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Abstract

Matrix partition problems generalize graph colouring and homo-
morphism problems, and occur frequently in the study of perfect graphs.
It is difficult to decide, even for a small matrix M , whether the M -
partition problem is polynomial time solvable or NP-complete (or pos-
sibly neither), and whether M -partitionable graphs can be character-
ized by a finite set of forbidden induced subgraphs (or perhaps by some
other first order condition). We discuss these problems for the class
of chordal graphs. In particular, we classify all small matrices M ac-
cording to whether M -partitionable graphs have finitely or infinitely
many minimal chordal obstructions (for all matrices of size less than
four), and whether they admit a polynomial time recognition algorithm
or are NP-complete (for all matrices of size less than five). We also
suggest questions about larger matrices.

1 Background

Let M be an m by m symmetric matrix over 0, 1, ∗. An M -partition of a
graph G is a partition V1, V2, . . . , Vm of V (G) such that two distinct vertices
in (possibly equal) parts Vi and Vj are adjacent if M(i, j) = 1, and nonad-
jacent if M(i, j) = 0; the entry M(i, j) = ∗ signifies no restriction. Since we
admit i = j, a set Vi is independent if M(i, i) = 0, and a clique if M(i, i) = 1;
as above, M(i, i) = ∗ means there is no internal restriction on Vi. (Below
we sometimes refer to Vi as the i-th part.) The M -partition problem asks
whether or not an input graph G admits an M -partition [12, 24, 25]. We will
also discuss variants of this basic M -partition problem. In the list variant,
the vertices of the input graph G have lists (of allowed parts), and an M -
partition must place each vertex of G in a part that is allowed for it [2, 12].
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In the surjective variant, each M -partition must have all parts Vi �= ∅ [6, 31].
In the digraph variant, we partition digraphs instead of graphs, and the ma-
trix M is not required to be symmetric [15]. In the edge-coloured variant, we
partition edge-coloured complete graphs G and the matrix M specifies which
vertex colours are allowed, within, and between, the parts [4, 8]. (A two-
edge-coloured complete graph may be viewed as just a graph, formed by the
edges of one of the colours; in this sense, the edge-coloured case generalizes
the basic M -partition problem.) There are also variants for other relational
structures related to general constraint satisfaction problems [8, 7].

Here we shall for the most part discuss the basic problem (except for
pointing out various applications and connections), and hence we assume
that M has no diagonal ∗ – since if M(i, i) = ∗ then every graph G admits
the trivial M -partition with Vi = V (G). (This assumption does not apply
when we discuss the list variant or the surjective variant, where diagonal
∗ are explicitly allowed.) Thus, for the basic problem we shall always as-
sume that all diagonal entries of M are 0 or 1. In fact, by reordering the
parts V1, . . . , Vm, we may assume that V1, . . . , Vk are independent sets, and
Vk+1, . . . , Vm cliques, i.e., that the matrix M has a block structure, consisting
of a symmetric matrix A with rows and columns 1, 2, . . . , k and all diagonal
entries 0, a symmetric matrix B with rows and columns k + 1, k + 2, . . . ,m

and all diagonal entries 1, and a matrix C with rows 1, 2, . . . , k and columns
k+1, k+2, . . . ,m, and its transpose with rows k+1, k+2, . . . ,m and columns
1, 2, . . . , k. (Below we shall refer to the size of B as � = m− k.)

We note that M -partition problems include all homomorphism problems.
Indeed, if H is a graph, we let M be the adjacency matrix of H with 1’s
replaced by ∗: then an M -partition of a graph G corresponds exactly to
a homomorphism of G to H. In particular, if Cm is the matrix of size m

with diagonal 0’s and off-diagonal ∗’s, then a Cm-partition of G is exactly
an m-colouring of G.

We also note that even small matrices M yield important and nontrivial
problems, cf. [12]. For matrices M of size 2, in addition to the polynomial
problem of 2-colouring (C2-partition), we meet the polynomial problem of
recognizing split graphs [21]. For matrices of size 3, we encounter the poly-
nomial problems of the existence of a clique cutset [30], or the existence
of a homogeneous set [21] (both in the surjective variant), as well as the
NP-complete problems of 3-colouring and the of the existence of a stable
cutset [18] (the latter in the surjective variant). For matrices of size 4, we
obtain several problems that have resisted solution for many years, includ-
ing the problem of existence of a skew cutset, conjectured to be polynomial
by Chvátal [3], proved quasi-polynomial in [12] (in the list variant), and
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then polynomial in [19] (again, in the list variant); an improved algorithm
in [26] applies only in the non-list version. The complexity of a certain other
problem with a matrix of size 4 (and nonempty parts), was posed by Peter
Winkler in the 1970’s, cf. e.g. [12], and proved NP-complete by Narayan
Vikas [31]. (For recent progress on a related problem see [32] and [27].) The
list variant of the M -partition problem for another matrix M of size 4 has
been dubbed the “stubborn problem” [2] because its complexity was diffi-
cult to determine. This problem was also recently solved, and shown to be
polynomial in [4]. For a further discussion of interesting related problems
see [12, 6, 22].

We say that G is a minimal obstruction for M if G does not admit an
M -partition, but each proper induced subgraph of G does admit an M -
partition [10]. If M has finitely many minimal obstructions, then there is
a characterization of M -partitionable graphs by a finite set of forbidden
induced subgraphs, and hence a polynomial algorithm for M -partition. Of
course, there are polynomial M -partition problems that have infinitely many
minimal obstructions, such as, say, 2-colouring.

It is known that if M has no ∗ then it has finitely many minimal obstruc-
tions [10]. In fact, denoting the sizes of the blocks A, B by k, �, respectively,
as described above, it is shown in [10] that each minimal obstruction for
M has at most (k + 1)(� + 1) vertices, and there are at most two minimal
obstructions with (k + 1)(� + 1) vertices.

