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Abstract

We study the list homomorphism and retraction problems for the
class of reflexive digraphs (digraphs in which each vertex has a loop).
These problems have been intensively studied in the case of undirected
graphs, but the situation seems more complex for digraphs. We also
focus on an intermediate ‘subretraction’ problem. It turns out that the
complexity of the subretraction problem can be classified at least for
large classes of reflexive digraphs; by contrast, the complexity of the
retraction problem for reflexive digraphs seems difficult to classify. For
general list homomorphism problems, we conjecture that the problem
is NP-complete unless H is an ‘adjusted’ interval digraph, in which
case it is polynomial time solvable. We prove several cases of this
conjecture. The class of adjusted interval digraphs appears interesting
in its own right.
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1 Introduction

A digraph H is reflexive if the adjacency relation E(H) is reflexive, i.e., if
each vertex has a loop; it is symmetric if the relation E(H) is symmetric,
i.e., if uv ∈ E(H) implies vu ∈ E(H); and it is antisymmetric if the relation
E(H) is antisymmetric, i.e., if uv ∈ E(H) implies vu 6∈ E(H).

Each digraph H is associated with two related undirected graphs. We
denote by U(H) the underlying graph of H, which has an edge uv whenever
u 6= v and uv ∈ E(H) or vu ∈ E(H), and by S(H) the symmetric graph of
H, which has an edge uv whenever u 6= v and uv ∈ E(H) and vu ∈ E(H).
We shall say that u is a neighbour of v in H, and that u, v are adjacent in
H, if uv is an edge of U(H). Note that the loops of H, if any, are removed
from both U(H) and S(H).

A graph is chordal if it does not contain an induced cycle of length
at least four. An interval graph is a graph H which admits an interval
representation, i.e., a family of intervals Iv, v ∈ V (G), such that uv ∈ E(H)
if and only if Iu and Iv intersect.

While a digraph H is called chordal whenever its underlying graph U(H)
is chordal, there is a specialized notion of interval digraph [24, 26]. An
interval digraph is a digraph H which admits an interval pair representation,
which is a family of pairs of intervals Iv, Jv, v ∈ V (G), such that uv ∈ E(H)
if and only if Iu intersects Jv. For most other undirected concepts, such as
a tree or a cycle, we usually say that a digraph H has the property (is a tree
or a cycle etc.) if the underlying graph U(H) has the property.

If uv ∈ E(H), then uv is an edge of H. If uv ∈ E(H) and vu ∈ E(H), we
say that uv is double edge (or symmetric edge). If uv ∈ E(H) but vu 6∈ E(H),
we say that uv is a forward edge. We additionally use the term a backward
edge for an edge uv of U(H) such that vu ∈ E(H) but uv 6∈ E(H). Note
that while a forward edge is an actual edge of H, a backward edge is an
edge of U(H) but not of H. A single edge is a forward or backward edge.

A homomorphism f of a digraph G to a digraph H is a mapping f :
V (G) → V (H) in which f(u)f(v) ∈ E(H) whenever uv ∈ E(G) [17]. If
L(v), v ∈ V (G), are lists (subsets of V (H)), then a list homomorphism of G
to H (with respect to the lists L) is a homomorphism satisfying f(v) ∈ L(v)
for all v ∈ V (G). If H is a subgraph of G, a retraction of G to H is a list
homomorphism of G to H with respect to lists L in which L(u) = {u} for
all u ∈ V (H), and L(u) = V (H) for all u ∈ V (G) \ V (H).

Let H be a fixed digraph H. The basic homomorphism problem HOM(H)
asks whether or not an input digraph G admits a homomorphism f : G → H.
(Note that this problem is trivial if H is reflexive.) The list homomorphism
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problem L − HOM(H) asks whether or not an input digraph G equipped
with lists L admits a list homomorphism f : G → H with respect to L. Note
that the basic homomorphism problem is a restriction of the list homomor-
phism problem to input graphs G with lists L in which each L(v), v ∈ V (G)
is the entire set V (H). The retraction problem RET (H) asks whether or
not an input digraph G containing H as a subgraph admits a retraction
to H. It is easy to see, cf. [3], that this problem is equivalent to the re-
striction of L − HOM(H) to input graphs G with lists L in which each
list L(v), v ∈ V (G), is either a single vertex of H or the entire set V (H).
The subretraction problem SubRET (H) defined as the slightly weaker re-
striction of L−HOM(H) to input graphs G with lists L in which each list
L(v), v ∈ V (G), is either a single vertex of H or the same set S for some
S ⊆ V (H). A final restriction we shall sometimes consider is the connected
lists homomorphism problem CL−HOM(H), in which the input graphs G
with lists L are only only restricted to have each list L(v), v ∈ V (G), induce
a connected subgraph of U(H).

We shall always assume that the graph U(H) is connected. It then fol-
lows from these definitions that RET (H) is a restriction of SubRET (H),
which in turn can be viewed as a restriction of CL−HOM(H) (as we may
ignore the situations when the no-trivial lists induce a disconnected graph).
Of course, all the problems we discussed are restrictions of the list homo-
morphism problem L−HOM(H), and all contain the basic homomorphism
problem HOM(H).

Except for SubRET (H), these problems have been studied in the case
of (undirected) graphs [17]. For instance, the first two authors have proved
in [3] that for reflexive graphs H, the problem L−HOM(H) is polynomial
time solvable when H is an interval graph, and is NP-complete otherwise. It
is also proved in [3] that for reflexive graphs proving dichotomy of RET (H)
(i.e., showing that each RET (H) is NP-complete or polynomial time solv-
able) is equivalent to proving such a dichotomy for all constraint satisfaction
problems, which appears to be difficult [8]. However, dichotomy of the prob-
lems CL−HOM(H) for reflexive graphs H has been proved, and the com-
plexity fully classified [3]: if H is chordal, the problem is polynomial time
solvable, otherwise it is NP-complete. The same classification also applies to
the more restrictive problem SubRET (H). Indeed, when H is not chordal,
the problem SubRET (H) remains NP-complete, as it contains the problem
RET (H ′), where H ′ is a reflexive chordless cycle, proved NP-complete in
[3]. Thus we obtain the following dichotomy classification of SubRET (H)
for reflexive graphs.
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Theorem 1.1 For reflexive graphs H, the problem SubRET (H) is polyno-
mial time solvable if H is chordal, and it is NP-complete otherwise.

In this paper we investigate the analogues of these results for reflexive
digraphs, focusing primarily on L−HOM(H) and SubRET (H). The above
remarks about graphs directly imply the following facts about digraphs:

• If H is a reflexive digraph such that S(H) is not an interval graph,
then the problem L−HOM(H) is NP-complete.

• If H is a reflexive digraph such that S(H) is not chordal, then the
problem SubRET (H) is NP-complete.

