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Complex Clinical Presentations and their Models 
 

CARLOS FEDER, MD, Internal Medicine; TOMAS FEDER, PhD, Computer Sciences 

 

Most existing diagnostic computer programs are rather internal medicine training or educational 

programs, incapable to diagnose diseases that afflict actual patients.  Some are based on Bayes 

conditional probability formula; some others are structured with pathophysiologic networks.  At 

best, these programs can deal imperfectly with a single disease able to account for all clinical data 

(symptoms, physical signs, diagnostic tests, and diagnostic procedures) that a particular patient 

manifests.  These programs fail to process complex clinical presentation, where a combination of 

diseases or clinical entities afflict simultaneously a single patient, situation frequent in medicine.  

Our algorithm and computer program are able to process complex clinical presentations, involving 

concurrent clinical entities and diagnoses; they are also easy to update. 

 

This paper is part of our complete medical diagnostic system, described in detail in our book [2]. 

 

We summarize here only basic concepts of previous publications; for better understanding of this paper, 

the reader is encouraged to consult these publications. 

 

Sensitivity (S) is the cornerstone of our diagnostic system.  A practical way to calculate S of a specific 

clinical datum for a given disease is to determine statistically the fraction of patients afflicted by this 

disease who manifest the clinical datum: 

 

     𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑐𝑎𝑠𝑒𝑠 𝑚𝑎𝑛𝑖𝑓𝑒𝑠𝑡𝑖𝑛𝑔 𝑡𝑒 𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑑𝑎𝑡𝑢𝑚

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑐𝑎𝑠𝑒𝑠
             

 

 

Positive predictive value (PP value) is the best index to determine the strength with which a specific 

clinical datum present in a patient supports a specific diagnosis.  Our algorithm calculates PP value with 

the following equation: 

                                                

                                                      𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 𝑖 =
𝑆𝑖

𝑆1 + ⋯ +  𝑆𝑖 + ⋯  +  𝑆𝑛
                                                          (1) 

                                                                                                     
Where  PP value i  =   positive predictive value of the clinical datum for the disease i under consideration 

 

               Si  =  sensitivity of the clinical datum for the disease i under consideration 

 

               S1… Sn     =   sensitivities of the same clinical datum for corresponding diseases 

 

Disease model, as defined in our system, is an abstract concept that comprises all clinical data that can be 

manifested by all patients with a specific disease.  A single patient typically never manifests all clinical 

data that the disease potentially can provoke.  Integration of a specific disease model with all of its 

possible manifestations requires statistical study of a large patient population.  Each clinical form, 

stage, degree, or complication of a disease has its own disease model.  Because death and 

iatrogenic diseases are diagnoses that must be established clinically, the corresponding disease models 

must also be created. 
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Probability (P) of a diagnosis is calculated with our novel mini-max procedure, core of our diagnostic 

system, considering PP value of clinical data present (favoring corresponding diagnosis) and S of clinical 

data absent (disfavoring diagnosis).  These values are processed by a specific formula: 
 

𝑃𝑖 =
𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 𝑖 (1 − 𝑆𝑖)

𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 1  1 − 𝑆1 +  …  +  𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 𝑖  1 − 𝑆𝑖 + …  +  𝑃𝑃 𝑣𝑎𝑙𝑢𝑒 𝑛  1 − 𝑆𝑛 
         (2) 

 

Where  Pi         =   probability of a diagnosis i  
 

PP valuei =  positive predictive value of the clinical datum present  
 

Si =   sensitivity of the clinical datum absent  
 

PP value1…PP valuei … PP valuen = positive predictive value of the same clinical datum 

present for each respective diagnosis in the differential diagnosis list 
 

S1 … Si … Sn =  sensitivity of the clinical datum absent for each respective diagnosis in the 

differential diagnosis list  

    

We confirmed that mini-max procedure is superior to Bayes formula and other probabilistic or rating 

methods.  Detailed explanations and examples can be found in our previous publication [2]. 

