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Abstract

We study a switch Markov chain on regular graphs,
where switches are allowed only between links that are at
distance 2; we call this the Flip. The motivation for study-
ing the Flip Markov chain arises in the context of unstruc-
tured peer-to-peer networks, which constantly perform such
flips in an effort to randomize.

We show that the Flip Markov chain on regular graphs
is rapidly mixing, thus justifying this widely used peer-to-
peer networking practice. Our mixing argument uses the
Markov chain comparison technique. In particular, we ex-
tend this technique to embedding arguments where the com-
pared Markov chains are defined on different state spaces.
We give several conditions which generalize our results be-
yond regular graphs.

1 Introduction

In this paper, we study natural Markov chains on the
set of simple graphs with a fixed degree sequence. All
the Markov chains that we study here are variations of the
“switch”. The moves in this Markov chain remove a pair
of edges (i, 7) and (k, 1) from the graph and replace it with
(i,k) and (4, 1), if the resulting graph remains simple. This
Markov chain is known to connect all the graphs with the
same degree sequence[1] (for any pair of graphs G and G’
with the same degree sequence, it is possible to transform G
into G’ by a sequence of switches), it is therefore a natural
candidate scheme for generating a random such graph.

Extending and simplifying pioneering work of Jerrum
and Sinclair[8, 10], Kannan, Tetali, and Vempala [14] an-
alyzed a restriction of this chain on bipartite graphs and
showed that it is rapidly mixing (while Bezakova, Bhatna-
gar and Vigoda[2] gave a related simulated annealing based
scheme for sampling bipartite graphs with a wide range of
degree distributions). Cooper, Dyer, and Greenhill [3] used
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a better canonical path argument and extended the results of
[14] to non-bipartite regular graphs.

However, beyond generating random graphs with a given
degree sequence, the above type of Markov chains have re-
cently arose in the context of maintaining well connected
topologies in unstructured peer-to-peer networks[3, 15, 5,
17]. In this context, the graph G represents the topology of a
peer-to-peer network at a particular instance, and a switch of
(i,4) and (k, 1) with (¢, k) and (7, [) represents dropping and
adding a few links from the network, thus slightly changing
its topology.

We have implemented a Gnutella client and have mea-
sured, in practice, between 5 and 30 requests per second to
each client for such additions and deletions; approximately
1% of these requests are satisfied. Given that current peer-
to-peer networks, like Gnutella, KaZaa or eMule, have in
the order of 1-5 million clients, this indicates a dramatic
amount of constant change in the network topology. Peer-
to-peer networks are apparently constantly trying to change
their topology in an effort to randomize, and thus main-
tain the excellent connectivity properties of random graphs
(such as low diameter and expansion).

In this sense, the work of [3] was a first indication that
the heuristics used by current peer-to-peer networks have
some theoretical foundations. However, in the context of
peer-to-peer networks, modeling the changes in the network
by a switch in the underlying graph G(V, E), |V| =n, has
a serious drawback. In particular, the assumption that two
links can be picked uniformly at random violates the strong
local nature of peer-to-peer networks. In such networks,
each node has memory O(logn) (enough to remember its
address), and can be assumed to have computational re-
sources O(poly logn). Thus each node “knows” a neigh-
borhood of size at most O(poly logn) around itself. How
can, under these circumstances, the network pick two links
uniformly at random? In addition, a switch operation can
potentially make the graph disconnected. Without a cen-
tral authority, it seems almost impossible to re-connect the
graph.




In this paper we overcome the above problem by look-
ing at a variation of the switch chain which can be imple-
mented with local information about the network. In a re-
stricted version of the switch which we call a “Flip”, the
edges (i,7) and (k,l) will be replaced by (i, k) and (j,1)
only if ¢ and [ are adjacent to each other. Another way to
see this is the endpoints of the edge (i, [) exchange a random
neighbor with each other. The exchange happens only if the
resulting graph is still simple. This operation is fairly com-
mon in different variations of peer-to-peer networks and is
part of standard java codes for peer-to-peer operations [17].
Another important property of this switch is that, if applied
to a connected graph, it keeps the graph connected. Thus,
when starting from a connected graph, the Flip operation
defines a Markov chain on connected graphs. Moreover, in
[15] it was shown that this Markov chain connects the state
space of all connected graphs, i.e. it is possible to transform
a connected graph G to a connected graph G’ with the same
degree sequence, using only Flip operations.