In the next two sections we shall extend the above facts to U(H) in
place of S(H), i.e., we shall prove that L−HOM(H) is NP-complete unless
U(H) is an interval graph, and SubRET (H) is NP-complete unless U(H) is
a chordal graph.

We have also studied the complexity of problems L − HOM(H) when
H is an irreflexive undirected graph [4], or an arbitrary undirected graph
with loops allowed [5]. In each case, we were able to obtain a classification -
the problems tend to be tractable for well structured and natural classes of
graphs, and NP-complete otherwise. The complexity of L − HOM(H) for
any digraph (or more general relational system) has been classified in [1].
The classification is complicated, but it does yield an algorithm to decide
for any fixed digraph H whether L−HOM(H) is polynomial time solvable
or NP-complete. We will propose a simpler graph theoretic characterization
of the tractable problems, (similar to that for undirected graphs [3, 4, 5])
and verify it for large classes of digraphs H - including trees and certain ori-
entations of complete graphs. Note that trees and complete graphs are the
building blocks of all interval graphs [9], so these are important special cases
to consider. If our conjecture is true, it represents a significant simplification
of the classification in the special case of reflexive digraphs. The tractable
cases of L−HOM(H) would again correspond to nicely structured digraphs
H. Moreover, they would also correspond to just one simple ordering prop-
erty - min-orderability - of digraphs. We also have a similar conjecture for
the special case of irreflexive digraphs: there we believe, in addition to min-
orderability, one needs also to check for the existence of a majority function
[14]. (The statement in [14] erroneously only lists majority function; both
majority and min-orderability are needed [7].)

For SubRET (H), we present two classes of chordal digraphs for which
the problem is polynomial time solvable - namely trees and chordal partial
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orders. We also have reflexive chordal digraphs with NP-complete subre-
traction problems, including the directed three-cycle. Still, the complexity
of the subretraction problem can be classified at least for large classes of
reflexive digraphs. By contrast, the complexity of the retraction problem
for reflexive digraphs seems again difficult to classify [3, 8].

2 Chordal digraphs

In this section we prove a basic result about cycles that has implications for
all reflexive digraph list homomorphism problems. (Recall that according
to our convention a cycle is a digraph H such that U(H) is an undirected
cycle.) We begin by observing that the results of [6] imply that for each
reflexive digraph H with up to three vertices, the problem L−HOM(H) is
polynomial time solvable, with the sole exception of the directed three-cycle
C3, for which the problem RET (C3) is NP-complete. These facts classify the
complexity of the list homomorphism, retraction, and subretraction prob-
lems for all cycles H of length three or less. For cycles H of length greater
than three, we shall show that RET (H) is always NP-complete. (This was
independently proved by Benoit Larose (personal communication), using a
result of [2].)

For our proof we will employ the indicator construction from [16], as
explained in [17]. For a fixed indicator I, i, j (that is a digraph I with two
specified vertices i, j), the indicator construction transforms a digraph H
into the digraph H∗, with the same vertex set as H, and with adjacency
defined by the following rule: xy is an edge of H∗ just if there exists a
homomorphism of I to H that maps i to x and j to y. It is easy to see that
the following extension of Lemma 5.5 of [17] holds. (The proof is identical,
with the trivial addition of singleton lists wherever they were present in the
given instance.)

Lemma 2.1 If the problem RET (H∗) is NP -complete, then so is the prob-
lem RET (H).

For future reference we remark that the indicator construction is also
useful for list homomorphism problems. Let I, i, j be an indicator in which
each vertex v has a list L(v) ⊆ V (H). The digraph H∗ is now defined to
have an edge xy just if there is a list homomorphism of I to H mapping i to
x and j to y. The following observation is proved exactly as Lemma 2.1; note
that we assume that the lists of the vertices i and j are the entire V (H∗):
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this ensures that the proof in [17] properly applies to reduce L−HOM(H∗)
to L−HOM(H).

Lemma 2.2 If the problem L−HOM(H∗) is NP -complete, and if L(i) =
L(j) = V (H∗), then the problem L−HOM(H) is also NP-complete.

The second tool for our proof involves associating with each digraph H
a bipartite graph B(H), in which each vertex v ∈ V (H) yields two vertices
v′, v′′ in B(H) and each edge vw ∈ E(H) yields an edge v′w′′ in B(H). Note
that if H is reflexive, we have v′v′′ ∈ E(B(H)) for each v ∈ V (H).

Lemma 2.3 bigs If RET (B(H)) is NP-complete then RET (H) is also NP-
complete.

Proof. Consider a graph G with lists (that are singletons or the entire set
V (B(H))). If G is not bipartite, there is no list homomorphism. Else we
may assume we have vertices that have lists from the set of all v′, v ∈ V (H)
(call these white vertices), and vertices that have lists from the set of all
v′′, v ∈ V (H) (call these black vertices). We can transform G to a digraph
G′ with V (G′) = V (G) obtained by orienting each edge of G from the white
to the black vertex. The lists in G′ are obtained from the lists of G by
dropping the primes and double primes. It is easy to see that G admits a
list homomorphism to B(H) if and only if G′ admits a list homomorphism
to H.

We again note that the same proof reduces L − HOM(B(H)) to L −
HOM(H) (cf. [7, 11, 10]).

Theorem 2.4 If H is a reflexive digraph such that U(H) is a cycle with at
least four vertices, then the retraction problem RET (H) is NP-complete.

Proof. Let the consecutive vertices of H be a1a2 · · · apa1, p ≥ 4. Thus for
each t, the vertex at has a loop, there is an edge atat+1 ∈ E(U(H)) which
may be forward, backward, or double; and H has no other edges. (Addition
in cycle subscripts is always taken modulo the length p.)

Firstly, we observe that if all edges atat+1 are double, then RET (H) is
NP-complete by an obvious reduction from the undirected case [3].

Next we employ an indicator I with four vertices, i, j, k, ` and five edges
ki, i`, kj, j`, k`. Consider all possible homomorphisms of I to H. The edge
k` may be mapped to an edge between consecutive vertices at and at+1

(either k to at and ` to at+1, or conversely, depending on whether the edge
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in H is forward or double, or backward). In this case i can map either to at

or to at+1 and the same applies to j. Thus yields for H∗ all double edges
joining at with at+1. The edge k` may also be mapped to some loop atat: in
this case i and j could also be mapped to at−1, at+1, as long as H contains
consecutive double edges on at−1at and atat−1.

We conclude that as long as H does not contain consecutive double
edges, H∗ is a cycle of double edges of length at least four, and hence
RET (H∗) is NP-complete and so is RET (H). Otherwise, assume that a1a2

and a2a3 are double edges. In this case, the associated bipartite graph
B(H) always contains an induced cycle of length at least six: consider the
edges a1a

′
2, a

′
2a3, and a shortest path from a3 or a′3 to a1 or a′1. (A similar

argument for undirected graphs is given in more detail in [15], Proposition
4). Thus RET (B(H)) is NP-complete by [4], and hence so is RET (H).

