes formula is used with modifications, because it is unable to process 

properly interdependent clinical data (as are most symptoms) and concurrent diseases.  To facilitate 

implementation and updating of the algorithm, we tend to avoid complicated tools of artificial 

intelligence, such as causal, hierarchical, and probabilistic trees and networks.  The algorithm freely uses 

heuristic procedures, so as to preclude excessive proliferation of clinical data and diagnoses.  It promises 



to be user friendly because it is expressed in natural language, is rational, and readily understandable.  

Determination of accurate sensitivity of clinical data and integration of clinical entities into complex 

clinical presentation models will be labor-intensive.  A complete database with all known diseases, 

clinical data, clinical presentations, and other information can be created; this major task will require a 

dedicated team of medical specialists. 
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