 

Cost to obtain a clinical datum involves, in our context, not only expense but also risk and discomfort 

resulting from the required test or procedure.  We assign to each clinical datum one of four overall cost 

categories: no cost (clinical data typically obtained through medical history and physical examination), 

small cost (e.g., obtained through routine laboratory analysis, ECG, and other ancillary studies), 

intermediate cost (e.g., colonoscopy, lymph node excision biopsy), and great cost (e.g., liver biopsy, 

laparoscopy, laparotomy).  Benefit of a clinical datum is measured by the magnitude of change it 

produces in the probability (P) of the respective diagnosis, in turn depending on the magnitude of 

PP value of clinical data present, which increase P, and the magnitude of S of clinical data absent, which 

decrease P.  The mini-max procedure calculates these P for corresponding diagnoses. 

 

Best cost-benefit clinical data are recommended at each diagnostic stage to be investigated next in a 

patient, based on mini-max procedure, that predicts, based on probabilistic calculations, which set of such 

data would end the diagnostic quest, more efficiently and at lowest cost.  Recommended best cost-benefit 

clinical data are typically quite numerous, mandating the need to heuristically reduce its number; this is 

achieved in part by certain parameters described elsewhere [2] that can be set at empirically values by 

the user.  A tradeoff exists in each of these parameters: moving the value in one direction may 

significantly reduce the number of recommended data, but reducing also slightly the accuracy of 

diagnostic result, and vice versa.  The effects that these parameters have on the recommendation of best 

cost-benefit clinical data are shown in diverse output files mentioned later. 

  

The diagnostic process comprises several levels of complexity.  Related clinical data cluster to a 

syndrome, simple syndromes comprising only a few clinical data coalesce to a complex syndrome or 

disease, and sometimes to a yet more complex clinical presentation comprising disease causes or 

complications, where the relation of clinical data with diseases becomes less obvious. 

 

Clinical entity: a generic term for any element of a complex clinical presentation, such as a cause, lesion, 

syndrome, complication, disease, clinical form, stage, or degree. 

 

The algorithm thus far presented uses probabilistic calculations with mini-max procedure and best 

cost-benefit clinical data to determine the probability of each differential diagnosis.  It will work well 
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with simple clinical entities, such as uncomplicated diseases or syndromes where clinical data typically 

are interrelated and linked to a single cause or lesion.  Some examples of such simple diseases or clinical 

entities include bronchitis, asthma, gastroenteritis, hyperthyroidism, obstructive jaundice, and renal 

failure.  At this diagnostic stage, a single final diagnosis accounts for all manifested clinical data. 

 

In an actual patient, the clinical picture might be more complicated; as a fact, severely ill patients in 

intensive care unit often have multi-organ involvement, present multiple and proteiform clinical data, and 

may mandate consultations with several specialists.  For example, coronary artery disease, acute 

myocardial infarction, congestive heart failure, shock, and thromboembolism in a single patient.  A 

specific disease can manifest diverse clinical forms, stages, degree of severity, and clinical presentations 

complicating the diagnostic process.  This situation makes impossible to determine the sensitivity (S) of 

each clinical datum for the entire complex clinical presentation because this would involve multiple 

clinical forms, concurrent diseases, and multiple pathogenic and pathophysiologic mechanisms.  It would 

require analyzing a statistically significant number of cases with identical combinations of clinical 

entities; it also would take us into an unmanageable computer complexity.  Accordingly, probabilistic 

methods are unsuitable for processing complex clinical presentations; indeed, to my knowledge, no 

commercial diagnosis programs that can accomplish this exist.  A categorical method for processing 

complex clinical presentations is simple and feasible. 

 

For this reason our algorithm, with its heuristic principles and moderate use of probability, diagnoses first 

only relatively simple syndromes, clinical entities, or diseases.  Let the diagnostic algorithm produce as 

many final diagnoses of simple concurrent diseases, syndromes, complications, etc. as the clinical data 

dictate.  These concurrent diagnoses might be unrelated or, more frequently, related by specific 

pathogenic or pathophysiologic mechanisms, many of them currently elucidated, but sometimes only 

suggested by statistical correlations.  Regardless of whether these mechanisms are known or suggested, 

those diagnoses that present any kind of relation or association, are listed together in input files that we 

call complex clinical presentation models.  The integration of such models is purely categorical, as it 

does not require any probabilistic calculation; they are stored in the database.  Such complex clinical 

presentation models, although numerous, are not excessive, and are described in any authoritative medical 

textbook; they include diagnoses of diseases, syndromes, complications, clinical forms, evolutive stages, 

and others.  

 

A complex clinical presentation model comprises related clinical entities and diseases; clinical data 

are excluded from this definition because they are elements of a disease model. 
 