Corollary 2.5 For reflexive digraphs H, the problems SubRET (H), CL−
HOM(H), and L −HOM(H) are all NP-complete, unless both U(H) and
S(H) are chordal graphs.

We note that SubRET (H) may be NP-complete even if both U(H) and
S(H) are chordal - as in the case of the reflexive directed three-cycle C3 [6].

We also note that the problem RET (H) may be polynomial time solvable
even when U(H) and S(H) are both non-chordal: for instance when H is
a reflexive wheel, which is the digraph obtained from a symmetric cycle by
adjoining one vertex dominating all other vertices. It is easy to see that G
admits a retraction to H if and only if the removal of all vertices of indegree
zero from G results in a digraph that retracts to the symmetric cycle. It
follows from [3, 8] that dichotomy for RET (H) for reflexive digraphs H
would imply dichotomy for all of constraint satisfaction problems.

3 Interval graphs and digraphs

It follows from the previous section that induced cycles of length at least four,
as well as directed cycles of length three, are structures whose presence in a
reflexive digraph H causes the NP-completeness of the list homomorphism
problem L − HOM(H). In this section we identify additional structures
with this property.

An asteroidal triple in a graph H is a triple of vertices 0, 1, 2 and paths
P (0, 1), P (0, 2), P (1, 2) (where P (i, j) joins vertices i and j), such that each
vertex i from 0, 1, 2 has no neighbours on the path joining the other two
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vertices. It is known that a graph is an interval graph if and only if it is
chordal and has no asteroidal triple [19]. If a reflexive graph H contains
an asteroidal triple, Then the problem L−HOM(H) is NP-complete[3]. A
similar result holds about reflexive digraphs; in the spirit of our convention,
an asteroidal triple in H is an asteroidal triple in U(H).

Theorem 3.1 Let H be a reflexive digraph. If U(H) contains an asteroidal
triple, then L−HOM(H) is NP-complete.

The theorem can be derived from [4] by passing through the associated
bipartite graph B(H) as above. However, for future needs, we develop direct
tools that will be used in the rest of the paper.
Proof. Suppose U(H) contains an asteroidal triple with vertices 0, 1, 2 and
paths P (0, 1), P (0, 2), P (1, 2).

We first recall gadgets called choosers from [3, 18], as discussed in [17].
We state the definition in a slightly more general form, and apply it to
digraphs. Let i, j be distinct vertices from 0, 1, 2 and let I, J be subsets
of {0, 1, 2}. A chooser Ch(i, I; j, J) is a digraph P with specified vertices
a and b, and with lists L(p) ⊆ V (H), for p ∈ V (P ), such that any list
homomorphism f of P to H has f(a) = i and f(b) ∈ I or f(a) = j and
f(b) ∈ J ; and for any i′ ∈ I and j′ ∈ J there is a list homomorphism f of
P to H with f(a) = i and f(b) = i′ and a list homomorphism g of P to H
with g(a) = j and g(b) = j′.

It is shown in [3], as explained in [17] page 174-5, that if there exist
choosers Ch(i, {i, k}; j, {j, k}) and Ch(i, {i}; j, {k}), for any permutation ijk
of 0, 1, 2, then L − HOM(H) is NP-complete. (Those proofs are stated in
terms of undirected graphs H and choosers Ch that are paths, but they
apply verbatim to arbitrary digraph choosers Ch as defined here.)

These choosers will be constructed from simpler building blocks which we
call separators. A separator G(i), i = 0, 1, 2, is a digraph with two specified
vertices u, v and lists L(t), t ∈ V (G(i)), such that

• every list homomorphism of G(i) to H with respect to the lists L maps
both u, v to i or maps neither of u, v to i, and

• for any pair of values x, y from 0, 1, 2 in which neither or both values
x, y are equal to i, there is a list homomorphism of G(i) with respect
to the lists L, mapping u to x and v to y.

The proof will be completed by the following two lemmas.
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Lemma 3.2 If there exists a separator G(i) for each i = 0, 1, 2, then the
problem L−HOM(H) is NP-complete.

Proof. The separators can be used to construct the choosers as follows:
Ch(i, {i}; j, {k}) is formed from G(i) by setting a = u and modifying its list
to L(u) = {i, j}, and by setting b = v and modifying its list to L(v) = {i, k}.
To form Ch(i, {i, k}; j, {j, k}), we take four vertices a, b, c, d, and place one
copy of G(i) between a and c (identifying a with u and c with v), and another
copy of G(i) between b and d (identifying in a similar manner), as well as
a copy of G(j) between c and b and another copy of G(j) between d and a.
It is easy to check that the resulting digraph satisfies the conditions for a
chooser Ch(i, {i, k}; j, {j, k}) with the specified vertices a and b.

Lemma 3.3 If the U(H) has an asteroidal triple, then H has separators
G(i), i = 0, 1, 2.

Proof. Suppose H has n vertices, and U(H) has an asteroidal triple 0, 1, 2.
The separator G(i) will be an oriented path of length 2n, with alternating
forward and backward edges. The lists of the two end vertices of the path
G(i) are {0, 1, 2}. All other vertices of G(i) have lists consisting of i, together
with all the vertices on the path P (j, k) in H (from the definition of an
asteroidal triple). Note that the length of the path G(i) and the orientation
of its edges ensure that it admits a homomorphism (without considering the
lists) that maps u and v to any two vertices of H (recall that every vertex
has a loop). It follows from the definition of an asteroidal triple that any list
homomorphism of G(i) to H maps both u and v to i, or neither of u, v to
i; and moreover, that there are list homomorphisms of G(i) to H mapping
both u and v to i and both to j, k in any prescribed combination, i.e., that
G(i) is a separator.

The reader will have noticed that the three vertices 0, 1, 2, together with
the three separators G(0), G(1), G(2), form a weak version of an asteroidal
triple in the digraph H. Note that the separators G(i) are not subgraphs of
H; nevertheless, in all our constructions they will be of size polynomial in
H.

Corollary 3.4 For reflexive digraphs H, the problem L−HOM(H) is NP-
complete, unless both U(H) and S(H) are interval graphs.
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We now introduce a variant of interval digraphs, better suited for list
homomorphism problems. Let H be a reflexive digraph. We say that an
interval pair representation Iv, Jv, v ∈ V (H) of H is adjusted, if the left
endpoint of Iv equals the left endpoint of Jv, for all v ∈ V (H). We say
that H is an adjusted interval digraph if it admits an adjusted interval pair
representation. It turns out that if H is an adjusted interval digraph, then
there is a polynomial time algorithm for the list homomorphism problem
L−HOM(H). This is best seen by relating adjusted interval pair represen-
tations to certain vertex orderings.