On the other hand, if M has an ∗ in its block A or B, then it is called
unfriendly, cf. [16], where it is proved that an unfriendly matrix always
has infinitely many minimal obstructions. It is also shown in [16] that each
friendly matrix (i.e., one that is not unfriendly) of size m < 6 has finitely
many minimal obstructions, while there exists a friendly matrix of size 6
with infinitely many minimal obstructions; there is even a friendly matrix
M with NP-complete M -partition problem [16].

It is not known which matrices M have polynomial M -partition prob-
lems. In fact, it is not known whether all M -partition problems are polyno-
mial or NP-complete; for the digraph variant (and just restricted to matrices
without 1’s) this would imply the Dichotomy Conjecture of Feder and Vardi
[17].

Thus the classification of matrices M , both with respect to the complex-
ity of the M -partition problem, and with respect to the finiteness of the
number of minimal obstructions, remain open. Nevertheless, considerable
effort has gone into classification of small matrices, for all the variants dis-
cussed: see [12] for the complexity of the basic problem and matrices of size
m < 5, see [2, 4, 12] for the complexity of the list version and m < 5, see
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[6, 32, 27] for the complexity of the surjective variant and m < 5, see [15]
for the complexity of the digraph variant and m < 4, and see [16] for the
finiteness of the number of minimal obstructions in the basic variant and
m < 4.

From now on, we will only focus on the basic M -partition problem. Some
of these results were first obtained in [28], and were also summarized without
proofs in [14].

2 Chordal Graphs

Consider now the M -partition problem for restricted input graphs. A graph
is perfect if it and all its induced subgraphs have the chromatic number equal
to the maximum clique size. A graph is chordal if it does not have an induced
cycle of length greater than four. We shall start by restricting input graphs
to be perfect. This may seem like a good idea, since their definition implies
that an m-colouring of a perfect graph exists if and only if it does not contain
a complete graph with m + 1 vertices; thus the matrix for m-colouring has
just one minimal perfect obstruction. In fact, it is easy to see that if M

has no 1’s (and so it corresponds to a graph H as explained above), then
a perfect graph G has an M -partition if and only if G does not contain a
clique of size greater than the maximum clique of H. However, it was shown
in [9] that if each M -partition problem for perfect graphs is polynomial or
NP-complete, then the Dichotomy Conjecture mentioned earlier holds.

Thus arbitrary matrix partitions still seem badly behaved for perfect
graphs. Looking at subclasses of perfect graphs, we mention in passing that
for the class of cographs it is known that all matrices yield only finitely many
minimal cograph obstructions [5, 11].

In this paper we focus on the class of chordal graphs. Generalizations of
colouring are often well behaved on chordal graphs; here is a typical example.

Theorem 2.1 [23] A chordal graph can be partitioned into k independent
sets and � cliques if and only if it does not contain an induced (� + 1)Kk+1.

This partition problem corresponds to the matrix M with all off-diagonal
entries equal to ∗, and with blocks A of size k and B of size �. There is a more
general class of matrices for which the number of chordal (and even perfect)
minimal obstructions is known to be finite. A matrix M is normal if M does
not have two off-diagonal entries e = ∗ and e

� �= ∗ in the same block, A, B,

or C. In [9, 13], it is shown that normal matrices result in finitely many
chordal (respectively perfect) minimal obstructions, and (different) bounds
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are given on the size of chordal (respectively perfect) minimal obstructions
of normal matrices. It will follow from Theorem 2.3 that being normal is
not a necessary condition for having a finite number of chordal minimal
obstructions.

A more general class of matrices M ensures that the M -partition problem
is polynomial for chordal graphs [13]. A matrix M is crossed if its block C

contains a set of rows and columns without ∗ that together cover all the
entries of C different from ∗. The class of crossed matrices contains all
normal matrices, all matrices without ∗, and other classes of matrices we
discussed. Nevertheless, Theorem 2.2 yields many non-crossed matrices with
polynomial M -partition problem on chordal graphs, such as the matrix

M =





0 ∗ ∗ 0
∗ 0 0 ∗
∗ 0 1 ∗
0 ∗ ∗ 1



 .

M is not crossed because C has neither a row nor a column without ∗, and
so its two zero entries cannot be covered.

Thus the classification of matrices M with respect to complexity, as well
as with respect to the finiteness of the number of minimal obstructions, also
remains open for the class of chordal graphs. However, there are in this case
no results classifying small matrices, for either of the problems. This is our
goal here, see Theorems 2.2 and 2.3.

For the complexity of the M -partition problem for chordal graphs, we
derive the following result.

Theorem 2.2 If M is a matrix of size m < 5, then the M -partition problem
for chordal graphs is polynomial.

Proof: According to Theorems 6.1 and 6.2 from [12], all matrices M

which do not contain C3 or its complement have polynomial M -partition
problems. This proves the claim for any matrix without three diagonal 0’s
or three diagonal 1’s (such as the matrix mentioned above). For matrices
with three diagonal 0’s or three diagonal 1’s and size m < 5, the matrix C

has only one row or one column and so it is automatically crossed, thus the
M -partition problem is polynomial by [13]. �

As mentioned earlier, in [13] there are examples of matrices M with
NP-complete M -partition problems for chordal graphs. The matrices con-
structed in [13] have a fairly large size, say, in the neighbourhood of thirty
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rows and columns; we do not know what is the smallest size of a matrix M

with an NP-complete M -partition problem.
For the number of minimal obstructions, the situation is more difficult,

even for small matrices. The theorem below summarizes our findings; small
matrices with constant diagonal were first handled in the third author’s
master’s thesis [28].

Theorem 2.3 If M is a matrix of size m < 4, then M has finitely many
chordal minimal obstructions, except for the following two matrices, which
have infinitely many chordal minimal obstructions.

M1 =




0 ∗ ∗
∗ 0 1
∗ 1 0





M2 =




0 ∗ ∗
∗ 0 1
∗ 1 1





We first handle the two exceptional cases.

Lemma 2.4 The matrices M1, M2 have infinitely many chordal minimal
obstructions.

2n1 2 ...