The main contribution of this paper is to show that the
Flip Markov chain is rapidly mixing for regular graphs.
In order to do that we first consider the switch chain in-
duced on the set of connected graphs with a given degree
sequence. Let us call this chain the restricted switch. We
bound the mixing time of the Flip chain in terms of the mix-
ing time of the restricted switch by a type of Markov chain
comparison argument. It is easy to see that the nodes of
the underlying graph of the Flip chain are the same as the
restricted switch, but the graph underlying the chain of the
restricted switch may have many more edges than the graph
underlying the Flip.

The technical difficulty of our argument is to show that it
is possible to simulate and map every edge of the restricted
switch chain to a path in the Flip chain between the same
pair of vertices such that the “congestion” of every edge,
i.e. the number of times it is picked in all paths, is bounded.

Then we compare the restricted switch with the switch
Markov chain. We show that there is a way to embed the
transition graph of the switch chain in the transition graph
of the restricted switch chain such that, at most 2n nodes
of the switch chain map to a node of the restricted switch
chain, and, if two nodes are adjacent in the switch chain,
then their distance will be bounded by a constant in the re-
stricted switch. It is also easy to see that degree of a node in
both chains is polynomial in n. Therefore it is possible to
simulate every transition in the switch chain with a series of
transitions in the restricted switch such that the congestion
of every edge is bounded by a polynomial.

Using the above two arguments and the results of [3],
we conclude that the Flip Markov chain is rapidly mixing
for regular graphs. To the best of our knowledge, the em-
bedding argument that we use to bound the mixing time of
restricted switch Markov chain in terms of the mixing time

of the switch Markov chain is the first Markov chain com-
parison argument where the compared Markov chains are
not on the same state space.

We should note that, for non-regular graphs, the Flip
chain is not always irreducible (does not connect the state
space of all connected graphs with a given degree se-
quence). We find a general sufficient condition for degree
sequences for which the Flip chain is irreducible and er-
godic. Using this result and a generalization of the canoni-
cal path argument given in [3], we can prove the mixing of
the switch Markov chain and the Flip Markov chain for a
wide range of degree distributions. We note, however, that
in the context of peer-to-peer network applications which
mainly motivate the study of the Flip Markov chain, the
most interesting case is that of regular graphs (unstructured
peer-to-peer networks as are known to typically have de-
grees between 5 and 30).

The rest of this paper is organized as follows. In Section
2 we give definitions and outline of results. In Section 3
we show that the Flip Markov chain is rapidly mixing for
regular graphs. In Section 3.2 we bound the mixing time
of the Flip Markov chain in terms of the mixing time of the
switch Markov chain restricted to connected graphs. This
is a Markov chain comparison argument. In Section 3.1
we bound the mixing time of the restricted switch Markov
chain in terms of the mixing time of the general unrestricted
switch Markov chain. This is a generalized Markov chain
comparison argument, in the sense that the state spaces of
the two Markov chains are not the same. In Section 4 we
characterize degree sequences for which the Flip Markov
chain mixes rapidly, and we extend the allowed moves of
the Flip Markov chain (always preserving locality of infor-
mation as motivated by the peer-to-peer networking appli-
cation) so that the state space indeed covers all connected
realizations of a given degree sequence.

2 Definitions and discussion of related results

In this paper we will be studying properties of three dif-
ferent related Markov chains on graphs.

Switch Markov chain: For a given graphical degree se-
quence (dy,...,d,), let Qg be the set of graphs satisfying
this degree sequence. We define a Markov chain Mg on
Qg as follows. From G € (2, with probability % do noth-
ing. Otherwise choose two distinct edges (4, j), (k,!) uni-
formly at random. Then, choose a perfect matching M of
{1, j, k, £} uniformly at random, and if M N E(G) = ) then
delete the edges (7, j), (k,l) from G and add the edges of
M to G. Otherwise do nothing. This operation is called a
switch.

We write Gs for the underlying graph of Mg, so Gs =
(Qs,T), where each edge e € T' corresponds to a transition
of M. It is known that Mg is irreducible[1] and hence



ergodic, converging to the uniform stationary distribution
over all connected graphs. [3] show that M s is rapidly mix-
ing for degree sequences corresponding to regular graphs.