A min ordering of a digraph H is an ordering of the vertices of H such
that whenever xy and x′y′ are edges of H, then min(x, x′) min(y, y′) is also
an edge of H. (A min ordering is also called an X-underbar enumeration
[12, 17]). For reflexive digraphs, a min ordering can be described in a simpler
language.

Lemma 3.5 Let H be a reflexive digraph. Then an ordering < of V (H) is
a min ordering if and only if for any three vertices i < j < k we have

• ik ∈ E(H) implies ij ∈ E(H), and

• ki ∈ E(H) implies ji ∈ E(H).

Proof. The necessity of the two properties follows by taking the arc ik
(respectively ki) and the loop at j. To see the sufficiency, consider edges
xy, x′y′ of H and assume without loss of generality that x < x′, y′ < y; thus
min(x, x′) min(y, y′) = xy′. If x = y′, then xy′ is an edge since H is reflexive.
If x < y′, then xy′ is an edge because of the triple x < y′ < y. If y′ < x,
then xy′ is an edge because of the triple y′ < x < x′.

Corollary 3.6 Let H be a reflexive digraph. An ordering of the vertices of
H is a min ordering if and only if for each vertex v the vertices that follow
v in the ordering consist of

1. first, all vertices that are adjacent to v by double edges,

2. second, all vertices that are adjacent to v by single edges, either all
forward or all backward, and

3. last, all vertices that have no edges to or from v.
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Of course, any of the three groups could be empty. Note that, in partic-
ular, in a min ordering of H it cannot be the case that a vertex v has both
forward and backward edges towards vertices that follow it in the ordering.

We now derive the connection between adjusted interval representations
and min orderings.

Theorem 3.7 A reflexive digraph is an adjusted interval digraph if and only
if it admits a min ordering.

Proof. Given a min ordering, we can arrange the points lv in the same
order as they appear in the min ordering, and select intervals Iv and Jv as
follows. If v has no forward edges towards later vertices, we end the interval
Iv at the last vertex w such that vw is a double edge, and end the interval Jv

at the last vertex w such that vw is a backward edge. If v has no backward
edges towards later vertices, we end the interval Jv at the last vertex w
such that vw is a double edge, and end the interval Iv at the last vertex w
such that vw is a forward edge. Conversely, given an adjusted interval pair
representation Iv, Jv, v ∈ V (H) we obtain a min ordering of H according to
the left endpoints of the intervals.

Corollary 3.8 If H is a reflexive adjusted interval digraph, then L−HOM(H)
is solvable in polynomial time.

Proof. If H admits a min ordering, then L − HOM(H) is polynomial
time solvable by [12], cf. [17]. (In fact, the problem is of width one in the
terminology of [8]).

Conjecture 3.9 Let H be a reflexive digraph. If H is an adjusted interval
digraph, then L − HOM(H) is polynomial time solvable; otherwise, L −
HOM(H) is NP-complete.

As noted above, the first claim is known to hold. Proving the second
claim would be facilitated by having a forbidden substructure characteriza-
tion of adjusted interval digraphs; this was the case for undirected graphs
[3, 4, 5]. We believe such a characterization may exist, and present towards
this purpose a digraph analogue of asteroidal triples.

A di-asteroid in H is a set S of vertices such that for each ordering < of
S there exist vertices i < j < k in S and a path P in H from i to k which
avoids j. The path P : i = x0, x1, . . . , xp = k avoids j if the following is
true:
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• if xtxt+1 is a forward arc then xtj 6∈ E(H)

• if xtxt+1 is a backward arc then jxt 6∈ E(H).

Proposition 3.10 If H has a di-asteroid, then it is not an adjusted interval
digraph.

Proof. Suppose H is an adjusted interval digraph, and consider the min
ordering < of its vertices. Then for any i < j < k and any path P from i
to k there must be an edge xtxt+1 such that xt < j < xt+1; this contradicts
Lemma 3.5.

In this generality, H is an adjusted interval digraph if and only if it
does not have a di-asteroid, since we can take S = V (H) and the paths
P consisting of a single edge. Of course, this is not a useful reformulation
of the definition. However, we believe there is a useful set of obstructions,
which are di-asteroids of bounded size. As far as we know it is even possible
that it suffices to look for di-asteroids of size up to four.

Conjecture 3.11 A digraph H is an adjusted interval digraph if and only
if it does not have a di-asteroid S with |S| ≤ 4.

It is worth noting that unlike the case of interval graphs, where asteroidal
triples as well as induced cycles must be forbidden, the conjecture would
characterize adjusted interval digraphs by the absence of just asteroids (of
size three or four). For instance, symmetric four and five cycles contain
di-asteroids of size four, and longer cycles contain di-asteroids of size three.

We verify the conjectures in several special cases, focusing on trees and
complete graphs - the building blocks of interval graphs.

We now observe that di-asteroids of size three generalize asteroidal triples.

Proposition 3.12 If U(H) has an asteroidal triple, then H has a di-asteroid
of size three.

In fact, the proof of Theorem 3.1 can be extended to yield the following
fact.

Proposition 3.13 If H has a di-asteroid of size three, then L−HOM(H)
is NP-complete.
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Proof. Suppose S = {0, 1, 2}. The separators G(i), i = 1, 2, 3, are obtained
in a similar way as in the proof of Theorem 3.1. Specifically, G(i) is obtained
by taking two paths from the definition of a di-asteroid - one for the order
j < i < k and one for the order k < i < j, identifying the first vertex of one
with the last vertex of the other.

We observe that if an adjusted interval digraph H has no double edges,
then we can replace one of the intervals Iv, Jv by a single vertex (see the proof
of Theorem 3.7). The resulting characterization is even closer to interval
graphs. (See also [22].) For convenience we say that an interval I follows
an interval I ′ if the left endpoint of I is greater than or equal to the left
endpoint of I ′.

Theorem 3.14 Suppose H is a reflexive antisymmetric digraph. Then H
admits a min ordering if and only if the underlying graph U(H) has an
interval representation Iv, v ∈ V (H), in which the following property holds
in the digraph H (with the vertices now being viewed as the intervals):

• either vx ∈ E(H) for all x such that Ix intersects and follows Iv,

• or xv ∈ E(H) for all x such that Ix intersects and follows Iv.

We remark that Benoit Larose has shown that a reflexive antisymmetric
digraph H either has a min ordering or the problem L −HOM(H) is NP-
complete. Thus by Theorem 3.7, we conclude that Conjecture 3.9 is true for
antisymmetric digraphs.

4 Trees

Here we verify our conjectures for reflexive digraphs H for which U(H) is
a tree. It is well known [9] that a tree is an interval graph if and only if it
is a caterpillar. (A tree H is a caterpillar if the removal all leaves results in
a path P .) Let S(x) denote the set of leaves of H adjacent to the vertex
x ∈ P . As usual, we refer to H as a tree, or star, etc., to mean that U(H)
is a tree, or star, etc., respectively.