0

2n−13

Figure 1: An infinite family of chordal minimal obstructions for M1 (or M2)

Proof: It turns out that the same infinite family, depicted in Figure 1,
applies to both matrices, and the proofs are similar. We focus on M1; the
proof for M2 is similar, with easy modifications. (This also follows from the
general result proved in Theorem 3.1.)

The graphs are obviously chordal. Next we show that these graphs do
not admit an M1-partition (for n > 2). Indeed, suppose that there was
such an M -partition. The vertex 0 could not be placed in the first part
(corresponding to the first diagonal entry of M1), since this would require
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all vertices from 2 to 2n−1 to go to the other two parts, which are connected
by all possible edges, so this would result in a four-cycle (as long as n > 2).
Without loss of generality suppose that 0 is placed in the second part. Then
2 and 2n−1 are placed in the first and third part, in some order; they cannot
be placed in the same part because of parity. Suppose 2 is in the first part
and 2n− 1 in the third part (the other case is similar). Now 1 cannot go to
any of the parts, a contradiction.

It remains to verify that if any vertex of the depicted graph is deleted,
then an M -partition exists. This is clear if the deleted vertex is 0; in all
other cases it follows from the fact that with a vertex removed, parity is no
longer a constraint and if 0 is placed in the second part, both 1 and 2n (if
not removed) can be placed in the first part. �

We now show that all other symmetric matrices of size less than four
have only finitely many chordal minimal obstructions.

Lemma 2.5 If M has size m ≤ 2, then M has finitely many chordal mini-
mal obstructions.

Proof: All such matrices are normal, and we conclude by the corre-
sponding result from [9]. �

For matrices of size m = 3, we first focus on those having constant
diagonal. The following three matrices are of interest. (We note that chordal
graphs are not closed under complementation, so exchanging 0’s and 1’s in
a matrix leads in general to a different problem; the reader may notice that
M5 is obtained this way from M1, after a suitable permutation.)

M3 =




0 1 ∗
1 0 1
∗ 1 0



 M4 =




1 0 ∗
0 1 0
∗ 0 1



 M5 =




1 0 ∗
0 1 ∗
∗ ∗ 1





Lemma 2.6 If M has size m = 3 and a constant diagonal, and if M �= Mi

for i = 1, 3, 4, 5, then M has finitely many chordal minimal obstructions.

Proof: Consider first a general symmetric matrix of size m = 3 with
zero diagonal.

M =




0 a b

a 0 c

b c 0



 .

7



If M is normal, we conclude by [9], so we may assume that one of a, b, c

is ∗ and one is not ∗. Without loss of generality, let b = ∗ and c �= ∗.
If c = 0, then the M -partition problem is equivalent to the C2-partition
problem, since any M -partition of a graph G can be modified to avoid the
second part, by moving all vertices from the second part to the third part.
For chordal graphs, C2 has a single minimal obstruction, namely K3. Thus
we may assume c = 1. If a = ∗, we have M = M1, otherwise if a = 0 we
have again a problem equivalent to C2-partition, and if a = 1 then M = M3.

Similarly, consider a matrix

M =




1 a b

a 1 c

b c 1





and suppose without loss of generality that b = ∗, a �= ∗. By a similar
argument we must have a = 0 and then c = ∗ or c = 0, and we obtain
M = M4 or M = M5. �

Lemma 2.7 The matrix M3 =




0 1 ∗
1 0 1
∗ 1 0



 has three chordal minimal ob-

structions, depicted in Figure 2.

Figure 2: The chordal minimal obstructions for M3

Proof: It is easy to check that each of the graphs in Figure 2 is not
M3-partitionable, but with any vertex removed an M3-partition is possible.

Now we show that there are no other chordal minimal obstructions. Let
G be a chordal graph that does not contain any of the three graphs as an
induced subgraph. We will show that it is M3-partitionable. If G is bipartite,
then it can be partitioned using the first and third part. Otherwise, G

contains a triangle (since it is chordal). The absence of the forbidden three
induced subgraphs now implies that the following three statements hold for
any triangle abc: (i) every vertex of G− {a, b, c} is adjacent to at least one
vertex from a, b, c; (ii) two distinct vertices of G − {a, b, c} that are only
adjacent to one vertex from a, b, c must be non-adjacent to each other and
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adjacent to the same vertex from a, b, c; and (iii) no vertex of G − {a, b, c}
is adjacent to all three vertices a, b, c.

We first note that for any triangle abc in G, two vertices of G− {a, b, c}
must have a common neighbour on abc. Otherwise, say, for some triangle
abc, a vertex u is adjacent to a but not b, and v is adjacent to b but not a.
Since G is chordal, u and v are not adjacent. By (ii), we conclude that u or
v is adjacent to c; suppose u is adjacent to c. Then a, u, c forms a triangle,
and v is not adjacent to a, u; thus by (i) applied to the triangle auc we must
have v also adjacent to c, and u and v have a common neighbour c.

Next we suppose that G contains a vertex a adjacent to all other vertices.
Since G is 3-colourable, G − a must be bipartite and hence admits an M3-
partition where a is the only vertex in the second part.

Finally, we show that if G has no vertex adjacent to all other vertices
then it is complete 3-partite. Consider a triangle abc in G, and vertices
a
�
, b

�
, c

� non-adjacent to a, b, c respectively. It is easy to see that a
�
, b

�
, c

�

must be distinct, by (iii) and the fact that two vertices of G− {a, b, c} must
have a common neighbour on abc. The latter fact now also implies that
every vertex of G − {a, b, c} has exactly two neighbours on abc, for any
triangle abc. If G was not complete 3-partite then some a

�� adjacent to b, c

and some b
�� adjacent to a, c would not be adjacent to each other. However,

this contradicts the fact that b
� has two neighbours on abc

�. Thus G is a
complete 3-partite graph, and the 3-partition is also an M3-partition. �

For the matrices M4, M5, it is harder to explicitly describe all the chordal
minimal obstructions, and we merely prove that there are only finitely many.