Switch Markov chain restricted to connected graphs:
The Markov chain Mg is defined identically to Mg, ex-
cept that a switch is not accepted if it disconnects the graph.
Its underlying graph Gsc is an induced subgraph of Gs re-
stricted to connected graphs. It has been shown that Ggse
is connected [22], and therefore M s is irreducible and er-
godic. M s¢ is also time-reversible with uniform stationary
distribution. M s¢ has been previously studied experimen-
tally in [6, 19] in the context of generating connected re-
alizations of degree sequences representing internet topolo-
gies. However, it was not known if M s¢ is rapidly mixing.

Flip Markov chain: The flip Markov chain M £ is a
chain on the set of connected graphs in which a switch be-
tween edges (i, 7), (k,!) is allowed only if ¢ and [ are adja-
cent Let G be the underlying graph of M . It is noted
in [15] that M £ for regular graphs is ergodic and time-
reversible with uniform stationary distribution.

The main contribution of the paper is to prove that the
Flip Markov chain is rapidly mixing for regular graphs us-
ing Markov chain comparison techniques (For definitions
and an excellent survey of these techniques, see [9, 4]). We
will use the Mge chain as an intermediate step to com-
pare Ms and M . We will use the known rapid mixing of
M [3] to show that M s is rapidly mixing, and we will
then use the rapid mixing of Mgc to show that Mp is
rapidly mixing.

3 The Flip Markov Chain

In order to bound the mixing time of M £ in terms of
M e we do the following: for every edge (u,v) in Gsc we
choose a path between u and v in G~ such that the “conges-
tion” of every edge, i.e. the number of times it is picked in
all paths, is bounded.

We will use that to prove that the mixing times of the
Mz and M g¢ are polynomially related. We then compare
the restricted switch markov chain Mgc with the switch
Markov chain Ms. We show that there is a function A that
embeds Gs into Gsc such that h(Gse) = Gsc, each graph
in Gsc is the image of at most 2n graphs in Gs, and that if
two graphs are adjacent in Ggs the distance of their images
remains bounded by a constant factor in Gs¢. It is also easy
to see that degree of a node in both graphs is polynomial.
Therefore it is possible to simulate every transition in the
switch Markov chain with a series of transitions in the re-
stricted switch Markov chain such that the congestion of ev-
ery edge is bounded by a polynomial. Using the above two
arguments and the work of Cooper et al., we conclude that
the Flip Markov chain is rapidly mixing for regular graphs.

In the first part of the section, we bound the mixing time
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Figure 1. Mapping % : Gs — Gsc

of the switch restricted to the set of connected graphs. We
then use this result to prove that the Flip Markov chain is
mixing.

3.1 Rapid mixing of Mgs¢

We now give an explicit construction that maps every
edge in Gs to a path of bounded length in Gsc, while no
more than 2n graphs in Gs map to a single graph in Ggs¢.

Lemma 1 For a graphical degree sequence d, if d; > 2 for
every 1, there exists a mapping h : Qs — Qsc such that
WG) = G and |h~'(G) < 2n| for G € Qsc,and if G, G

are adjacent in Gs, then h(G), h(G) are at distance at most
17 in gsc.

Proof. Let k be the number of connected components of
G. Impose an arbitrary numbering on the set of vertices and
sort the connected components H; of G € (g in ascending
order of their highest numbered vertex. For each component
H;, let e(H;) = (u;,v;) where e is an edge on a cycle in
H; such that the pair (u;,v;) is lexicographically highest.
Since all degrees are greater than 2, each component must
have such an e(H;), which we call a bridge edge.

Now for mapping a graph G to h(G), we remove each
e(H;) and connect the components together by adding
(viyuipq) for 1 <4 < k — 1 plus (vg, uq).

Suppose G and G are adjacent in Gs. Let G’ = h(G)
and G’ = h(G). We will show that the distance between G’
and G’ in Gsc is at most 17. First, we need to define two
useful transformations.

1. An edge rotation a series of switches within a com-
ponent to change its bridge edge. We do this as fol-
lows: choose an edge e € G that is incident to neither
the vertices of e(H;) nor the vertices of e(H;). If G
has more than one component such an edge must exist,
otherwise G and G are adjacent in Gsc anyways. If
e(H;) shares a vertex with e(H;), we can complete the
rotation of the edge with just one switch. Now, it might
be necessary to change the direction of H; by switch-

ing the edges (v;—1,v;) and (u;, uiqr1) to (Vi—1,u;)



and (v;,u;41). If e(H;) does not share a vertex with
e(H;), we can perform a switch to remove e(H;) and
e and another two switches to remove the edges from
the vertices of e¢(H;) linking to H!’s neighboring com-
ponents. Then we perform one more switch to restore

e(H;) and e, resulting in the desired graph. An edge
rotation therefore requires at most 4 switches.

