
1. Problem 1 (20 points)

This question is designed to get you used to the notation and mathematical conventions
surrounding sets. We strongly suggest working through this problem and double-
checking that your answers are correct before starting Problem 2.

Consider the following sets:

• W = {1, 2, 3, 4}
• X = {2, 2, 2, 1, 4, 3}
• Y = {1, {2}, 1, {3, 4}, {{3, 4}}, {{4, 4, 3}}}
• Z = {1, 3}

Answer the following questions. No explanations are necessary except for the last part.

a. Which pairs of the above sets, if any, are equal to each other?

W and X.

b. Is Z ∈ W? Is Z ⊆ W?

No, Z 6∈ W . Yes. Z ⊆ W

The set {1,3} is not contained in W , but the elements 1 and 3 are. Since these are
all of the elements in Z, we know that Z ⊆ W .

c. Is Z ∈ P(W )? Is Z ⊆ P(W )? (P(W ) is the power set of W , that is, the set of all
subsets of W . For example, the power set of {0, 2, 3} is:

{∅, {0}, {2}, {3}, {0, 2}, {0, 3}, {2, 3}, {0, 2, 3}})
Yes, Z ∈ P(W ). No, Z 6⊆ P(W ). {1, 3} is a subset of {1, 2, 3, 4}, so it is in the
power set of W . However, neither 1 nor 3 are subsets of {1, 2, 3, 4} because they are
both elements and not sets.

d. What is W∩Y ? What is W∪Y ? W∩Y = {1},W∪Y = {1, 2, 3, 4, {2}, {3, 4}, {{3, 4}}}
e. What is |X|? What is |Y |? Briefly explain each answer.

|X| = 4 because there are 4 distinct elements in X. |Y | = 4 because there are 4
distinct elements in Y .

Note: Some answers said that |Y | = 5. This is not correct, because {{3, 4}} and
{{4, 4, 3}} are not distinct elements.

2. Problem 2 (20 points) The following are logical statements about finite sets. Identify
the false statements (the ones that are not true for all finite sets A,B, and C), and
for each explain why it is false. In each explanation, give concrete examples of sets for
which the statement does not hold. No credit will be given for correct identifications
without explanations.

a. (A ∈ B ∧B ∈ C)→ A ∈ C

False. Let A = {1}, B = {{1}}, C = {{{1}}}. Then A ∈ B and B ∈ C, but A 6∈ C.

b. (A ⊆ B ∧B ⊆ C)→ A ⊆ C

True. Suppose A ⊆ B and B ⊆ C. Let x be some arbitrary element in A. Because
A ⊆ B, we know that every element in A must also belong to B. Therefore, x must
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belong to B. Because B ⊆ C, we know that every element of B must also belong
to C. Therefore x must belong to C. But x was arbitrary. So every element of A
must also belong to C. Therefore, by the definition of subset, A ⊆ C.

c. A ∈ B → P(A) ∈ P(B)

False. Let A = {1}, B = {{1}}. Here we have that A ∈ B.

But P(A) = {∅, {1}} and P(B) = {∅, {{1}}}.
Therefore the only elements of P(B) are the empty set and {{1}}. Notably, the set
{∅, {1}} is not an element of P(B). Thus, P(A) 6∈ P(B)

d. A ∩ P(A) = A

False.

Let A = {1}. Then P(A) = {∅, {1}}
Elements of A: 1

Elements of P(A): ∅, {1}
We can see that these two sets have no elements in common. Thus, A ∩ P(A) = ∅.
But A does not equal the empty set. So A ∩ P(A) 6= A

Note: Some answers missed points on (b.) because they merely asserted that it was
true without explanation. We were looking for a proof along the lines of the one
presented above, which is the standard way of proving things about subsets.

3. Problem 3 (10 points)

a. Prove that if n is a multiple of 3 then n2 is a multiple of 3

Suppose that n is a multiple of 3. Then n = 3k for some integer k. So n2 = (3k)2 =
9k2 = 3(3k2). Let p = 3k2. We know that p is an integer because k is an integer.
Therefore n2 equals 3 times some integer. So n2 is a multiple of 3.

b. Prove that if n is not a multiple of 3 then the remainder when dividing n2 by 3 is
always 1. (Hint: use proof by cases)

There are two cases to consider:

Case 1: n ≡ 1 mod 3.

Then n can be written as 3k+1 for some integer k. So n2 = (3k+1)2 = 9k2+6k+1 =
3(3k2 + 2k) + 1. But (3k2 + 2k) is an integer. So the remainder when dividing n2

by 3 is 1.