Lemma 2.8 The matrix M4 =




1 0 ∗
0 1 0
∗ 0 1



 has finitely many chordal min-

imal obstructions.

Proof: We proceed as follows. Let G be a chordal graph with inde-
pendence number α; thus G can be partitioned into α cliques. If α ≤ 2,
then G is M4-partitionable, by placing the vertices in the first and third
parts. Hence there are no minimal obstructions with α ≤ 2. When α ≥ 4,
then G is not M4-partitionable, and G contains K4. Thus K4 is the only
minimal obstruction with α ≥ 4. It remains to prove that there are only
finitely many chordal minimal obstructions with α = 3. Suppose G is such
a chordal minimal obstruction, and let v1, v2, v3 be three fixed independent
vertices. We will give an upper bound on the number of vertices of G.
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We first give an upper bound on the number of vertices of a chordal
graph H with three specified independent vertices v1, v2, v3 which is minimal
in the following sense: H does not admit an M4-partition in which each vi

is placed in the i-th part, but any induced subgraph of H admits an M4-
partition in which each vi that is in the subgraph is in the i-th part of the
partition. Such a graph H is called a minimal labeled obstruction to M4-
partition. If all chordal minimal labeled obstructions H have at most N

vertices, then all minimal obstructions G have at most 6N vertices. Indeed,
G must contain, for each bijective assignment of v1, v2, v3 to the three parts
of M4, some (at most) N vertices that prevent v1, v2, v3 from being placed in
the corresponding parts. But the set of these (at most) 6N vertices already
induces a subgraph of G that is not M4-partitionable (since v1, v2, v3 must
be placed bijectively in the three parts in any M4-partition). Since G is a
minimal obstruction, it must not have other vertices, i.e., G has at most
6N vertices. (In other words, we obtain an upper bound on the number of
vertices of a minimal obstruction G by adding together the upper bounds
on each minimal labeled obstruction, over all six assignments of v1, v2, v3 to
the three parts of M4.)

2 1

3

Figure 3: The chordal minimal labeled obstructions for M4

It remains to give an upper bound on the number of vertices in a chordal
minimal labeled obstruction. In fact, this bound is N = 5, as we shall show
that all the chordal minimal labeled obstructions are given in Figure 3.
(Each vertex vi is labeled by i.) Note that a minimal labeled obstruction
need not contain all the labeled vertices – the first obstruction in fact con-
tains none of them. (Unlabeled vertices in the obstruction may correspond
to any vertex of G, labeled or not.) It is easy to check that each of the
depicted graphs is a chordal minimal labeled obstruction.

Let G be a chordal graph with α = 3 and three independent vertices
v1, v2, v3 labeled 1, 2, 3, that contains none of the obstructions in Figure
3. We shall show that G admits an M4-partition with the labeled vertices
placed in the corresponding parts. The vertices of G are partitioned into
the following sets. The set S(v1, v2, v3) consists of the vertices adjacent
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to all of v1, v2, v3. The set S(v1, v2) consisting of the vertices adjacent to
v1, v2 but not v3, and the corresponding sets S(v1, v3), S(v2, v3) are defined
analogously. Finally, the set S(v1) consists of v1 and the vertices adjacent
to v1 but not to v2, v3, and the corresponding sets S(v2), S(v3) are defined
analogously. As α = 3, the union of all these sets is V (G).

We first note that G is claw-free (it does not contain the first obstruction
from Figure 3), and hence we must have S(v1, v2, v3) = ∅. The absence of
the second obstruction from Figure 3 implies that S(v1, v2) = S(v2, v3) = ∅.
Next we note that S(v1, v3) is a clique – if a, b ∈ S(v1, v3) were non-adjacent,
then a, b, v1, v3 would induce a four-cycle without chords, contradicting the
fact that G is chordal. Moreover, our assumption that α(G) = 3 implies
that S(v1), S(v2) and S(v3) are also cliques.

Now we focus on the set S(v1, v3). We claim that each vertex of S(v1, v3)
is adjacent to all vertices of S(v1) or to all vertices of S(v3). Otherwise, there
is vertex v ∈ S(v1, v3) non-adjacent to both a vertex u ∈ S(v1) and a vertex
w ∈ S(v3) – and the induced path u, v1, v, v3, w is the last obstruction from
Figure 3. Thus we can partition S(v1, v3) into a set X of vertices adjacent
to all vertices of S(v1) and a set Y of vertices adjacent to all vertices of
S(v3). Since S(v1, v3) and S(v1) are cliques, so is S(v1) ∪X, and similarly
for S(v3)∪Y . It is now easy to check that placing S(v1)∪X in the first part,
S(v2) in the second part, and S(v3)∪Y in the third part, is an M4-partition
placing the labeled vertices in their corresponding parts. (For instance,
using the absence of the second obstruction, we see that S(v2) has no edges
to S(v1) ∪X ∪ S(v3) ∪ Y .) �

For the most involved case, of the matrix M5, we proceed similarly, but
the proof is more technical.

Lemma 2.9 The matrix M5 =




1 0 ∗
0 1 ∗
∗ ∗ 1



 has finitely many chordal min-

imal obstructions.

3

3

Figure 4: The chordal minimal labeled obstructions for M5
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Proof: It will again suffice to prove that there are only finitely many
chordal minimal obstructions with α = 3. An upper bound on the number
of vertices of such an obstruction will again follow from an upper bound on
the number of vertices in a chordal minimal labeled obstruction, with some
three independent vertices v1, v2, v3, labelled by 1, 2, 3 respectively. The
chordal minimal labeled obstructions are given in Figure 4. It can again
be checked that each depicted labeled graph is in fact a chordal minimal
labelled obstruction. Thus assume that G is a chordal graph, with α = 3,
and three independent vertices v1, v2, v3 labeled 1, 2, 3, that contains none
of the obstructions in Figure 4. We shall again show that G admits an
M5-partition with the labeled vertices placed in the corresponding parts.