If H is a star, we shall define H to be a good caterpillar, if it does not
contain, as induced subgraph, the tree T2 depicted below. If H is not a
star, we define it to be a good caterpillar if it has a longest path v0, v1, . . . ,
vk, vk+1 satisfying the following conditions for all i. (Note that v1, v2, . . . , vk

is the path P , and that v0 ∈ S(v1), vk+1 ∈ S(vk).)
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1. If vivi+1 ∈ E(H), then viv ∈ E(H) for all v ∈ S(vi)− vi−1.

2. If vi+1vi ∈ E(H), then vvi ∈ E(H) for all v ∈ S(vi)− vi−1.

Note that if vivi+1 is a double edge then so are all viv, v ∈ S(vi)− vi−1.
Observe that there are no restrictions on v0, other than those arising from
the restrictions on v1. Indeed, all edges v1v for v ∈ S(v1) − v0 must follow
the direction of the edge v1v2 (forward, backward, or double) - with the
possible exception of a single vertex v, which must be the vertex v0. Thus
such a v0 can be chosen if and only if the restrictions on v1 have at most
one exception. Similarly, there are no restrictions on vk+1, other than those
arising from the restrictions on vk. All edges vkv for v ∈ S(vk) must follow
the direction of the edge vkvk+1. It is easy to see that such a vk+1 can be
chosen if and only if between vk and S(vk) there does not exist at the same
time a single forward and a single backward edge. Finally, we note that the
exceptional case, when H is a star, also conforms to the general definition;
we have chosen to state it separately only for convenience.

Theorem 4.1 Let H be a reflexive digraph that is a tree. Then the following
statements are equivalent.

1. H is a good caterpillar

2. H has a min ordering

3. H does not contain (as an induced subgraph) any of the trees T1, . . . T7

or their reverses.

Proof. The edges in the trees T1, . . . T7 that are not oriented can be forward,
backward, or double; the dashed edges are optional.

We shall show that 1 implies 2, 2 implies 3, and 3 implies 1. Indeed,
1 implies 2, as a good caterpillar can be ordered starting from v0 and pro-
ceding to v1, v2, . . . , vk, with listing the double edges of S(vi)− vi−1 first, as
suggested by Corollary 3.6. The definition of a good caterpillar ensures that
the listing for S(vi)− vi−1 can be chosen to end with vi+1.

It is easy to check that none of the forbidden subtrees allows a min
ordering, thus 2 implies 3. In fact, we can use Theorem 3.1 and Proposition
3.10: the tree T1 contains the asteroidal triple 0, 1, 2, the tree T2 contains
the di-asteroid a, a′, b, b′, the tree T3 contains the di-asteroid 0, 1, 2, and the
remaining trees contain the di-asteroid a, a′, b, b′.

It remains to show that 3 implies 1. Thus suppose H is a reflexive tree
which does not contain any of T1 − T7 or their reverses. Since H does not
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contain T1 it is a caterpillar. If H is a star, the conclusion now follows. Thus
assume H is not a star: when all leaves of H are removed we obtain a path
P , say P = p, r, s, . . . , y, z. We will prove that one of p, z can be chosen as
v1 and the other as vk. Suppose first that p cannot be chosen to satisfy the
condition for v1. Then in S(p) there must be two vertices v, v′ such that
the edges pv, pv′ do not follow the direction of the edge pr on P . If pr is
a double edge, this means that pv, pv′ are single edges. Since H does not
contain T3, both are forward (or both backward) edges. This implies that
all edges pv, v ∈ S(p) follow the direction of pr, and thus p can be chosen to
satisfy the condition for vk. Similarly, if pr is a single (forward or backward
edge), p can be chosen as vk, since H does not contain T2. Therefore, each of
p, z satisfies the condition for v1 or for vk. Suppose next that neither p nor
z satisfy the condition for v1. Then each contains two single edges whose
direction does not follow the direction of pr; this contradicts the fact that
H does not contain T5 and T6 or their reverses. Similarly, the absence of T7

implies that at least one of p, z satisfies the condition for vk. The absence
of T4 (and its reverse) implies that each intermediate vertex r, s, . . . , y of P
satisfies the condition for vi if its left or its right neighbour on P plays the
role of vi+1. Finally, if one vertex of P requires its left neighbour, while
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another requires its right neighbour, we again obtain a contradiction as
above with the fact that H does not contain the trees T5, T6, T7.

Corollary 4.2 Let H be a reflexive digraph that is a tree.
If H is a good caterpillar, then L−HOM(H) is polynomial time solvable.

Otherwise, L−HOM(H) is NP-complete.

Proof. If H is a good caterpillar, the theorem implies that it has a min
ordering and hence L −HOM(H) is polynomial time solvable. Otherwise,
the theorem implies that H contains T1, T2, . . . , or T7.

If H contains T1, it has an asteroidal triple and hence L−HOM(H) is
NP-complete by Theorem 3.1.

If H contains T2, then we shall apply Lemma 2.2. Consider the indicator
I consisting of three vertices i, c, j and two edges ic, cj, with the lists L(i) =
L(j) = {a, a′, b, b′}, L(c) = V (H). It is clear that H∗ is a reflexive digraph
that is a cycle with four vertices. Thus L − HOM(H∗) is NP-complete by
Theorem 2.4, and L−HOM(H) is NP-complete by Lemma 2.2.

If H contains T3 then consider the three vertices 0, 1, 2 of T3. We shall
prove that L − HOM(H) is NP-complete using Lemma 3.2. Indeed, since
there is a path joining 0, 1 that avoids the neighbours of 2, the separator
G(2) is constructed as in Theorem 3.1. To construct G(1), we take a path
that begins with a forward and then a double edge, followed by a sufficiently
long alternating sequence of forward and backward arcs, and ending with a
double edge followed by a backward arc. The lists will be {0, 1, 2} everywhere
except a will be added to the lists of the second and second to last vertex
and b will be added to the third and third to last vertex. This pattern of
edges and lists ensures that there is a list homomorphism mapping the first
vertex of G(1) to 0 and the last vertex to 2 and conversely, while if the
first or last vertex of G(1) is mapped to 1, the entire path must map to 1.
The path G(0) is constructed similarly. By Lemma 3.2, L − HOM(H) is
NP-complete.

If H contains T4, we proceed similarly, Only G(1) requires an explana-
tion: it is enough to take a sufficiently long path of alternating forward and
backward edges with a middle vertex t of indegree zero, and assign the lists
{0, 1, 2} to the end vertices, the lists {0, 1, 2, a, c} to all inner vertices except
t, and the list {0, 1, 2, a, b, c} for the special vertex t. It is again easy to
check that this pattern of forward and backward edges, together with the
lists, ensure the required properties for the separator G(1).