Many other algorithms employ tree and network structures that extend from cause of disease to clinical 

data and vice versa, placing probabilities on nodes, branches, and leaves.  Most such structures are 

complex and required years to assemble.  We suspect that such structures are difficult to update and 

would need to be redesigned every few years.  In contrast, our algorithm can relatively easily be updated 

at any time, by simply updating in disease models the S values of clinical data, adding or deleting clinical 

data when necessary, or adding or deleting disease models. 

 

In summary, the entire diagnostic process is achieved in 2 steps: 

 

Step 1.  Probabilistic processing of clinical data matches patient clinical data with clinical data in 

disease models yielding a differential diagnosis list.  Mini-max procedure, best cost-benefit clinical data 

next to investigate, and discrimination between competing diagnoses and concurrent diagnoses achieve as 

many concurrent final diagnoses of clinical entities as are required to account for all manifested clinical 

data.  Then, the algorithm proceeds to Step 2. 
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Step 2.  Categorical processing of clinical entities matches confirmed final diagnosis with complex 

clinical presentation models in the database.  If a match is found, all the related diagnoses in this model 

are included in the differential diagnosis list to be processed in the usual way by min-max procedure and 

recommended best cost-benefit clinical data, being confirmed or ruled out.  The same complex clinical 

presentation models enable establishing whether concurrent diagnoses are related or unrelated, when 

respectively a linking model exist or not. 

 

Complex clinical presentations managed by our new program 

 

Complex clinical presentation models are categorical combinations of clinical entities linked by 

pathophysiologic or statistically significant correlations; they can be created, displayed, and modified 

with input file Complex Presentation Models, which are part of the database.  These models have at 

least four functions: (1) process associated diagnoses to preclude overlooking some of them; (2) manage 

interactions (masking) among diseases and drugs; (3) distinguish related from unrelated concurrent 

diagnoses; and (4) health assessment and early detection of occult diseases. 

 

1.  Associated diagnoses 
 

The purpose of this function is to preclude overlooking diagnoses, which might be of crucial importance 

for the global treatment of a patient, when no clinical data present supporting them have been entered so 

far in the computer.  Such diagnoses, which current P = 0, are suggested by association with confirmed 

diagnoses in the complex clinical presentation model, and will be processed even if not included yet in the 

differential diagnosis list.  This is achieved through the following steps: 

 

1.   Create complex clinical presentation models—Complex Presentation Models—listing in each, all 

diagnoses that present a possible pathophysiologic or statistically significant link (diseases, 

complications, evolutive stages, etc.).  Our program, assigns to each complex clinical presentation 

model a letter M, a number (Mxxxx), and an appropriate title (e.g., CARDIOVASCULAR).  Each 

diagnosis in the model has its letter D, corresponding number (Dxxxx) and name (e.g., AORTIC 

DISSECTION, MYOCARDIAL INFARCTION, PULMONARY EMBOLISM,…). 

 

2.   Create in the database—Disease Models—disease models for the diagnoses mentioned in the 

previous paragraph, with their corresponding clinical data and sensitivities (S), if these models are not 

already included. 

 

3.   Enter patient’s clinical data present and absent in respective Present Data and Absent Data files 

and run the Diagnostic Program. 

 

4.   After the necessary program iterations, for each confirmed final diagnosis, the algorithm searches all 

complex clinical presentation models for a match of this confirmed diagnosis with at least one 

similar diagnosis in the mentioned models.  If such a match is established, all the linked diagnoses of 

the model are included in the differential diagnosis list, if not already included, to be processed for 

presence or absence.  Best cost-benefit clinical data for these diagnoses will be recommended and 

once selected and investigated, enter them in respective Present Data or Absent Data files and run 

Diagnostic Program again. 

 

5.   The diagnostic program—Diagnostic Program—will calculate P of each diagnosis listed in the 

complex clinical presentation model.  Diagnoses inside the model are sorted by decreasing P, the 

greatest of these P is assigned as P of the entire model, and models are also sorted by decreasing P.  
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Each linked diagnosis is processed with the usual mini-max procedure, to become a confirmed 

concurrent diagnosis or to be ruled out.  The result of the process is displayed in the output files 

Complex Short that shows linked diagnoses with their P, and Complex Comprehensive that shows 

linked diagnoses with their P and best cost-benefit clinical data recommended for further processing.  