The vertices of G are again partitioned into the same sets S(v1, v2, v3),
S(v1, v2), S(v1, v3), S(v2, v3), S(v1), S(v2), and S(v3). As before, using the
chordality of G, we conclude that each of these sets is a clique. Moreover,
the chordality of G also implies that each vertex of S(v1, v2, v3) is adjacent
to all vertices of S(v1, v3) ∪ S(v2, v3). The absence of the last obstruction
from Figure 4 implies that each vertex of S(v1, v2, v3) is also adjacent to
all vertices of S(v3). The absence of the second obstruction from Figure 4
implies that S(v1, v2) = ∅, and no vertex of S(v1) is adjacent to a vertex of
S(v2).

Since a vertex of S(v1) is non-adjacent to v2, v3 it can only be placed
in the first part, in any M5-partition. Similarly, vertices of S(v2) must be
placed in the second part, and vertices of S(v3) in the third part; further-
more, all vertices of S(v1, v2, v3) must go to the third part. By a similar
consideration, we see that vertices of S(v1, v3) must go to the first and third
parts, and vertices of S(v2, v3) to the second and third parts.

Let A denote the set of all vertices of S(v1, v3) that have a non-neighbour
in S(v3); these must be placed in the first part. Let B the set of all vertices
of S(v2, v3) that have a non-neighbour in S(v3); these must be placed in the
second part. Let C consist of all those remaining vertices of S(v1, v3) that
have a neighbour in B ∪S(v2) or have a non-neighbour in S(v1); these must
be placed in the third part. Let D consist of all those remaining vertices
of S(v2, v3) that have a neighbour in A ∪ S(v1) or have a non-neighbour in
S(v2); these must also be placed in the third part.

Let E = S(v1, v3) − A − C and F = S(v2, v3) − B −D. To decide how
to place vertices of E and F , we shall further partition these sets. Let E1

denote the set of all vertices of E that have a non-neighbour in D. Vertices
of E1 must be placed in the first part. Let F1 be the set of all vertices of
F that have a non-neighbour in C. Vertices of F1 must be placed in the
second part. Let E2 be the set of all vertices of E − E1 with a neighbour
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in F1. These must be placed in the third part. Up to this point there was
symmetry between the first and second part; however now we define F2 to
consist of all vertices of F − F1 that have a non-neighbour in E2. These
must be placed in the second part. Finally, let E3 = E − E1 − E2 and
F3 = F − F1 − F2. We will place all vertices of E3 in the first part and all
the vertices of F3 in the third part. (Note the asymmetry.)

In summary, the first part consists of v1, S(v1), A,E1, and E3; the second
part consists of v2, S(v2), B, F1, and F2; and the third part consists of v3,
S(v3), S(v1, v2, v3), C,D, E2, and F3. We shall show that each part is a clique
and that there are no edges between the first and second parts.

To see that the first part is a clique, we first recall that S(v1), and
S(v1, v3) are cliques. Then we observe that every vertex u of A is adjacent
to every vertex of S(v1). Indeed, u has a non-neighbour w in S(v3), and if
u has also a non-neighbour v in S(v1), then the vertices u, v, w, v1, v3 form
a chordless cycle (if vw is an edge) contradicting the chordality of G, or the
four vertices u, v, w, v2 are independent (if vw is not an edge) contradicting
α(G) = 3. Since every vertex of E is adjacent to every vertex of S(v1),
according to the definition of C, we conclude that the vertices placed in the
first part form a clique.

A symmetric argument shows that the vertices taken to the second part
form a clique. Thus consider the vertices placed in the third part. We have
already observed that v3 together with S(v3)∪S(v1, v2, v3) form a clique, and
every vertex of S(v1, v2, v3) is adjacent to all vertices of S(v1, v3)∪S(v2, v3).
Also, C ∪E2 is a part of the clique S(v1, v3), and D∪F3 a part of the clique
S(v2, v3). The definition of A ensures that every vertex of C∪E2 is adjacent
to all vertices of S(v3), and the definition of B ensures that every vertex of
D∪F3 is adjacent to all vertices of S(v3). The definition of E1 ensures that
ever vertex of E2 is adjacent to all vertices of D, and the definition of F1

ensures that every vertex of F3 is adjacent to all vertices of C.
It remains to show that every vertex of C is adjacent to every vertex

of D. Recall that there are three possible reasons for a vertex v to belong
to C (and similarly for D) – it can have a neighbour in B, a neighbour in
S(v2), or a non-neighbour in S(v1). If v ∈ C has a neighbour t in S(v2) and
is non-adjacent to some vertex u ∈ D, then the cycle u, z, v, t, y, u contains
a chordless cycle of length at least four, contradicting the chordality of G.
By symmetry, any u ∈ D with a neighbour in S(v1) is adjacent to all v ∈ C.
Similarly, if v ∈ C has a neighbour s in in B and is non-adjacent to some
vertex u ∈ D, then consider a vertex t ∈ S(v3) nonadjacent to s: the four
vertices s, u, t, v form a chordless four-cycle (t is adjacent to u as u �∈ B, and
similarly for v). By symmetry, any u ∈ D with a neighbour in A is adjacent
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to all v ∈ C. Finally, consider non-adjacent v ∈ C, u ∈ D where v has
non-neighbour w ∈ S(v1) and u has a non-neighbour t ∈ S(v2). Recall that
we have proved that such w, t must be non-adjacent. Moreover, u cannot
be adjacent to w otherwise we would have the last obstruction from Figure
4; and v cannot be adjacent to t, for the same reason. The four vertices
u, v, w, t now contradict α(G) = 3. This completes the proof that the third
part is a clique.