2. A component reordering changes the order of a com-
ponent H; in the chain and moves it to a position j.
First we switch the edge connecting H; to H;,, and
the one connecting H; to H;;,. The second switch
switches the edge connecting H; 1 and H;, and the
edge connecting H;_1 and H;. Now, It may be nec-
essary to change the direction of H; itself with one
switch described in the edge rotation, for a total of at
most 3 switches.

Now, let us name the edges in E(G) — E(G) as e, f and
E(G) — E(G) as ¢’ and f’. Consider the following cases
for the switch from G to G

Case 1: switch is within the component: ¢, f,¢', f' are
chosen within a single component H;, and the switch does
not disconnect H;. The component orderings in G and
G are the same, as their corresponding vertex sets do not
change with this switch.

To create a path from h(G) to h(G), we may need to first
perform an edge rotation to an edge ¢” # {¢’, f'} if either
e’ or f’ is the bridge edge. Then we can safely switch ¢’, f’
with e, f without disconnecting the graph, and then rotate
again to restore e(H;) as the link. This takes at most 4 + 1
+ 4 =9 switches.

Case 2: Switch disconnects component: e, f,¢e', f' are
chosen within a single component H;, and the switch dis-
connects H; into new components R, Ro . Note that a
single switch can split a component into at most two com-
ponents. Assume that R; has the higher numbered vertex.
Then R; is in the correct position in G’, Ry may not be. If
either component is using €’ or f” as a bridge, we now per-
form an edge rotation to a different edge within the compo-
nent.

We now reorder R to be adjacent to R;. This only takes
two switches, since we’re not concerned about direction at
this point. We may need to change direction however, of
one of Ry or Ry to ensure that the link between them is
neither e’ nor f”’. Now, switch by removing the edge link-
ing Ry and Rs and the edge linking Ry and H)_,, adding
an edge linking Ry and H]_; and restoring R;’s missing
bridge edge. Next, we remove ¢’ and f’ and add e and f.
All that’s left is to do a final edge rotation, and the path in
Gsc is complete. This takes at most4 +4 +3 +1+1+4 =
17 switches.

Case 3: Switch merges two components: e, f are chosen
from different components H;, H;, €', f’ are such that H; U

edge
rotation
of Hi

Figure 2. edge rotation

H; u{e, f'} — {e, f} is connected. Note that one of e, f
may disconnect their respective components in this case, but
not both.

The merged component is the correct order for one of the
components, say ¢. We apply a rotation so that an edge of
H is the bridge edge. We then apply a switch, removing an
edge of H and the edge connecting (H_, to H;1)" and
adding edges so that H j’ is in the correct order. We can then
apply another switch to remove ¢’, f” and add e, f. Finally,
we apply an edge rotation to each of H] and H J’ to complete
the path. This yields at most4 + 1 + 1 + 4 + 4 = 14 switches.

Case 4: Switch exchanges parts between two compo-
nents: e, f chosen such that e disconnects H; into Ry, Ro
and f disconnects H; into R3, R4, with e’ connecting
R1, R3 and f' connecting Ry, Ry.

Note that none of e, f, ¢/, f’ may be on a cycle in G or G.
This implies that one of the R’s in G is in the correct posi-
tion and is using the correct bridge edge, say I2;. We now
apply an edge rotation to the Ro, R4 component such that
an edge of R, is being used. Now, we can apply a switch
adding e, f and removing €', f’ without disconnecting the
graph. A edge rotation of R3, R, to the proper bridge edge
e(H;) and then a reordering of H; completes the path. This
gives at most 4 + 1 + 4 + 3 = 12 switches.

Given a graph h(G) € Qgc, it is possible to recover G
by traversing the cycles in h(G) starting from the highest-
numbered vertex v of H; and traversing the components
in one of the two directions, and recover all the H;’s by
recognizing when a vertex larger than the current highest
numbered vertex of an H; is found. For the H;’s, the edges
in h(QG) joining graphs H;, H;1, or H,,H; are the sets of
edges in a cycle in h(G) that participate in a cut of size two
and are incident to a vertex of degree at least 3. Since there
are two directions and n choices for v, the pre-images h(G)
consist of at most 2n graphs. O

Now, it is easy to see that Gs has maximum degree
(dn)?, since there are at most dn edges and we pick two
edges for a switch. Therefore, each edge in Gs can be
picked in at most 16(dn)'6 paths. The lengths of paths are
also bounded by n2. In(25) < (nd)2. Combining these
facts with Lemma 1 implies the following.