Linked diagnoses that at the current diagnostic iteration have no supporting clinical data present, will 

not show P, because this value must be calculated based on such clinical data, but will show the 

recommended best cost-benefit clinical data in Complex Comprehensive. 

 

The diagnostic quest requires processing only diagnoses related to confirmed diagnoses (final diagnoses); 

calculations of P for diagnoses related to non-confirmed diagnoses would be too numerous, cumbersome, 

and irrelevant.  Nevertheless, our program offers both options: (1) Complex Comprehensive output file 

recommends best cost-benefit clinical data for diagnoses in complex clinical presentation models related 

to all the diagnoses in the differential diagnosis list, confirmed or not, leaving to the user decide to which 

level he wants to process such diagnoses.  (2) Global Overview, Abridged Global Overview, and other 

parameter sensitive output files recommend best cost-benefit clinical data for diagnoses in complex 

clinical presentation models related only to diagnoses that reached confirmation threshold. 

 

Those diagnoses in a matched complex clinical presentation model that were not included yet in the 

differential diagnosis list by previously collected clinical data must be included in the differential 

diagnosis list because of their links to confirmed diagnoses.  Their probabilities are calculated in the usual 

way with mini-max procedure, but not being supported by any initially collected clinical datum, this 

calculation must rely exclusively on best cost-benefit clinical data.  Consequently, information of greatest 

PP value and S of nonexistent previous supporting clinical data, otherwise displayed between the 

diagnosis title and the best cost-benefit clinical data in Complex Comprehensive output file, is missing 

for these diagnoses.  This information will be displayed only after at least one of the recommended best 

cost-benefit clinical data is entered in Present Data input file, and the Diagnostic Program is run 

again.  When some of these diagnoses reach a confirmatory P, they become concurrent diagnoses. 

 

We confirmed that diagnoses, which P is calculated probabilistically with mini-max procedure, must be 

kept simple and pure (not contaminated with causes, complications, etc.); when two or more diagnoses 

are confirmed, they must be combined categorically.  An example of how violation of this rule affects 

results follows: acute aortic dissection sometimes produces the complication myocardial infarction; 

because of this fact, we erroneously included increased troponins as a clinical datum for acute aortic 

dissection, when it actually is an exclusive clinical datum for myocardial infarction.  As a result, 

increased troponins incorrectly confirmed acute aortic dissection.  Troponins should have been listed only 

as a clinical datum for myocardial infarction; acute aortic dissection and myocardial infarction should 

have been diagnosed as concurrent clinical entities, and then be linked categorically as cause and 

complication, by matching the corresponding complex clinical presentation model they share. 

 

A match of a confirmed diagnosis (e.g., emphysema) with only one similar diagnosis in a complex 

clinical presentation model suffices to select this model and include all its related diagnoses in the 

differential diagnosis list, even if only one of them (e.g., pneumothorax) may be confirmed as a 

concurrent complication. 

 

2.  Disease and drug interactions (masking) 
 

Drugs often interact, one enhancing or reducing the effects of another.  Drugs also may adversely alter 

clinical data of a disease.  In a somewhat similar manner, concurrent diseases may interact, one reducing 

(masking) or less frequently enhancing a clinical datum of another.  Let’s consider some examples: 
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 Chest pain of acute myocardial infarction may be masked by concurrent diabetes, strong analgesics, 

or advanced age. 
 
 A positive tuberculin reaction may be rendered negative by a concurrent acquired immune deficiency 

syndrome (AIDS) or a drug (e.g., a corticosteroid). 
 
 A systolic hypertension may be reduced by concurrent acute myocardial infarction or shock. 
 
 Inflammatory symptoms of rheumatic diseases or appendicitis may be suppressed by corticosteroids 

or antibiotics. 
 
 Diseases that affect liver function are able to produce a false negative cholecystogram, even with a 

normal gallbladder, because of the incapacity of the liver to concentrate the contrast media.  This case 

should be considered a masking situation, where a liver disease masks or cancels a clinical datum for 

a normal gallbladder, and should be processed accordingly. 
 
 Typical hypophosphatemia of primary hyperparathyroidism is masked by a concurrent renal failure, 

produced by this disease, raising phosphate to a false normal level. 

 

Disease and drug interactions are dangerous, because they can mask important clinical data and result in 

misdiagnosis.  This is especially important for diagnosis of life threatening diseases. 