We now show that there are no edges between the first and second part.
So suppose v ∈ S(v1) ∪A ∪E1 ∪E3 is adjacent to u ∈ S(v2) ∪B ∪ F1 ∪ F2.
We have already observed that we cannot have v ∈ S(v1) and u ∈ S(v2).
If v ∈ A and u ∈ S(v2), then consider a t ∈ S(v3) non-adjacent to v. If
t is adjacent to u, we have a chordless four-cycle v, u, t, z, and if t is non-
adjacent to u, then v, x, t, z, u induce the last obstruction from Figure 4.
For symmetric reasons, we cannot have v ∈ S(v1) and u ∈ B. If v ∈ A

and u ∈ B, and if v, u have a common non-neighbour w in S(v3), then
u, v, z, x, y, w induce the first obstruction from Figure 4. Otherwise there
are vertices w, w

� ∈ S(v3) such that w is adjacent to u but not v and w
� is

adjacent to v but not u: then u, v, w,w
� form a chordless four-cycle.

The definition of E ensure that it contains no neighbours of S(v2), and
similarly F contains no neighbours of S(v1). If v ∈ E1 and u ∈ F1, we obtain
a chordless four-cycle with a non-neighbour of v in D and a non-neighbour
of u in C. If v ∈ E1, u ∈ F2, then there exists a w ∈ E2 non-adjacent to v,
and a t ∈ F1 adjacent to w. As we have just shown, v, t are non-adjacent,
so u,w, t, v is a chordless four-cycle. Finally suppose v ∈ E3 and u ∈ F2.
(Note that u �∈ F1 by the definition of E2.) Then u has a non-neighbour
w ∈ E2, and w a neighbour t ∈ F1; as before we obtain a chordless four-cycle
v, u, w, t. Thus there are no edges joining the first and second parts, and G

is M5-partitioned. �

For matrices with mixed diagonal, we single out three additional inter-
esting cases:

M6 =




0 ∗ ∗
∗ 0 0
∗ 0 1





M7 =




0 ∗ 0
∗ 1 ∗
0 ∗ 1





M8 =




0 ∗ 1
∗ 1 ∗
1 ∗ 1
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Lemma 2.10 If M has size m = 3 and a mixed diagonal, and if M �= Mi

for i = 2, 6, 7, 8, then M has finitely many chordal minimal obstructions.

Proof: We proceed as in the proof of Lemma 2.6. For matrices

M =




0 a b

a 0 c

b c 1



 ,

we may assume that a = ∗, else M is friendly, and as m < 6 the conclusion
follows from [16]. We may again assume that one of b, c is ∗ and the other
is not; by symmetry assume b = ∗. Now we obtain the matrices M2 and M6

as the only choices.
For

M =




0 a b

a 1 c

b c 1



 ,

the arguments are similar, yielding M7 and M8.
�

Lemma 2.11 The matrix M6 =




0 ∗ ∗
∗ 0 0
∗ 0 1



 has the three chordal minimal

obstructions given in Figure 5.

Figure 5: The chordal minimal obstructions for M6

Proof: We first note that it is easy to see that each of the three chordal
graphs in Figure 5 is a chordal minimal obstructions to M6-partitionability.
Now suppose G is a chordal minimal obstruction. Then G must have an
induced 2K2; otherwise it is a split graph, and it can be partitioned using
the first and third parts.
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Furthermore, G cannot have a vertex of degree smaller than two. Indeed,
if u were adjacent to at most one other vertex, say v, then G− u admits a
partition, and depending on where v was placed, u can always be placed in
the first or the second part.

A chordal graph that contains an induced 2K2 and all vertices have
degree at least two must contain an induced copy of one of the graphs from
Figure 5. If each of the K2 belongs to a cycle, then by chordality it belongs
to a triangle, and the triangles are edge-disjoint, yielding the three graphs
depicted in Figure 5. Otherwise, at least one of the copies of K2 lies on a
unique path joining two cycles, whence G must contain an induced copy of
the first graph in Figure 5. �

Lemma 2.12 The matrix M7 =




0 ∗ 0
∗ 1 ∗
0 ∗ 1



 has finitely many chordal min-

imal obstructions.

Proof: Let H be a chordal graph. As before, if H has no induced 2K2, it
is a split graph and hence M7-partitionable. So suppose edges ab, cd induce
a 2K2. It is easy to see that in any M7-partition of H one of a, c must be
in the third part. We will consider the size of a chordal minimal labelled
obstruction placing a in the third part, and then similarly for c. Specifically,
we will bound the maximum size s of a chordal minimal labeled obstruction
G, with a fixed vertex x in the third part. Then the maximum size of a
chordal minimal obstruction will be at most 2s, by adding (as before) the
two bounds of s vertices each.

We will trace all vertices that are needed to ensure that G does not admit
an M7-partition with x in the third part. Let C denote all neighbours of x

and N the set of all non-neighbours of x. Placing x in the third part forces
all vertices of C into the second and third parts, and all vertices of N into
the first and second parts.

Consider first the case when C is a clique. Since in this case any partition
of C into the second and third parts is consistent with an M7-partition of
G, there must be a problem in partitioning N within the first and second
parts. (Either N is not a split graph, or no split partition of N respects
the constraints on non-adjacency between the first and the third part.) If
N is not a split graph, it contains four vertices that induce 2K2, and we
have a labeled obstruction with five vertices (x and the four vertices of the
induced 2K2). Otherwise, there is a partition of N into a clique K and an
independent set S. We choose one such partition and call it the reference
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partition; we also note that any other partition of N into a clique and an
independent set is obtained from K, S by at most two moves, one from K to
S, and one from S to K. (This is so because an independent set and a clique
have at most one vertex in common.) Now we tentatively assign all vertices
of K to the second part and all vertices of S to the first part. Consider a
vertex v of C and its adjacencies to N = K ∪ S. If v is not adjacent to
any vertices of S, it can be placed in the third part. If v is adjacent to all
vertices of K, it can be placed in the second part. Thus we obtain an M7

partition of G, unless some vertex v is adjacent to at least one vertex u of
S and non-adjacent to at least one vertex w of K. In such a case we will
consider separately what happens when we move u to K and what happens
when we move w to S. In either case, we either succeed in forming an M7

partition, or we have another vertex v
� adjacent to at least one vertex u

�

of the new set S and non-adjacent to at least one vertex w
� of the new set

K. If each of these cases also fails, it results in a vertex v” adjacent to
at least one vertex u” of S and non-adjacent to at least one vertex w” of
K. In this case, we know that no M7 partition with x in the third part is
possible, as the non-neighbours of x would move more than two vertices from
the reference partition. Thus the minimal labeled obstruction G only needs
to contain the vertex x, the three vertices v, u, w, the six vertices v

�
, u

�
, w

�

(three for moving u to K and three for moving w to S), and the twelve
vertices v”, u”, w” (three for each of the four possibilities considered). Even
if all these considered vertices are distinct, we only have 22 vertices in G,
i.e., s ≤ 22.