If H contains T5, we shall again use Lemma 2.2. The indicator will be
a path I from i to j identical to the path a, c, . . . , d, b in T5. the lists are

16



L(i) = L(j) = {a, a′, b, b′} and otherwise L(x) = {x, a, a′, b, b′}. It is easy
to check that H∗ is a reflexive cycle with four vertices. The proof for T6 is
similar.

Consider now the last tree T7. If the edge cc′ or dd′ is double, T7 contains
T3 and hence we are done. Thus we shall assume that c′c, dd′ are forward
edges. (By relabeling we obtain the case when they are both backward
edges; the case when one is forward and the other backwards is different,
but the proof is similar.) We again proceed to use Lemma 2.2. The indicator
will be a path I from i to j consisting of a path from i to a middle vertex
t identical to the path a, c, c′, . . . , d′, b′ in T7, followed by a path from t to
j identical to the path a′, d′, d, . . . , c, b in T7. The lists are L(i) = L(t) =
L(j) = {a, a′, b, b′} and L(x) = V (H) otherwise. It is easy to check that
H∗ is the reflexive cycle with edges ab, ab′, a′b, a′b′. (The path from i to t
ensures the presence of the edges ab, a′b and the path from t to j ensures
the presence of the edges ab′, a′b′.)

To complete the picture, we now show that when H is a reflexive digraph
such that U(H) is a tree, then the problem SubRET (H) is polynomial time
solvable.

Theorem 4.3 If H is a reflexive digraph such that U(H) is a tree, then
CL−HOM(H), SubRET (H), and RET (H), are all polynomial time solv-
able.

Proof. Clearly it suffices to prove the claim for CL−HOM(H). A majority
function on H is a a ternary function g on the vertices of H satisfying the
following properties:

1. g(x, x, y) = g(x, y, x) = g(y, x, x) = x, for any two vertices x, y in H;

2. g(x, y, z)g(x′, y′, z′) is an edge in H, for any three edges xx′, yy′, zz′ in
H.

Feder and Vardi [8] have shown that if H admits a majority function
then the problem HOM(H) is polynomial time solvable. It follows from
their proof that the problem CL−HOM(H) is also polynomial time solvable
(and of strict width two, in the terminology of [8]) as long as the majority
function satisfies the following additional property:

• g(x, y, z) belongs to every set S of vertices containing x, y, z which
induces a (weakly) connected subgraph of H, for any three vertices
x, y, z in H.
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A reflexive tree H admits such a majority function. Indeed, in the under-
lying undirected tree of H, any three vertices x, y, z admit a unique vertex
t lying on each of the paths from x to y, from x to z, and from y to z [20].
We define g(x, y, z) = t; it can be verified that this function g is a majority
function and satisfies the additional property.

We note that the result for RET (H) also follows from [13, 21], cf. [17].

5 Semi-complete digraphs

A digraph H is semi-complete if its underlying graph U(H) is complete. In
particular, if H is a semi-complete digraph, then U(H) is an interval graph.
If S(H) is not an interval graph, then L − HOM(H) is NP-complete by
Corollary 3.4; similarly, if H contains induced C3, then L − HOM(H) is
NP-complete by [6]. We say that a reflexive semi-complete digraph H is
admissible if it contains no induced C3 and S(H) is an interval graph.

Let R be the reflexive digraph with vertices 0, 1, 2 (each with a loop) and
with the additional edges 01, 10, 12, 20. We first consider R-free digraphs,
i.e., digraphs without induced copy of R.

Theorem 5.1 Suppose H is an R-free reflexive semi-complete digraph.
If H is admissible, then L−HOM(H) is polynomial time solvable.
Otherwise it is NP-complete.

Proof. The NP-completeness is justified above. The polynomial algorithm
will follow from the next lemma, see Corollary 5.3.

An interval pair representation Iv, Jv, v ∈ V (H) is called special if each
interval Iv extends from its left endpoint (shared by Jv) to infinity. If inter-
vals Jv and Jw intersect then vw is a double edge, while if intervals Jv and
Jw do not intersect, with Jv to the left of Jw, then vw is a forward edge.

Lemma 5.2 Let H be an R-free admissible digraph. Then there exists a
special interval pair representation of H.

Proof. Note that a special interval pair representation is completely de-
scribed by the intervals Jv, v ∈ V (H).

In the interval graph S(H) there is a vertex u whose neighbors form a
clique Q. Let H ′ be the reflexive digraph obtained from H by removing
the vertex u, and assume inductively that H ′ admits a special interval pair
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representation. Let V ⊆ V (H) be the set of vertices v 6= u such that
vu ∈ E(H) is a single edge, and let W ⊆ V (H) be the set of vertices w 6= u
such that uw ∈ E(H) is a single edge. Then for v ∈ V and w ∈ W , the
edge vw cannot be a double edge, or else v, u, w would induce a copy of R.
Furthermore the edge vw cannot be backward, since otherwise v, u, w would
form a reflexive directed cycle. Therefore vw is a forward edge, i.e., an edge
of H.

It follows that all the intervals Jv for v in V are to the left of the intervals
Jw for w in W . We may thus insert an interval Ju for u between the intervals
for V and the intervals for W , satisfying the conditions for a special interval
pair representation as far as the directed edges vu and uw with v in V and
w in W are concerned.

It remains to ensure that the intervals Jq for q in the clique Q intersect
the interval Ju. Suppose to the contrary that some such Jq is say to the left
of Ju. There cannot be an interval Jv with v in V between Jq and Ju that
does not intersect either Jq or Ju, since otherwise q, v, u would form an R.
Furthermore, any interval Jq′ with q′ in Q intersects Jq, since Q is a clique
in S(H). We may thus extend Jq to the right until Jq meets Ju without
changing any of the intersections other than making Jq meet Ju. Similarly,
an interval Jq with q in Q to the right of Ju may be extended to the left until
Jq meets Ju without changing any of the intersections other than making
Jq meet Ju. Thus Ju now meets all intervals Jq with q in Q, providing the
desired special interval pair representation for H.

Corollary 5.3 If H is an R-free admissible digraph, then H is an adjusted
interval digraph and L−HOM(H) is polynomial time solvable.

Note that we have now verified Conjecture 3.9 for R-free reflexive semi-
complete digraphs.

Let R1 be a copy of R in H on vertices v1, v2, v3, with edges v1v2, v2v3,
v1v3, v3v1, and let R2 be a copy of R in H on vertices v4, v5, v6, with edges
v4v5, v5v6, v4v6, v6v4. We shall say that R1 and R2 are badly matched in
H if the vertices v1, v2, v5, v6 are pairwise distinct and furthermore all vivj

with 1 ≤ i ≤ 3 and 4 ≤ j ≤ 6 are edges of H, with the possible exception of
v1v6 and v3v4. It is not hard to verify that if H contains two badly matched
copies of R, then it contains a di-asteroid of size four. However, we are more
interested in the following fact.