 

The affected clinical datum typically is diminished in intensity or completely masked, as in some of the 

above examples; we are dealing with a clinical datum absent that would otherwise be present in the 

disease.  In our diagnostic algorithm, the absence of an expected clinical datum tends to rule out the 

disease in direct proportion to the S of this datum.  In the first example, chest pain for acute myocardial 

infarction has a great S (occurs frequently).  With the mini-max procedure, absence of chest pain, a 

consequence of concurrent diabetic neuropathy, would greatly reduce the P of myocardial infarction and 

the missed diagnosis could have dismal consequences.  Accordingly, if a concurrent disease cancels a 

clinical datum of the primary disease, the S of this clinical datum must be proportionally reduced, to 

diminish its rule-out power.  A practical solution is to consider chest pain S = 0 whenever myocardial 

infarction is suspected in a diabetic patient; this is equivalent to eliminate chest pain from diagnostic 

consideration.  In this case the diagnosis of myocardial infarction must be achieved with other clinical 

data present such as an ECG and cardiac enzymes. 

 

Masking occurs infrequently; therefore only those diagnoses and clinical data known to be susceptible to 

masking are processed for interaction.  Clinical data present, either initially collected or recommended as 

best cost-benefit clinical data, obviously are not masked.  Masking refers to a clinical datum absent, 
posing a dilemma whether it is genuinely absent or masked by a concurrent disease or drug.  Each clinical 

datum susceptible to be masked has associated a list of drugs and diseases able to mask it.  Only clinical 

data absent with great S are relevant because only they significantly reduce P of a diagnosis.  

Summarizing, a clinical datum potentially masked must be detected, have a great S for the corresponding 

diagnosis, and found absent.  When a clinical datum absent of great S is processed, the algorithm checks 

whether it is susceptible to be masked.  If so, potentially interacting diagnoses are added to the differential 

diagnosis list to be confirmed or ruled out, and the user is asked whether the patient is receiving specific 

drugs capable of interaction.  If any of these drugs or diagnoses is confirmed, S of the clinical datum 

susceptible to be masked is reduced to zero, which is equivalent to delete it from the corresponding 

diagnosis, and total P of the diagnosis is calculated with other clinical data present.  This is valid only for 

the diagnosis which clinical datum is masked, whereas the same masking diseases may be not masking 

for the same clinical datum in other diseases.  When a clinical datum assumed absent is found present, it 

is disregarded. 
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Because only certain specific clinical data of specific diseases are susceptible to be masked by specific 

concurrent diseases or drugs, our previous algorithm described in our former book [1] flags such clinical 

data in the corresponding disease models and lists the potential masking diseases and drugs. 

 

Our new algorithm [2] handles the problem in a way that is similar to the complex clinical presentations 

described above, because some related concurrent diseases or drugs with masking property must be 

processed for presence or absence.  With our new diagnostic program, these diagnoses and drugs are 

included in specific complex clinical presentation models together with the diagnosis that comprises the 

clinical datum susceptible to be masked, processing masking through the following steps: 

 

1.   Create a complex clinical presentation model—in Complex Presentation Models input file—for 

each diagnosis comprising a clinical datum susceptible to be masked (e.g., chest pain of myocardial 

infarction, which can be masked by concurrent diabetes, potent analgesics, or advanced age).  The 

model, numbered Ixxxx, is given an appropriate title (e.g., MYOCARDIAL INFARCTION WITH 

MASKED CHEST PAIN) and includes the following items processed like potentially concurrent 

diagnoses, numbered Dxxxx: (1) Diagnosis with a potentially masked clinical datum 

(e.g., MYOCARDIAL INFARCTION WITH MASKED CHEST PAIN), (2) The potentially 

concurrent diagnoses (DIABETES, MASKING DRUGS, ADVANCED AGE) that, if confirmed, 

could mask the clinical datum (chest pain).  Creating these complex clinical presentation models 

including the diagnoses with clinical data susceptible to be masked, is equivalent to flagging these 

diagnoses and clinical data. 