Theorem 2 The mixing time of the switch Markov chain
Mg induced on the set of connected graphs gc is

Tsc(€) = O(d**n3%7g(e)).

So if Mg is rapidly mixing for a given degree sequence,
Mg is also rapidly mixing.

3.2 Rapid mixing of the Flip chain

In this section, we bound the mixing time of M £ in
terms of the mixing time of M ¢ for regular graphs. For
regular graphs, M £ is ergodic, time reversible, and has uni-
form stationary distribution [15].

Lemma 3 For regular degree sequences with d > 2, every
edge (G, G'") in Gsc can be simulated with a path P from G
to G' in G whose intermediate graphs G; differ in at most
12 edges from G or from G'.

Proof. If an edge (G,G’) of Gsc is given by e, f, €', f/,
then G—{e, f} must have either a path joining x, z or a path
joining y, t. Let P be the shortest such path, of length p, say
joining x, z. There are several cases. If (y, P,¢) is an in-
duced path, of length p+-2, then we proceed by reversing the
order of the vertices in p by repeatedly exchanging consec-
utive vertices in P = (0, ..., p), obtaining at intermediate
stages (7,7+1,...,5+6,j—1,j+0+1,....p,j—1,...,0)
which are 5 edges extra and 5 deficit compared to G, and
with 4 edges extra and 4 deficit compared to G’.

If (y, P,t) is an induced path plus the edges (y, 1) and
(p—1,t) withp > 3, then proceed as in the previous case for
the path (y,1,...,p —1,t), with 4 edges extra and 4 deficit
compared to GG, and with 6 edges extra and 6 deficit com-
pared to G, then finish by switching edges (y,0), (¢, 1),
and switching edges (y,p — 1), (t,p).

If (y, P,t) is an induced path plus edges joining y to
some of the vertices 1,...,p — 1, the last of these be-
ing 4, proceed with the induced path y,7,7 + 1,...,p,t
as in the first case, then proceed inductively with the path
y,0,1,...,4,t plus extra edges joining y to the other ver-
tices, with 5 edges extra and 5 deficit compared to both G
and G'.

Finally, if z,y, z,t have a common neighbor v, then
if |d; — d;j|] < 1 the vertex  must have a neighbor u
not adjacent to v, switch (z,u), (v, z) with (z, 2), (v, u),
then switch (z,y), (z,t) with (z,t),(z,y), then switch
(z,2), (v,u) with (x,u), (v, 2), giving 4 edges extra and 4
deficit compared to both G and G’. O

In G, an edge E belongs to a path corresponding to the
edge (G,G’) in Gsc only if G has at most 5 edges extra
and 5 deficit compared to the endpoints of E. There are at
most (dn/2)°8-6-4-3 such G, with (dn)? choices possible

Figure 3. Bow-tie switch

for G’ as a neighbor of G, giving a factor 24d"n” for G.
An additional factor of O(n?) is incurred as the length of a
simulation of a step of Gs¢ in G is O(n?). Therefore the
congestion is bounded by O(d"n?).

Theorem 4 The mixing time for the Markov chain M x

Tr(€) = O(d7n97'sc(e)).

4 Extension to more general degree se-
quences

It is desirable to extend our results to more general de-
gree sequences, for example, including power-law degree
sequences observed in some of the known networks[6, 19].
But is important to note that the Flip Markov chain is not
necessarily reducible when the graph is not regular. The
bow-tie graph in Figure(4) is a counter-example.

However, we can show that this anomaly is limited only
to certain graphs. We show that if all the graphs with a
certain degree sequence have diameter bigger than 3, then
the Flip chain is irreducible and therefore ergodic, time re-
versible and with a uniform stationary distribution.

Furthermore, we extend the proof of [3] for the rapid
mixing of Mg for general degree sequences that encom-
pass those of power-law networks. Our proof is mainly built
upon the proof of [3] and we only sketch it here.