Case 2: n ≡ 2 mod 3.

Then n can be written as 3k + 2 for some integer k. So n2 = (3k + 2)2 = 9k2 +
12k + 4 = 3(3k2 + 4k + 1) + 1. But (3k2 + 4k + 1) is an integer. So the remainder
when dividing n2 by 3 is 1.

4. Problem 4 (20 points)

Prove that
√

3 is irrational using a method similar to the one we used in class.

Lemma: Note that we proved in problem 3b that if n is not a multiple of 3 then
n2 is not a multiple of 3. The contrapositive of this statement is that if n2 is a
multiple of 3, then n is a multiple of 3.

We prove by contradiction. Suppose that
√

3 is rational. Then,
√

3 = p/q for some
integers p and q that have no common factors (other than 1 and −1).

2



But
√

3 = p/q

⇒ 3 = (p/q)2 = p2/q2

⇒ 3q2 = p2. This implies that p is a multiple of 3 (by our Lemma above). Therefore,
p = 3k for some integer k. We substitute p for 3k in the previous equation to get:

3q2 = (3k)2 = 9k2

q2 = 3k2. This implies that q is a multiple of 3 (again, by our Lemma above).

But if p and q are both multiples of 3, then they have a common factor, which contra-
dicts our assumption that p and q have no common factors.

5. Problem 5 (10 points)

Explain where this proof method goes wrong when it is used to prove that
√

4 is
irrational.

We will proceed along the same lines until the proof fails.

We prove by contradiction. Suppose that
√

4 is rational. Then,
√

4 = p/q for some
integers p and q that have no common factors (other than 1 and −1).

But
√

4 = p/q

⇒ 4 = (p/q)2 = p2/q2

⇒ 4q2 = p2. This implies that p is a multiple of 4.

The proof falls apart here. The fact that p2 is a multiple of 4 does not imply that p is
a multiple of 4. For example, suppose that p = 2. Then p2 = 4 is a multiple of 4, but
p is not.

Note: Some answers failed to mirror the structure of the proof that
√
x is irrational

by asserting that 4 = p2/q2 implies not that p2 is divisible by 4, but rather that p2

is even. Because the proof in part 4 did not rely on even/odd, but rather divisibility
by x, this does not show that the proof technique that is used to show that a general
number is irrational is faulty. It shows that some other proof technique (which does
not work for any case other than n = 2) is faulty.

6. Problem 6 (20 points)

Suppose that you have a standard 8×8 chessboard with two opposite corners removed:
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In the course notes (page 62), there’s a proof that it’s impossible to tile this board
using 2 × 1 dominoes. This question considers what happens if you try to tile the
board using right triominoes, L-shaped tiles that look like this:

a. Prove that it is impossible to tile an 8× 8 board missing two opposite corners with
right triominoes.

Each triominoe covers 3 tiles. Therefore, in order for it to be possible to tile the
board in triominoes, the number of squares must be a multiple of 3. But 62 is not
a multiple of 3. Therefore, it is impossible to tile the board with triominoes.

b. For n ≥ 3, is it ever possible to tile an n × n board missing two opposite corners
with right triominoes? If so, find a number n ≥ 3 such that its possible and show
how to tile that board with right triominoes. If not, prove that for every n ≥ 3, it’s
impossible to tile an n×n board missing two opposite corners with right triominoes.

There are three cases to consider:

Case 1: n ≡ 0 mod 3.

Thus n = 3k for some integer k. So the board has n2 − 2 = (3k)2 − 2 = 9k2 − 2 =
3(3k2)− 2 tiles. This cannot be a multiple of 3.

Case 2: n ≡ 1 mod 3.

Thus n = 3k + 1 for some integer k. So the board has n2 − 2 = (3k + 1)2 − 2 =
9k2 + 6k + 1− 2 = 3(3k2 + 2k)− 1 tiles. This cannot be a multiple of 3.

Case 3: n ≡ 2 mod 3.

Thus n = 3k + 2 for some integer k. So the board has n2 − 2 = (3k + 2)2 − 2 =
9k2 + 12k + 4− 2 = 3(3k2 + 4k) + 2 tiles. This cannot be a multiple of 3.
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Note: many people used two cases, n is a multiple of 3 and n is not a multiple of 3,
and used part 3 to show that n2 − 2 = either 3k − 1 or 3k − 2. This also works.
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