 

2.   Include, if not already included, in the database—Disease Models—disease models for the 

diagnoses mentioned in the previous paragraph, with their corresponding clinical data: 

MYOCARDIAL INFARCTION WITH MASKED CHEST PAIN, DIABETES, ADVANCED AGE, 

and MASKING DRUGS, the latter considered a diagnosis; a single masking drug is sufficient to 

confirm the diagnosis MASKING DRUGS.  Now, the database includes the original myocardial 

infarction without masked chest pain and the added myocardial infarction with masked chest pain, 

the latter disease model omitting this clinical datum (chest pain). 

 

3.   Run the diagnostic program—Diagnostic Program.  When supporting clinical data present select a 

diagnosis with a clinical datum susceptible to be masked, the differential diagnosis list—

Comprehensive Differential Diagnosis List—will display two similar competing diagnoses: 

<DIAGNOSIS WITHOUT MASKING> and <DIAGNOSIS WITH MASKING>.  However, a 

problem results at this point: the confirmatory clinical datum (e.g., increased troponins with S = 1.00) 

of acute myocardial infarction without masking competes with the same confirmatory clinical datum 

(increased troponins also with S = 1.00) of myocardial infarction with masked chest pain.  This yields 

a total P of only 0.50 for each diagnosis, instead of 1.00 for one of them, because these two S values 

(each = 1.00) add in the denominator of equation 1, reducing to half the PP value of the mentioned 

datum and consequently the P of the final diagnosis.  To preclude this from occurring, we resort to an 

artifice, adding in the original disease model in the database (MYOCARDIAL INFARCTION 

WITHOUT MASKED CHEST PAIN) the confirmatory clinical datum without masking (increased 

troponins without masked chest pain) to the already existing confirmatory clinical datum 

(increased troponins).  Similarly, we add in the disease model with masking (MYOCARDIAL 

INFARCTION WITH MASKED CHEST PAIN) the confirmatory clinical datum with masking 

(increased troponins with masked chest pain) to the already existing confirmatory clinical datum 

(increased troponins).  All these clinical data have the same S = 1?  For clinical data with small S it 

is not necessary to repeat these clinical data with and without masking, because they have no 

relevance in confirming or ruling out diagnoses.  Conversely, every clinical datum with great S, 
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having greater ruling out power (P reaching deletion threshold), must be duplicated the way 

mentioned above. 

 

Once both competing diagnoses—DIAGNOSIS WITHOUT MASKING> and <DIAGNOSIS WITH 

MASKING—are in the differential diagnosis list, output files Global Overview, Abridged Global 

Overview, Data Cost Procedure Quantity, and Abridged Data Cost Procedure Quantity will 

recommend both best cost-benefit clinical data: increased confirming clinical datum with masked 

clinical datum (increased troponins with masked chest pain) and increased confirming clinical 

datum without masked clinical datum (increased troponins without masked chest pain).  Which 

of these two recommended data must be selected and entered in Present Data depends on whether at 

least one of the masking diagnoses was confirmed final or not. 

 

4.   Now, it is necessary to establish whether a masking diagnosis can be confirmed.  If a diagnosis able 

to mask a clinical datum of another diagnosis—as establish by Complex Presentation Models—is 

already included in the differential diagnosis list, supported by at least one clinical datum present, it 

will automatically be processed.  However, if no supporting clinical data for this diagnosis were 

collected so far, all its clinical data (listed in the corresponding disease model) will be displayed as 

recommended best cost-benefit clinical data in Complex Comprehensive and Comprehensive 

Differential Diagnosis List, sorted by cost category and are expected to be quite numerous.  A 

reduced list of these recommended best cost-benefit clinical data can be seen in parameter affected 

abridged output files.  After investigation, these clinical data are entered in Present Data or Absent 

Data respectively and saved; the program—Diagnostic Program—is run again.  Masking diagnosis 

and its P will be displayed now in the differential diagnosis list. 

 

5.   If any masking diagnosis is confirmed (DIABETES, MASKING DRUGS, or ADVANCED AGE), 

we enter the confirmatory datum with masking (increased troponins with masked chest pain) in 

the list of clinical data present—Present Data.  If no masking diagnosis is confirmed, we enter the 

confirmatory datum without masking (increased troponins without masked chest pain) in the list 

of clinical data present—Present Data.  