4.1 The Switch chain for non-regular
graphs

We use the same multicommodity flow approach as in
[3]: given G,G’" € Q, let H = GAG’ be the symmetric
difference of G and G’. The paths p defined in [3] have
the property that if p goes from G to G, and if G” is on p,
then every edge of GAG' joins two vertices that have non-
zero degree in H = GAG'. Since the graphs G € € can
be made d-regular by adding additional vertices to obtain
G, where the additional edges involve at most one vertex in
G, the paths in [3] can be considered paths for our case of
degree sequences (d1,...,d,), since G,G’, G" will agree
in edges incident to vertices not in G, G', G".

The paths are defined by choosing a pairing of edges
in G\ G’ with edges in G’ \ G around each vertex. Let



®(G, G") be the set of such pairings. For each pairing in
®(G,G"), a canonical path from G to G’ is constructed.
Each of these paths will carry 1/®(G, G) of the total flow
from G to G

We now obtain a bound on the mixing time. Fix a pairing
¢ € ®(G,G’) and let Z be any graph on the corresponding
canonical path from G to G’. Identify each graph with its
symmetric n X n adjacency matrix. Define a symmetric
n x nmatrix L by L+ Z = G + G'. Entries of L belong to
{—1,0,1,2}. An edge in L is called bad if its label is —1
or 2. We call L an encoding for Z (with respect to G, G").
Note that an edge receives label —1 if it is absent in both G
and G’ but it is present in Z, while an edge receives label 2
if it is present in both G and G’ but is not present in Z. Thus,
edges in the symmetric difference GAG’ never receive bad
labels.

Let Z' be the next graph after Z in the canonical path
from G to G'. Tt is shown in [3] that given (Z, Z’), L and ¢,
we can uniquely recover G and G’. Tt is also shown in [3]
that there are at most four bad edges in any encoding L, one
of them with 2, two with —1, and the remaining one with
either —1 or 2.

Suppose we fix an edge e = (Z, Z’). We may choose
an encoding L and uniquely recover G, G’ such that L +
Z = G + G from each possible ¢ belonging to the set
®'(L) of possible pairings. We write £(Z) for the set of
possible choices of encodings L. The pair G, G’ gives rise
to |®(G,G")| pairings. It is shown in [3] that |®'(L)] <
d®|®(G,G")|. Therefore if we write (e € v,(G,G")) for
the indicator variable which is 1 if e is in the path from G
to G’ corresponding to ¢ and 0 otherwise, we have

QLPfEe) = > >

(G,G") pe®(G,G")

Y Y Ewnr

LeL(Z) ped’ (L)
< >
LeL(Z)
< d°|L(2)].

Let A be the maximum possible value for £(Z). For any
transition e = (Z, Z') we have

1/Q(e) = 91/P(2,7') <

(e € 76(G, G| (G, G|

d*n?|Q)|.
Therefore
p(f) < d®n?A/|Q).

Also ¢(f) < dn/2, since each transition along a canonical
path replaces an edge of G by an edge of G’ in [3]. Since 7
is uniform we have

log1/7* < dnlog(dn).

Then we have

(dnlog(dn) + log(e™1)). 1)

It thus remains to bound A\/|€2|. An encoding L has the
same degree sum at each vertex as a graph G € Q. If we
replace —1, 2 with 0, 1 respectively, we obtain instead of the
degree sequence d a sequence d’ such that dist(d,d’) =
> |d; — d| < 8. There are O(n®) choices of such d’.

Explicit asymptotic formulas for |{24| have been ob-
tained in several cases:

1. all d; in d are the same and equal to d [23, 7];
2. if m is the sum of d;, and all d; are o(m!/*) [11];
3. if m is the sum of d;, and all d; are o(m'/3) [13];

4. if the average d of the d; satisfies min(d,n —d+1) >
cn/logn and |d; — d| = O(N—1/2%¢) for sufficiently
small € > 0 and any ¢ > 2/3 [12].

In case (1), it is shown in [3] that A\/|Q| < 2d5n®, giving
7(e) < d*®*n®(dnlog(dn) + log(e™1)).

