
CS103 HW3

Problem 1

In what follows, if p is a polygon, then let A(p) denote its area.

i Define the relation =A over the set of all polygons as follows: if x and y are polygons,
then x =A y if and only if A(x) = A(y). Is =A an equivalence relation? If so, prove it. If
not, prove why not.

ii Define the relation ≤A over the set of all polygons as follows: if x and y are polygons,
then x ≤A y if and only if A(x) ≤ A(y). Is ≤A a partial order? If so, prove it. If not,
prove why not.

Solution

(i) Yes, it is an equivalence relation.
Reflexivity: x =A x for any polygon x since it has the same area as itself.
Symmetry: x =A y means that polygons x and y have the same area, so y =A x as well.
Transitivity: x =A y and y =A z means that x and y have the same area, and y and z have
the same area, so x, y, z all have the same area. Thus x =A z.

(ii) No, ≤A is not a partial order, as it does not satisfy the Antisymmetry property. Let
x and y be any two polygons with the same area (for example, a triangle and a square, both
of area 1). Then x ≤A y since A(x) ≤ A(y). Similarly y ≤A x. But x and y are not equal, so
Antisymmetry does not hold.

Problem 2

Let G = (V,E) be an undirected graph. The complement of G is the graph Gc = (V,E′), that
has the same nodes but different edge set E′: for any nodes u, v ∈ V , the edge (u, v) ∈ E′ if
and only if (u, v) /∈ E. In other words, the edges in Gc are those not present in G and vice
versa.

Prove that for every undirected graph G, at least one of G and Gc is connected. An undirected
graph G is called connected if it contains a path between every pair of its vertices.
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(Hint: To prove a statement of the form “P or Q,” you can instead prove the statement
“if P is false, then Q is true.” Show that if G isn’t connected, then Gc must be connected.)

Solution

Let G = (V,E) be an undirected graph. If G is connected then we are done. Otherwise, G is
not connected, so it consists of two or more connected components.

Consider any nodes u, v ∈ V . If u and v belong to different connected components of G,
then the edge (u, v) /∈ E. Therefore, (u, v) must be an edge in Gc.

Otherwise, nodes u and v belong to the same connected component. Consider any node
x ∈ V that belongs to a different connected component than u and v. Then (u, x) and (x, v)
are not edges in G, so they must be edges in Gc. Therefore u is connected to v in Gc because
we can follow the path u, x, v.

Since our choice of nodes u, v was arbitrary, this establishes that any two nodes in Gc are
connected, as required.

Problem 3

A tournament graph is a directed graph with n ≥ 1 nodes where there is exactly one edge
between any pair of distinct nodes and there are no self-loops. Show that if a tournament
graph contains a cycle, then it contains a cycle of length 3, that is, a cycle containing 3 edges.

(Hint: consider using a proof by extremal case: consider the smallest cycle in a tournament
graph containing a cycle and proceed by contradiction to show that it must have length 3)

Solution

Let G = (V,E) be any tournament graph that contains at least one cycle and let C be the
smallest cycle in G. C can’t have length one, because there are no self-loops in a tournament
graph. C also can’t have length two, because if (u, v) ∈ E, then (v, u) /∈ E because tournament
graphs only have one edge between each pair of nodes.

We claim that C has to have length 3 and proceed by contradiction; suppose its length
is greater than 3. Let n denote the length of C (by assumption, n ≥ 4) and let the nodes in
C be v1, v2, . . . , vn. Consider the edge between nodes v2 and vn. If the edge is of the form
(v2, vn), then (v2, vn, v1) is a cycle of length 3. This is impossible, because cycle C is the
smallest cycle in G and its length is at least four. Therefore, the edge must be (vn, v2). Then
(v2, v3, ..., vn, v2) is a cycle in G with length n − 1, contradicting that C, the smallest cycle
in G, has length n. In either case we reach a contradiction, so our assumption was wrong.
Therefore, C must have length 3.

Problem 4

Let G be an undirected graph. The degree of a node v is the number of edges incident to v,
i.e. the number of edges with v as one of their endpoints. Prove that G contains two nodes
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with the same degree.

(Hint: consider two cases: the case where some node has degree 0, and the case where some
node has degree n− 1, where n is the number of nodes in G)

Solution

Consider two cases:
Case 1: some node, say v, has degree 0. Then since the remaining nodes are not adjacent

to v, their degree is at most n− 2; thus the possible degrees of any nodes are 0, 1, . . . , n− 2.
Since there are n nodes and n − 1 possible degrees, by the pigeonhole principle two nodes
must have the same degree.

Case 2: some node, say v, has degree n − 1. Then since the remaining nodes are all
adjacent to v, their degree is at least 1; thus the possible degrees of any nodes are 1, 2, . . . , n−1.
Since there are n nodes and n − 1 possible degrees, by the pigeonhole principle two nodes
must have the same degree.

3