 

6.   The diagnostic program—Diagnostic Program—is run again and the result displayed in 

Comprehensive Differential Diagnosis List, Complex Comprehensive, and several other output 

files, will confirm one (MYOCARDIAL INFARCTION WITHOUT MASKED CHEST PAIN) or the 

other (MYOCARDIAL INFARCTION WITH MASKED CHEST PAIN) of the two competing 

diagnoses.  P of the confirmed diagnosis will now equal 1, because although increased troponins 

alone in both diagnoses continue to compete with each other, troponins with masked chest pain and 

troponins without masked chest pain are mutually exclusive and are distinct clinical data.  The 

mini-max procedure will yield a P = 1, superseding the lower value of troponins were they processed 

alone. 

 

Without flagging, how do we know which clinical data are susceptible to be masked and which diagnoses 

include them?  There are three clues: 

 

i.   Two similar diagnoses competing in the differential diagnosis list. 

 

ii.    Their denominations (with and without masking). 

 

iii.   Complex clinical presentation models list the masked and masking diagnoses in input file Complex 

Presentation Models, and output files Complex Comprehensive and Complex Short. 
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For associated diagnoses we process all diagnoses in the complex clinical presentation model only if 

related to confirmed diagnoses (those diagnoses with P equal to or greater than the Confirmation 

Threshold).  Instead, for disease and drug interactions (masking) we process all masking diagnoses in 

the complex clinical presentation model only if the potentially masked diagnoses reaches a P equal to or 

greater than the Cutoff Present parameter [2] (with reasonable chance to become confirmed by other 

supporting clinical data).  The confirmation of a masking diagnosis and the removal of masked clinical 

datum from the masked diagnosis will increase P of the latter, precluding it from being ruled out, which 

otherwise could have occurred were its P unduly reduced by S of such clinical datum if not removed. 

 

3.  Related and unrelated concurrent diagnoses 

 

Complex clinical presentation models also distinguish related from unrelated concurrent diagnoses.  

When two or more concurrent diagnoses are included in a single complex clinical presentation model, by 

definition these diagnoses are related.  Conversely, if no single model exists that includes (relates) the 

concurrent diagnoses, they are unrelated.   

 

4.  Health assessment and early detection of disease (occult diseases) 
 

Health or normality is a diagnosis by exclusion of all possible diseases.  A healthy patient has no 

complaints and no abnormal clinical data.  However, patients sometimes ignore or underestimate their 

symptoms, or even hide them for social or legal reasons.  Also, many diseases are occult, at least in their 

early stages.  Health diagnosis mandates a comprehensive history and physical examination identical to 

that performed for diseased patients, only that we have no initial clues for possible disease.  If some 

clinical datum is unveiled during the history or physical examination, even though it might seem 

irrelevant or unimportant (e.g., a mild tension headache), we are obliged to enter it in the computer, so 

that the diagnostic program can evaluate it.  If the medical history and physical examination are so far 

completely normal, the patient still could have an occult or incipient disease, such as diabetes, lipid 

abnormalities, or cancer, which often is asymptomatic in its early stages.  Early detection of these occult 

diseases offers a better chance for cure.  Consequently, despite a normal history and physical 

examination, health assessment and early detection of disease mandate additional clinical studies to 

improve diagnostic accuracy. 

 

Health diagnosis poses the same problem as diagnosing overt disease, namely how many and what kind 

of tests and procedures would provide reasonable confidence that the patient indeed is healthy and all 

possible occult diseases have been ruled out.  No ideal solution exists to this problem, because medicine 

is an inexact science.  Even were a patient subjected to all currently available tests and diagnostic 

procedures—a practical impossibility—a disease still could be missed.  When one should stop 

considering further diagnostic efforts is unclear.  For an apparently normal person, one cannot request 

biopsies of all his organs, a laparoscopy, or other invasive and costly procedures.  The limit of such 

efforts depends on patient age and gender, risk factors, financial status, willingness to submit to 

recommended procedures, insurance company approval, involved liability, and many other factors. 

