Problem 1

For this question, $\Sigma = \{a, b\}.$

- a. Let Let $L = \{w | w \in \Sigma^*, w \text{ does not end in } aba\}.$
 - Write a regular expression for L. (Submit this online : $HW6_1a$)
 - Give a short (1-2 sentences) justification for the logic behind the regular expression.
- b. Let $L = \{w | w \in \Sigma^*$, the third symbol of w is $a\}$.
 - Write a regular expression for L. (Submit this online : $HW6_1b$)
 - Give a short (1-2 sentences) justification for the logic behind the regular expression.

Solution (16 points)

- a. Let Let $L = \{w | w \in \Sigma^*, w \text{ does not end in } aba\}.$
 - $((a|b)^*(aaa|aab|abb|baa|bab|bba|bbb))|(a|b|\varepsilon)(a|b|\varepsilon)$
 - The first part of this regular expression generates all strings w with $|w| \ge 3$ that don't end in *aba*. The second part of the regular expression generates all strings w with |w| < 3, which by definition don't end in *aba*.

Test strings : Positives : abbabababa, ababbababb, ε , a, aa, ab ; Negatives : abbabbaba, aba

- b. Let $L = \{w | w \in \Sigma^*$, the third symbol of w is $a\}$.
 - (a|b)(a|b)a(a|b)*
 - This regular expression generates strings with either a or b in the first and second positions, a in the third position, and any number of characters after this a.

Test strings : Positives : abababab, aaa, aba ; Negatives : ε , a, ab, aaba, aa, bb

Problem 2

For this question, $\Sigma = \{a, b\}.$

- a. Let $L = \{w | w \in \Sigma^*, w \text{ does not contain } bb \text{ as a substring}\}.$
 - What is the minimum number of states that a DFA to recognise L must have? Give a representative string from each equivalence class.
 - Write a regular expression for L. (Submit this online : $HW6_2a$)
 - Give a short (1-2 sentences) justification for the logic behind the regular expression.

b. Let $L = \{w | w \in \Sigma^*, w \text{ has an odd number of } as \text{ and starts and ends with a } b\}$.

- What is the minimum number of states that a DFA to recognise L must have? Give a representative string from each equivalence class.
- Write a regular expression for L. (Submit this online : $HW6_2b$)
- Give a short (1-2 sentences) justification for the logic behind the regular expression.

Solution (30 points)

For this question, $\Sigma = \{a, b\}$.

- a. Let $L = \{w | w \in \Sigma^*, w \text{ does not contain } bb \text{ as a substring}\}.$
 - A DFA to recognise L must have at least 3 states. The equivalence classes are $[\varepsilon]$ (accepting), [b] (accepting), [bb] (rejecting).
 - (a|ba)*(ϵ |b)
 - The first part of this regular expression generates all strings in the equivalence class of $[\varepsilon]$ with respect to L. The second part can append a b to any such string, generating a string in the equivalence class of [b] with respect to L.

Test strings : Positives : $aaaa, \varepsilon$, baaaaaaba ; Negatives : babba, bb

- b. Let $L = \{w | w \in \Sigma^*, w \text{ has an odd number of } as \text{ and starts and ends with a } b\}$.
 - A DFA to recognise L must have at least 5 states. The equivalence classes are $[\varepsilon]$ (rejecting), [a] (rejecting), [ba] (rejecting), [ba] (rejecting), [bab] (accepting).
 - $-b(b|ab^*a)^*abb^*$
 - The bs on either end of the regular expression ensure that the string starts and ends with a b. There is one compulsory a in every string, and additional as are introducted in pairs with unlimited intervening bs.

Test strings : Positives : babaab, babbbb, bbbaabbbaaabbb ; Negatives : ε , bb

Problem 3

For this question, $\Sigma = \{a, b\}$.

- a. Let $L = \left\{ a^n b^{n^2} | n \in \mathbb{N} \right\}$. Use the Myhill Nerode theorem to prove that L is not regular.
- b. Let $L = \{w | w \in \Sigma^*, w = w^R\}^{-1}$. Use the Myhill Nerode theorem to prove that L is not regular.

Solution (20 points)

For this question, $\Sigma = \{a, b\}$.

a. Using the Myhill-Nerode theorem, we prove that the language $L = \left\{ a^n b^{n^2} | n \in \mathbb{N} \right\}$ is not regular.

Consider the set of strings $S = \{a^i | i \in \mathbb{N}, i \geq 0\}$. This is an infinite set of strings. Let $w_i = a^i$ and $w_j = a^j$ be two arbitrary strings in S such that $i \neq j$. Append the string $x = b^{i^2}$ to each of w_i and w_j . Since $i \neq j$, $w_i x = a^i b^{i^2} \in L$, but $w_j x = a^j b^{i^2} \notin L$.

Since the strings were chosen arbitrarily, any two strings in the infinite set S are distinguishable with respect to L. By the Myhill-Nerode theorem, L is not regular.

b. Using the Myhill-Nerode theorem, we prove that the language $L = \{w | w \in \Sigma^*, w = w^R\}$ is not regular. Consider the set of strings $S = \{a^i b | i \in \mathbb{N}, i \ge 0\}$. This is an infinite set of strings. Let $w_i = a^i b$ and $w_j = a^j b$ be two arbitrary strings in S such that $i \ne j$. Append the string $x = a^i$ to each of w_i and w_j . $w_i x = a^i b a^i = (w_i x)^R$, so $w_i x \in L$, but $w_j x = a^j b a^i \ne a^i b a^j = (w_i x)^R$, so $w_i x \notin L$.

Since the strings were chosen arbitrarily, any two strings in the infinite set S are distinguishable with respect to L. By the Myhill-Nerode theorem, L is not regular.

 $^{{}^{1}}w^{R}$ is w in reverse.

Problem 4

Let $L = \{w \in \{0, 1, 2\}^* | w \text{ contains the same number of copies of the substrings 01 and 10}\}$. Is L regular? If so, give a regular expression for L (Submit this online : $HW6_4opt$ - optional, of course). If not, use the Myhill Nerode theorem to prove that L is not regular.

Solution (14 points)

Using the Myhill-Nerode theorem, we prove that the language

 $L = \{w \in \{0, 1, 2\}^* | w \text{ contains the same number of copies of the substrings } 01 \text{ and } 10\}$ is not regular.

Consider the set of strings $S = \{(012)^i | i \in \mathbb{N}, i \ge 0\}$. This is an infinite set of strings. Let $w_i = (012)^i$ and $w_j = (012)^j$ be two arbitrary strings in S such that $i \ne j$. The string 01 appears i and j times respectively in w_i and w_j .

Append the string $x = (102)^i$, which contains *i* copies of the string 10, to each of w_i and w_j . $w_i x = (012)^i (102)^i \in L$, but $w_j x = (012)^j (102)^i \notin L$.

Since the strings were chosen arbitrarily, any two strings in the infinite set S are distinguishable with respect to L. By the Myhill-Nerode theorem, L is not regular.

Problem 5

- a. Convert the following NFA to a DFA using the subset construction. (Submit the resulting DFA online : $HW6_{-}5a$)
 - List the subsets of $\{A, B, C, D\}$ that correspond to states in the constructed DFA.

b. Minimise the resulting DFA. (Submit the minimised DFA online : $HW6_{-}5b$)

Solution (20 points)

a. The subsets are $\{A\}, \{B\}, \{C\}, \{B, D\}, \text{ and } \{\}$.

Test strings : Accept $a, \, b, \, aba, \, bba$; Reject $ab, \, abb, \, \varepsilon$ b.

Test strings : Accept a, b, aba, bba ; Reject ab, abb, ε