Lemma 5.4 If H contains two badly matched copies of R, then L−HOM(H)
is NP-complete.
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Proof. Let I, i, j be an indicator with vertices i, j, z, t with lists L(i) =
L(j) = {v1, v2, v5, v6}, L(z) = {v2, v3}, and L(t) = {v4, v5}, and with edges
zi, zj and it, jt. Then H∗ contains the reflexive symmetric cycle of length
four v1v5v2v6v1, and hence both L − HOM(H∗) and L − HOM(H) are
NP-complete, by Theorem 2.4 and Lemma 2.2 respectively.

We now consider forbidding another reflexive three-vertex digraph R′

with vertices 0, 1, 2 (each with a loop) and additional edges 01, 10, 12, 20, 02.
We shall again consider R′-free digraphs. It is easy to see that a semi-
complete digraph is R′-free if and only if S(H) is a disjoint union of cliques
(with no other edges).

Theorem 5.5 Suppose H is an R′-free reflexive semi-complete digraph.
If H contains an induced C3 or two badly matched copies of R, then

L−HOM(H) is NP-complete.
Otherwise, H is an adjusted interval digraph and L−HOM(H) is poly-

nomial time solvable.

Proof. Suppose the single edges of H contain a directed cyle. Let C
be a shortest cycle of single edges of H. Then every pair of vertices in
V (C) is adjacent either by an edge in C or by a double edge. If V (C) has
three vertices, then L−HOM(H) is NP-complete because L−HOM(C3)
is NP-complete [6]. If V (C) has four vertices with C given by w1w2w3w4w1,
then there are badly matched copies of R on U = {w1, w2, w3} and V =
{w2, w3, w4}, so L − HOM(H) is NP-complete by the above lemma. If
V (C) has at least five vertices, then the symmetric edges on V (C) do not
form a union of cliques. (In fact they form a graph that is not chordal, hence
L−HOM(H) is NP-complete).

We may thus assume that the single edges of H form an acyclic digraph;
let v1, v2, . . . , vn be an ordering of the vertices of H so that every single
edge of H is of the form vivj with i < j. Suppose that H is a minimal
counterexample to the Theorem. Recall that the double edges of H form a
union of cliques.

If the clique L of double edges containing v1 has precisely the vertices
vi for 1 ≤ i ≤ l for some l, then a min ordering of H is obtained by listing
first the vertices of L, followed by a min ordering of the remaining vertices
forming a graph H ′ which has such an ordering by the minimality of H.
Similarly, if the clique of double edges M containing vn has precisely the
vertices vi for m ≤ i ≤ n for some m, then a min ordering again lists first
the vertices in M . If the clique of double edges L containing v1 has precisely
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the vertices vi for 1 ≤ i ≤ l and for m ≤ i ≤ n, then a min ordering again
lists first the vertices in L.

The preceding three cases exclude several situations. First there is the
case where the clique of double edges L contains v1 and vn, and also contains
some additional vj , but does not contain either vi or vk with 1 < i < j <
k < n. Then we obtain badly matched copies of R on U = {v1, vi, vj}
and V = {vj , vk, vn}. The remaining case has a clique of double edges L
containing v1 and a clique of double edges M containing vn, so that either
L contains a vertex vj and M contains a vertex vi with 1 < i < j < n,
in which case we obtain badly matched copies of R with U = {v1, vi, vj}
and V = {vi, vj , vn}; or L contains a vertex vj and does not contain a
vertex vi and M contains a vertex vk and does not contain a vertex vr with
1 < i < j < k < r < n, in which case we obtain badly matched copies
of R on U = {v1, vi, vj} and V = {vk, vr, vn}. NP-completeness follows by
Lemma 5.4.

Corollary 5.6 Let H be a reflexive semi-complete digraph, and let H ′ be
obtained from H by replacing each connected component of S(H) by a sym-
metric clique. If H ′ is not an adjusted interval digraph, then L−HOM(H)
is NP-complete.

Proof. Let L and M be two connected components of the symmetric part
of H. We claim that if L has a vertex u and two vertices v, w in M with
edges vu, uw, and M has a vertex u′ and two vertices v′, w′ in M with
edges v′u′, u′w′, then H has two badly matched copies of R and the claim
follows. By a connectivity argument, we may assume v, w are adjacent by a
double edge. If u′′ is adjacent to u by a double edge, then we must also have
edges vu′′, u′′w, otherwise u, u′, v, w induce a badly matched pair. It follows
that for all u′′ in L we have edges vu′′, u′′w. If v′′ is adjacent to v or to w
by a double edge, and we have both edges v′′x, yv′′ for some x, y adjacent
by double edges in L, then v, v′′, x, y or w, v′′, x, y again induce two badly
matched copies of R. Therefore, for each v′′ in M , either we have all edges
v′′x or all edges xv′′ for x in L, proving the claim.

We now define an indicator I, i, j with i = x, j = y and additional
vertices t, z as well all vertices on a path from x to z with |V (H)| double
edges and on a path from t to y with |V (H)| double edges. In addition to
the edges on the paths, I also includes the edges xt, zy. By the above claim,
H∗ = H ′, completing the proof.

All evidence sofar points to the following possibility.
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Conjecture 5.7 For semi-complete reflexive digraphs H, the problem L −
HOM(H) is polynomial time solvable when H is admissible and does not
contain two badly matched copies of R, and it is NP-complete otherwise.

The NP-completeness has already been proved above; for the polynomial
algorithms we have covered the case of no copies of R at all, so it remains
to consider reflexive digraphs which have copies of R but none are badly
matched. If such digraphs could be shown to be adjusted interval digraphs
we would be done.

We now turn to the problems SubRET (H). Theorem 5.1 has the fol-
lowing corollary.

Corollary 5.8 Suppose H is an R-free reflexive semi-complete digraph.
If H is admissible, then SubRET (H) is polynomial time solvable. Oth-

erwise SubRET (H) is NP-complete.

Proof. It only remains to prove the NP-completeness claim, for digraphs
H such that S(H) is chordal. The result follows from the next lemma.

Lemma 5.9 Let G be a chordal graph.
Then G = S(H) for some R-free semi-complete reflexive digraph H if

and only if G is an interval graph.

Proof. For the necessity, if G is not an interval graph, then G has an
asteroidal triple 0, 1, 2. We may assume without loss of generality that the
edge 01 in H is oriented from 0 to 1. Let p be the path from 1 to 2 in G not
containing any neighbors of 2. Then for successive vertices u on p, the edge
0p in H is oriented from 0 to p, since a change in orientation for consecutive
vertices u and v on p would make the triangle 0uv in H isomorphic to R.
Therefore the edge 02 in H is oriented from 0 to 2.

