
CS 103 Homework 4 Solutions Spring 2013-14

Problem 1

State, with the help of truth tables, whether the following statements in propositional logic are valid or not:
The truth tables for the statements are as follows:

1. ((p → q) ∧ p) → q.

p q p → q (p → q) ∧ p ((p → q) ∧ p) → q

T T T T T

T F F F T

F T T F T

F F T F T

2. ((p → q) ∧ ¬q) → ¬p.

p q p → q ¬q (p → q) ∧ ¬q ¬p ((p → q) ∧ ¬q) → ¬p
T T T F F F T

T F F T F F T

F T T F F T T

F F T T T T T

3. ((p → q) ∧ (p → ¬q)) → p

p q p → q ¬q p → ¬q (p → q) ∧ (p → ¬q) ((p → q) ∧ (p → ¬q)) → p

T T T F F F T

T F F T T F T

F T T F T T F

F F T T T T F

4. ((p ∨ q) ∧ ¬p) → q.

p q p ∨ q ¬q (p ∨ q) ∧ ¬q ((p ∨ q) ∧ ¬q) → q

T T T F F T

T F T T T T

F T T F F T

F F F T F T

Thus, we can see that except the third statement, ((p → q) ∧ (p → ¬q)) → p, all the other statements
are valid.

Problem 2

Find an equivalent statements for the following statements, obtained by converting all implications into their
equivalences containing solely ¬ and ∧. Ensure that the final result should not have any negations except
for direct negations of predicates:

1. (p → q) → r

= ¬(p → q) ∨ r

= ¬(¬p ∨ q) ∨ r

= (p ∧ ¬q) ∨ r

2. (p ∧ q) → p

= ¬(p ∧ q) ∨ p



CS 103 Homework 4 Solutions Spring 2013-14

= (¬p ∨ ¬q) ∨ p

3. ¬p ↔ q

= (¬p → q) ∧ (q → ¬p)
= ((p ∨ q) ∧ ((¬q ∨ ¬p))

4. (p ↔ q) ∧ p

= ((p → q) ∧ (q → p)) ∧ p

Problem 3

Find the negations of the following first order logic statements. The final form should not have any negations
except for direct negations of predicates.

1. ∀p.∀q.(isOdd(p) ∧ isOdd(q) → isOdd(p+ q))
¬(∀p.∀q.(isOdd(p) ∧ isOdd(q) → isOdd(p+ q)))
= ∃p.¬∀q.(isOdd(p) ∧ isOdd(q) → isOdd(p+ q))
= ∃p.∃q.¬(isOdd(p) ∧ isOdd(q) → isOdd(p+ q))
= ∃p.∃q.¬(¬(isOdd(p) ∧ isOdd(q)) ∨ isOdd(p+ q))
= ∃p.∃q.((isOdd(p) ∧ isOdd(q)) ∧ ¬isOdd(p+ q))

2. ∃S.(Set(S) ∧ ∀x.x /∈ S)
¬(∃S.(Set(S) ∧ ∀x.x /∈ S))
= ∀S.¬(Set(S) ∧ ∀x.x /∈ S))
= ∀S.(¬Set(S) ∨ ¬(∀x.x /∈ S)))
= ∀S.(Set(S) → ¬(∀x.x /∈ S)))
= ∀S.(Set(S) → (∃x.¬(x /∈ S)))
= ∀S.(Set(S) → (∃x.(x ∈ S)))

Problem 4

Formalize the english statement using first order logic using the list of first order predicates and functions
provided. You can use any first order construct (equality, connectives, quantifiers etc.) but you must only
use the predicates, functions and constants provided:

1. Given the predicate

Natural(x), which states that x is a natural number,

the function

Product(x, y), which yeilds the product of x and y,

and the constants 1 and 7, write a statement in first order logic which says “7 is prime”.

One possible solution is:

∀p.∀q.(Natural(p) ∧Natural(q) ∧ Product(p, q) = 7 → ((p = 1 ∧ q = 7) ∨ (p = 7 ∧ q = 1))



CS 103 Homework 4 Solutions Spring 2013-14

This statement says that if you can find a pair of natural numbers p and q whose product is 7, then
either they are 1 and 7, or 7 and 1.

2. Given the predicates

Morality(x) which states that x is a morality,
Practiced(x) which states that x is practiced, and

Preached(x) which states that x is preached,

write a statement in first order logic which states “there are exactly two moralities; one of which is
practiced but not preached, and one of which is preached but not practiced” (paraphrased from a quote
by Bertrand Russel).

One possible solution is:

∃p.∃q.(Morality(p) ∧Morality(q) ∧ Practiced(p) ∧ ¬Preached(p) ∧ ¬Practiced(q) ∧ Preached(q) ∧
∀m.(Morality(m) → m = p ∨m = q))

This statement says that there are moralities p and q, such that p is practiced and not preached, and
q is preached and not practiced, and all moralities are either p or q.

Problem 5

For each of the languages over the indicated alphabets, construct a DFA which accepts precisely those strings
that are in the language. Specify the DFA as a state transition diagram:
We have an online tool that can be used to design, test and submit DFAs for this question. To
use it, visit https://www.stanford.edu/class/cs103/cgi-bin/nfa/edit.php. We strongly recommend
this tool, as it makes it easy to design, test and submit your solutions. If you submit it via this system,
please make a note of it in your homework submission so that we know to look online for your answers.

1. For the alphabet
�

= {0, 1, 2}, construct a DFA for the language L= {w ∈
�∗ | w contains exactly

two 2 s}

q0start q1 q2 q3

0,1

2

0,1

2

0,1

2

0, 1,2

Here, each state corresponds to having seen 2 some number of times. Specifically, q0, q1, q2 corre-
spond to having seen 2 zero, one and two times. q3 corresponds to having seen 2 more than once- and
hence, is a non accepting state from which it is impossible to recover.

2. For the alphabet
�

= {a, b, c...z}, construct a DFA for the language L= {w ∈
�∗ | w contains the

word “cocoa” as a substring}. As a shorthand, you can specify multiple letters in a transition by using
set operations on

�
(for example

�
- {a, b}).

(Hint: Here, notice that the word “cocoa” contains a consecutive and repeating “co”, which creates

a tricky situation. Specifically, the DFA needs to be able to handle strings which contain more than

two consecutive “co”s)

https://www.stanford.edu/class/cs103/cgi-bin/nfa/edit.php


CS 103 Homework 4 Solutions Spring 2013-14

qstart

qc qco

qcoc

qcoco

qcocoa

�
−{c}

c

c

o

�
−{c, o}

�
−{c}

c

�
−{c, o}

c

o

c

�
−{c, a}

a

�

One thing to notice in this DFA is that if you read a “c” in state qcoco, you do not transition back to
state qc. Instead, you transition back to state qcoc, since the “coc” that you have already read might
be the real start of the string.