In cases (2,3), If d’ is obtained from d by increasing one
d; by one, then O(1) < |Qq/|/|Q| = O(v/n). In case
(4), If d’ is obtained from d by increasing one d; by one,
then O(1) < |Qa-|/|2a| = O(v/1logn). Since |Q|/|Qa-| =
O(n®), and G', G differ at most by six additions of 1 (cor-
responding to the three —1) and two substraction of 1 (cor-
responding to the two 2) we have:

Corollary 6 In cases (2,3) \/|Q)] < O(n'!) with
(€,
and we have in cases (4) \/|Q| < O(nSlog® n) with

7(e) < O(d?n**(dnlog(dn) + log

7(€) < O(d?n' log® n(dnlog(dn) + log(e™1))).

Suppose all d; satisfy ((d + 1)/(n — d))d < d; < d
for some d < n/2. We first show that no valid graph has
an independent set I of size n — d. Otherwise the vertices
in I have degree at least ((d + 1)/(n — d))d, so at least
d(d + 1) edges join I to its complement J of size d which
has degrees at most d, giving at most d? edges joining I to
J, a contradiction. Thus at least d/2 edges must be in I.
Suppose r = dist(d,d") = > |d; — d}|] = 2. There are
several subcases:

(a) d} = d;—2. Then v; has at least n—d—1 non-neighbors
in a graph for d’, and two of these must be joined by
an edge (u,w) (else we have a large independent set),
so we may remove the edge (u, w) and add the edges
(vi,u) and (v;,v), obtaining d. Thus |Qqg/]/|Qa| <
n?.



(b) d; = d;+ 2. If v; has two non-adjacent neighbors u, w
we proceed as in (a) by complementation. If the adja-
cent neighbors u, w have a vertex z adjacent to « and
not to w, then we remove (v;,u), (v;, w), (z,u), and
add (x, w), giving for u = v; the situation d; = d; —2
from (a). Thus |Qq/]/|Qa| < 1. If u, w have the same
neighbors other than u, w, then as in (a) there must be
two non-neighbors of u forming an edge (z, y), so we
remove (z,y), (v;,u), (v;,w) and add (u, z), (w,y).
Thus |Qa|/|Qal < nt.

(¢) d; =d;+1, d;- = d;+1. If v;, v; are joined by an edge
we remove this edge. If there is a vertex u adjacent to
v; and not to v;, we remove edge (u,v;) and add edge
(u,v;), resulting in case (b). Thus |Qq/|/|2a] < nS.
Otherwise some vertex w is adjacent to both v;, v;, and
removing edges (w, v;) and (w, v;) results in case (a).
Thus |Qd/|/|Qd‘ S n3.

d) d; = d;, — 1,d} = d; — 1. This case is analogous
to (c) by complementing and exchanging the roles of
subcases (a) and (b) that arise.

(e) d; = d; + l,d;- = d; — 1. Removing or adding the
edge (v;, v;) results in cases (a) or (b) respectively.

Summarizing, |[Qq4/|/|Qa| < n® for a change of two in
degrees, so [Qq/|/|Q4| < n?* for a change of 8 in degrees.
Since A\/|Qa/| = O(n®), we have \/|Q] = O(n??), giving
the following.

Theorem 7 Suppose for every © we have

d+1
n—d

d<d; <d

for some d < n/2 (for example, 1 < d; < \/n —1, or
n/6 < d; < n/3 —1). Then the mixing rate of the switch
Markov chain on the set of graphs with the degree sequence
dl,dg,'”,dn is

7(e) < O(d*n® (dnlog(dn) + log(e™1))).
4.2 The Flip chain on general graphs

The path argument given in Lemma 3 for the Flip
Markov chain on regular graphs breaks down for non-
regular degree sequences. However, it is possible to extend
this lemma for general degree sequences when we add a
bow-tie operation as in Figure(3). The bow-tie switch is de-
fined as follows:
if there is a vertex w adjacent to all four of x,y, z,¢ then
switch (z,y) and (z,t) with (x, z) and (y,t) if the graph
remains simple.

The next Lemma shows that for degree sequences such
that the graph diameter is at least 4, any bow-tie switch can

be simulated by at path of most 5 switches in Gz. The
Lemma can be proved by case analysis and we skip it here.

Lemma 8 Consider Gr for degree sequences such that the
diameter of each G € Qp is at least 4. Then every bow-
tie switch (G, G’) € Gsc can be simulated with a path of
length at most 5 p' (G, G") in G.

Using the above and Theorem 7, we will have

Theorem 9 For any graphical degree sequences di >
do-++ > d, > 2 that enforces a diameter bigger than 3,
and satisfies the condition of Theorem 7, the Flip Markov
chain is rapidly mixing.
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