We have thus shown that the edges 01 and 02 must both be oriented
from 0 or both towards 0 in H. A similar argument shows that the edges
10 and 12 must both be oriented from 1 or both toward 1 in H, and that
the edges 20 and 21 must both be oriented from 2 or both toward 2 in H.
Thus if say 01 is oriented from 0 to 1, then 02 is oriented from 0 to 2, so 12
is oriented from 1 to 2, so 10 is oriented from 1 to 0, a contradition.

For the sufficiency, if G is an interval graph, let Iv, v ∈ V (G) be an
interval representation of G. Orient an edge uv of H not in G from u to v
if and only if Iu is to the left of Iv, where these intervals do not intersect.
If three vertices u, v, w in H form an R with edges uv, vw, uw,wu, then the
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intervals for u and w must intersect, but Iu is to the left of Iv, and Iv is to
the left of Iw, so Iu and Iw do not intersect, a contradiction.

6 Partial orders

The reflexive digraph H is a partial order if the relation of adjacency is
transitive and antisymmetric. Feder and Vardi [8] showed that obtaining a
dichotomy for RET (H) for partial orders H is equivalent to obtaining such
a dichotomy for all constraint satisfaction problems. We show that if H is
a partial order, the problem SubRET (H) is polynomial if the underlying
graph K is chordal, and is NP-complete otherwise.

Let T be the reflexive digraph with four vertices x, y, z, t, (with loops)
and additional edges xy, xt, yz, zt, yt. Let T ′ be obtained from T by reversing
the direction of the edges.

Theorem 6.1 Let H be a reflexive antisymmetric digraph not containing
induced T or T ′.

If U(H) is chordal and H is C3-free, then SubRET (H) is polynomial
time solvable.

Otherwise, SubRET (H) is NP-complete.

Corollary 6.2 Let H be a partial order.
If H is chordal, then SubRET (H) is polynomial. Otherwise, SubRET (H)

is NP-complete.

Proof. We have already shown the NP-completeness.
Since the property of H of having a chordal underlying graph is preserved

under induced subgraphs, it suffices to show that the problem RET (H) is
polynomial.

Since H has a chordal underlying graph and does not contain C2, C3 as
induced sugraphs, it follows that the only cycles of H are loops. We shall
in addition to the single vertex lists and the all-vertex lists allow also lists
S such that S is contained in a clique of the underlying graph of H and if
y, t ∈ S with yz, zt, yt edges of H then z ∈ S.

Since H is chordal, it contains a vertex a whose neighbors induce a clique.
Let B be the set of vertices in H other than a that have an edge to a, and
let C be the set of vertices in H other than a that have an edge from a. If
B is nonempty, let b be the element of B such that every vertex in B has an
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edge to b; if C is nonempty, let c be the element of C such that every vertex
in C has an edge from c.

For any two vertices in an instance that must map to a, all vertices on a
directed path joining these two vertices must also map to a. If B is empty,
then all vertices that have a directed path to a vertex that must map to a
must also map to a. If C is empty, then all vertices that have a directed
path from a vertex that must map to a must also map to a. If a is the
source element of a list S contained in a clique, then all vertices with list S
that have a directed path to a vertex that must map to a list T contained
in a clique with sink element a must also map to a. If a is the sink element
of a list S contained in a clique, then all vertices with list S that have a
directed path from a vertex that must map to a list T contained in a clique
wtih source element a must also map to a. We may thus identify all these
vertices that must map to a into a single vertex v that must map to a.

We claim that if this instance G with a single vertex v that must map to
a has a homomorphism f to H, then this instance also has a homomorphism
f ′ to H that maps no vertex other than v to a. If B is empty, then whenever
f(w) = a we may set f ′(w) = c; if C is empty, then whenever f(w) = a we
may set f ′(w) = b; if neither B nor C is empty, then whenever f(w) = a
we may set f ′(w) = c if there is a directed path from a vertex with list S
contained in a clique having a as its source to w, and f ′(w) = b otherwise.
Here we have used the fact that if list S is a clique containing a, then if
S contains some vertex reachable from a then S also contains c, and if S
contains some vertex that can reach a then S also contains b.

We may then replace the instance G with the instance G′ obtained by
removing v and updating accordingly the lists of neighbors of v. The lists
will still have the desired properties since T ,T ′ are forbidden as induced
subgraphs.

Theorem 6.3 Let H be a reflexive antisymmetric digraph such that U(H)
is a split graph. If H is C3 − free then SubRET (H) is polynomial time
solvable. Otherwise, SubRET (H) is NP-complete.

Proof. The NP-completeness was shown before. For polynomiality, we
proceed as in the preceding theorem. A split graph has vertices consisting
of an independent set I and a clique K. We may as in the preceding theorem
eliminate the vertices a ∈ I from H one by one. We are left with a problem
on the clique K, this time with arbitrary lists. We may greedily map source
vertices of the instance to the least element of their lists.
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We have classified the subretraction problems SubRET (H) for large
classes of reflexive digraphs H (including symmetric digraphs [3], trees, and
partial orders). Perhaps it is possible to completely classify the complexity
of this problem.

We are grateful to Arash Rafiey for many useful suggestions that im-
proved this paper.

References

[1] A.A. Bulatov, Tractable conservative constraint satisfaction problems,
to appear in ACM Trans. Comput. Logic.

[2] C. Delhorme, Projection properties and reflexive binary relations, Al-
gebra Universalis 41 (1999) 255–281.

[3] T. Feder and P. Hell, List homomorphisms to reflexive graphs, J. Com-
binatorial Theory B 72 (1998) 236–250.

[4] T. Feder, P. Hell, and J. Huang, List homomorphisms and circular arc
graphs, Combinatorica 19 (1999) 487–505.

[5] T. Feder, P. Hell, and J. Huang, Bi-arc graphs and the complexity of
list homomorphisms, J. Graph Theory 42 (2003) 61–80.

[6] T. Feder, P. Hell, and K. Tucker-Nally, Digraph matrix partitions and
trigraph homomorphisms, Discrete Applied Math. 154 (2006) 2458 –
2469.

[7] T. Feder, P. Hell, and A. Rafiey, List homomorphism to balanced
digraphs, manuscript 2006.

[8] T. Feder and M. Y. Vardi, The computational structure of monotone
monadic SNP and constraint satisfaction: a study through Datalog
and group theory, SIAM J. Computing 28 (1998) 57–104.

[9] M. C. Golumbic, Algorithmic Graph Theory and Perfect
Graphs, Academic Press, New York (1980).

[10] A. Gupta, P. Hell, M. Karimi, and A. Rafiey, Minimum cost homo-
morphisms to reflexive digraphs, manuscript 2007.

[11] G. Gutin and E.J. Kim, On the complexity of the minimum cost homo-
morphism problem for reflexive multipartite tournaments, submitted.

25



[12] W. Gutjahr, E. Welzl and G. Woeginger, Polynomial graph-colorings,
Discrete Applied Math. 35 (1992) 29–45.
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