(As an aid to the reader’s intuition, we offer the following example.
Suppose that we have three distinct problem vertices, v1, v2, v3, each with
distinct pairs u1 ∈ S, w1 ∈ K, u2 ∈ S, w2 ∈ K, and u3 ∈ S, w3 ∈ K. Then
whichever way we try to resolve these conflicts (by moving ui into K or
wi into S), we will fail, as we would be changing the reference partition by
more than one move from S to K and one move from K to S. Therefore
these nine vertices (vi, ui, wi, i = 1, 2, 3), together with x, are already an
obstruction.)

In the second case, when C is not a clique, the neighbours of x include
two non-adjacent vertices, say y, z ∈ C. If there are three independent
vertices in C, then they, together with x already comprise a minimal ob-
struction, as C should be partitionable into two cliques. We define, for any
subset X of {x, y, z}, the set S(X) to consist of all vertices of G− {x, y, z}
adjacent to every vertex of X and no vertex of {x, y, z} − X. We again
write S(x, y, z), S(x, y), . . . , S(x), S(∅). Since G is chordal, we must have
S(y, z) = ∅. Since C does not contain three independent vertices, we must
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have S(x) = ∅. We assume that y is in the second part and z in the third
part. (The opposite assumption, that z is in the second part and y in the
third part results in the same number of vertices, and the total bound is the
sum of these two bounds.) Now all vertices of S(x, y) must be placed in the
second part, and if two of them are not adjacent, then they, together with
x, y, z form already an obstruction (to placing x and z in the third part and
y in the second part). Thus S(x, y) is a clique, and by a similar argument,
we may assume that S(x, z) is also a clique, and its vertices are placed in
the third part. Similarly, S(z) = ∅, else any vertex in S(z), together with
x, y, z, would be an obstruction. (Recall that y is in the second part and
z in the third part.) Thus C = {x, y, z} ∪ S(x, y) ∪ S(x, z) ∪ S(x, y, z) and
N = S(y) ∪ S(∅). Note that all vertices of S(∅) must be placed in the first
part (being non-adjacent to y), and if one of them is adjacent to a vertex
in S(x, z), or if two of them are adjacent to each other, we have a small
obstruction. Let A denote the set of all vertices in S(y) that have a non-
neighbour in S(x, y); these must be placed in the first part, and if this is not
possible, there is a small obstruction. Let B denote the set of all vertices in
S(y) that have a neighbour in S(x, z); these must be placed in the second
part, and if this is not possible, there is a small obstruction. We are left
with the problem of partitioning S(x, y, z) into the second a third parts and
S(y) into the first and second parts, which is identical with the problem
discussed above; thus it also yields only small minimal obstructions. �

Lemma 2.13 The matrix M8 =




0 ∗ 1
∗ 1 ∗
1 ∗ 1



 has finitely many chordal min-

imal obstructions.

Proof: Consider a chordal minimal obstruction G. Since G cannot be
covered by two cliques (that could go to the second and third parts), it
must contain three independent vertices. If there were M8-partitions of G,
one (in fact, two) of these three vertices would have to go to the first part,
so G only needs enough vertices to prevent each of them going to the first
part. In other words, if t is the maximum size of a chordal minimal labelled
obstruction H that takes a fixed vertex x to the first part, then G has at
most 3t vertices. Let again C denotes the set of neighbours of x in H, and
N the set of non-neighbours of x in H. The vertices of C must go to the
second and third parts, the vertices of N must go to the first and second
parts. From this point on, the proof is very similar to the proof of Lemma
2.12. The differences are due to the requirement that the first and third
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part are completely adjacent rather than completely non-adjacent as in M7-
partitions. Thus, for instance, when C is a clique, and we have chosen a
reference partition N = K ∪ S, tentatively placing all vertices of S into the
first part and all vertices of K into the second part, a vertex v in C that is
adjacent to all vertices of S can go to the third part, and a vertex v that
is adjacent to all vertices of K can go to the second part. This leaves us
with considering a vertex v non-adjacent to at least one vertex u of S and at
least one vertex w of K; we again consider separately what happens when we
move u to K and what happens when we move w to S, and conclude exactly
as in the proof of Lemma 2.12. When C is not a clique, the modifications
are similar. �

In Lemmas 2.12, 2.13, it may be possible to work out concrete chordal
minimal labelled obstructions as in Lemmas 2.8, 2.9. However, we feel the
additional technique pursued here may be useful for attacking the general
case

3 Large Matrices

Let M be any m by m symmetric matrix over 0, 1, ∗. If all off-diagonal
entries are ∗, then Theorem 2.1 shows that there is a unique chordal minimal
obstruction. If no entry is ∗, then according to [10], there are only finitely
many minimal obstructions, and hence chordal minimal obstructions. If no
entry is 1, then M corresponds to an undirected graph H as described in
the first section, where G admits an M -partition if and only if it admits a
homomorphism to H. A chordal graph G is perfect, and hence admits a
homomorphism to H if and only if it has no subgraph Kχ(H)+1 [24]. Thus a
matrix M without 1’s has only one chordal minimal obstruction. The same is
true if M has no 0’s, as can be seen by considering the complementary input
graphs, and noting that complements of chordal graphs are also perfect.