 

Malingering and hypochondriasis are diagnoses that a computer algorithm should be able to detect.  It is 

suspected whenever clinical data do not converge to a single diagnosis or combination of diagnoses.  No 

diagnosis reaches a confirmation threshold.  This situation mandates a comprehensive work-up, including 

a comprehensive medical examination, laboratory tests, or other diagnostic procedures, which are 

expected to be within normal limits. 
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The way our algorithm deals with occult disease or absence of disease is as follows.  Sometimes the 

occult disease diagnosis is already included in the differential diagnosis list, supported by at least one 

clinical datum present shared with some other apparent diseases or is associated with a confirmed 

diagnosis, in which case it will automatically be processed.  However, to preclude missing an occult 

disease that has no single clinical datum present to support it and no relation to any confirmed diagnoses, 

a specific complex clinical presentation model is created, comprising all diagnoses with serious 

prognosis, having the potential to remain occult for some time, and occurring frequently.  We named this 

model Occult Diseases.  A comprehensive database is expected to include already all the disease models 

corresponding to such diagnoses.  Detecting occult diseases is achieved through the following steps: 

 

1.   Create a complex clinical presentation model preceded by letter O—in Complex Presentation 

Models input file—named OCCULT DISEASES, listing all diagnoses with serious prognosis and 

having the potential to remain occult for some time. 

 

2.    Include in OCCULT DISEASES model a diagnosis preceded by letter D, named OCCULT 

DISEASES ACTIVE in addition to all potentially occult diseases. 

 

3. Include OCCULT DISEASES ACTIVE diagnosis in the database—Disease Models—comprising 

only one clinical datum preceded by letter C, named activate occult diseases, in no cost category, 

assigning it an S = 1.  Because this clinical datum is not manifested by any other diagnosis, it will 

yield a PP value of 1 (equation 1) and consequently a P of 1 (equation 2) for the mentioned diagnosis 

and for the model. 

 

4. If the user wants to check for occult diseases, he must activate the complex clinical presentation 

model OCCULT DISEASES; this is accomplished by entering the clinical datum activate occult 

diseases in the Present Data input file and running the program—Diagnostic Program.  As 

mentioned above, this clinical datum present, will confer a P = 1 to the ―diagnosis‖ OCCULT 

DISEASES ACTIVE that will be displayed as confirmed on top of all other diagnoses in the 

differential diagnosis list, acting as an alert that occult diseases model is activated. 

 

5.   For each diagnosis listed in this Occult Diseases model, if no supporting clinical data for this 

diagnosis were collected so far, all its clinical data (in the corresponding disease model) will be 

displayed as recommended best cost-benefit clinical data, sorted by cost category.  These clinical data 

are expected to be quite numerous in Comprehensive Differential Diagnosis List, but will be 

limited by parameter affected abridged output files. 

 

6.   Then the user decides up to which cost level he wants to select these best cost-benefit clinical data, 

based on patient and social conditions. 

 

7. After investigating the selected best cost-benefit clinical data, enter them in respective Present Data 

or Absent Data and save. 

 

8. Run Diagnostic Program again until the potentially occult diagnoses are confirmed or ruled out, or 

until cost becomes prohibitive.  If all recommended best cost-benefit clinical data, up to a reasonable 

cost level, are absent, ruling out or reducing considerably P of occult diagnoses, one can reasonably 

assume that the patient is healthy. 
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COMMENTS 

 

Most of previous existing computerized diagnosis programs are not able to diagnose complex clinical 

presentations, where diverse diseases and clinical entities afflict simultaneously a single patient.  Our 

diagnostic system solves this problem resourcing to complex clinical presentation models, listing all 

possible combinations of related diseases and clinical entities.  These models enable diverse applications: 

precluding overlooking diagnoses associated with concurrent confirmed diagnoses, detecting disease and 

drug interactions (masking), distinguishing related from unrelated concurrent diseases, and health 

assessment and early detection of disease (occult diseases). 

 

 

CONCLUSIONS 
 

Our algorithm and program, although somewhat complex, is straightforward, especially when compared 

to other attempts in this field.  It emulates a clinician’s diagnostic reasoning.  It is logical and 

mathematically simple.  Bayes formula is used with modifications, because it is unable to process 

properly interdependent clinical data (as are most symptoms) and concurrent diseases.  To facilitate 

implementation and updating of the algorithm, we tend to avoid complicated tools of artificial 

intelligence, such as causal, hierarchical, and probabilistic trees and networks.  The algorithm freely uses 

heuristic procedures, so as to preclude excessive proliferation of clinical data and diagnoses.  It promises 

to be user friendly because it is expressed in natural language, is rational, and readily understandable.  

Determination of accurate sensitivity of clinical data and integration of clinical entities into complex 

clinical presentation models will be labor-intensive.  A complete database with all known diseases, 

clinical data, clinical presentations, and other information can be created; this major task will require a 

dedicated team of medical specialists. 
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