We now introduce a class of large matrices with infinitely many chordal
minimal obstructions. We first focus on generalizing the matrix M1. Let M

be a block matrix consisting of diagonal blocks X and Y , both having all
diagonal entries 0 and all off-diagonal entries 1, and the off-diagonal blocks
Z and its transpose. Assume m ≥ 3, both X and Y are non-empty, and
Z contains a row with two ∗. (The last assumption implies that M1 is
a principal submatrix of M .) Then we claim that M has infinitely many
chordal minimal obstructions. We will prove a more general version of this
fact; the more general class of matrices, introduced in the next theorem
generalizes both the matrices M1 and M2.
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Theorem 3.1 Suppose M is a block matrix

M =





X Z P R

Z
t

Y S T

P
t

S
t

U V

R
t

T
t

V
t

W



 ,

where X and Y have zero diagonal and 1’s off-diagonal, U, W have 1’s on
the diagonal, and the matrices P and T (and hence also their transposes
P

t
, T

t) consist of 1’s.
Suppose that m ≥ 3, that X and Y are non-empty, and that M1 or M2

is a principal submatrix of M .
Then M has infinitely many chordal minimal obstructions.

Below we offer an example of a matrix from the theorem. Each question
mark can be 0 or 1 or ∗ independently. Here X is a two by two matrix, Y

is a two-by-two matrix, U is a one-by-one matrix, and W is a two-by-two
matrix.

M =





0 1 | ? ? | 1 | ? ?
1 0 | ? ? | 1 | ? ?
− − | − − | − | − −
? ? | 0 1 | ? | 1 1
? ? | 1 0 | ? | 1 1
− − | − − | − | − −
1 1 | ? ? | 1 | ? ?
− − | − − | − | − −
? ? | 1 1 | ? | 1 ?
? ? | 1 1 | ? | ? 1





,

We note that if the parts are permuted so that M becomes the matrix

M =





X P Z R

P
t

U S V

Z
t

S
t

Y T

R
t

V
t

T
t

W



 ,

then the off-diagonal matrices Z, R, S, V are completely arbitrary. Thus an
M -partition of G consists of two groups of parts (corresponding to X,U

and Y, V ), with any kind of connections (0, 1 or ∗) between the groups
(corresponding to Z, R, S, V ). In each group, there are some independent
sets (X in the first group, Y in the second), completely interconnected to
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each other, and to the cliques in their group (if any) (corresponding to the
matrices U,W ). Note that M must have at least two diagonal zeros.

Proof: We shall again show that each large member G of the family of
chordal graphs in Figure 1 is a minimal obstruction to M -partition. Our
first observation is that the path Π = 1, 2, . . . , 2n must be placed in a very
particular way. Each of the parts that is a clique (the parts corresponding
to the diagonal elements of U and of W ), can contain at most two vertices
of Π. Since M is fixed, for large n, there will be vertices of Π that are
placed into parts that are independent sets (corresponding to the diagonal
elements of X and of Y ). However, at most one independent set in each
group (corresponding to X and to Y ) can contain more than one vertex
of Π (since Π has no C4). Thus if n is sufficiently large there will be an
independent set in each group that contains many vertices of Π. Because
of the 1’s in matrices P, T , it now follows that all other parts that are
cliques contain no vertices of Π. In other words, the entire path Π is placed
alternatingly into one part from X and one part from Y . The vertices 1
and 2n are by parity placed in different parts, which now means that it is
impossible to place the vertex 0. Thus G is not M -partitionable. Since
M contains M1 or M2 by assumption, each proper subgraph of G is M -
partitionable. �

This observation allows us to point out that the case of infinitely many
chordal minimal obstructions occurs with at least some frequency.

Let Tk,� denote the number of symmetric m by m matrices over 0, 1, ∗,
with k diagonal 0’s followed by � diagonal 1’s (where m = k + �). Then
Tk,� = 3(m

2 ). Consider now the number of such matrices that satisfy the
requirements of Theorem 3.1. These are matrices with arbitrary entries
in U, W (except the diagonal), as well as Z, R, S, V . Their number is the
greatest when X and Y have the same size, k/2, and U and W have the
same size, �/2. In this case there are

�
�

2

�
undecided entries in U, V, W , there

are (k/2)2 = k
2
/4 undecided entries in Z, and there are (k/2)(�/2) = k�/4

undecided entries in each of R,S, except for the two entries that need to be
∗ to satisfy the requirement that the matrix contains M1 or M2. Thus the
number of matrices with infinitely many chordal minimal obstructions is at
least 3

k2

4 +2 k�
4 +(�

2)−2 = 3
m2

4 + �2−2�
4 −2. In particular, when � = 0, the number

of matrices with infinitely many chordal minimal obstructions is of the order
of

�
Tk,�. On the other hand, when � is near m (recall that k has to be at

least two for the matrix to contain M1 or M2), the number of matrices with
infinitely many chordal minimal obstructions is of the order of T

1−�

k,�
.

For comparison, matrices with finitely many chordal minimal obstruc-
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tions include all matrices without ∗ [10] or without 1 [14] or without 0 [14],
so there are at least 3 · 2(m

2 ) such matrices for any k, �. We do not know
whether there are more matrices with finitely or with infinitely many chordal
minimal obstructions.

Note that we have no examples of matrices with a diagonal consisting of
1’s (or possibly with one 0) which admits infinitely many chordal minimal
obstructions, and possibly there are none. In particular, when the diagonal
consists of 1’s and there are no 1’s off the diagonal, we seem to be encoun-
tering some of the most interesting cases, such as the matrices M4 and M5

above.

4 Conclusions

We have provided some information about the complexity and number of
minimal obstructions of chordal partitions with few parts. Perhaps this
evidence could be useful for finding possible classifications for all partitions
of chordal graphs; in any event it suggests new techniques that may be
useful.

We close with the following note. If M has finitely many minimal ob-
structions, then the positive instances of the M -partition problem can be
described by a first order formula. When M has no 1’s, it is known that no
other matrices have this property, i.e., that if the positive instances of the
M -partition problem can be described by a first order formula, then M has
finitely many minimal obstructions [1, 29]. This is open for general matrices
M .
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