Problem 1

For this question, $\Sigma=\{a, b\}$.
a. Let Let $L=\left\{w \mid w \in \Sigma^{*}, w\right.$ does not end in $\left.a b a\right\}$.

- Write a regular expression for L. (Submit this online : HW6_1a)
- Give a short (1-2 sentences) justification for the logic behind the regular expression.
b. Let $L=\left\{w \mid w \in \Sigma^{*}\right.$, the third symbol of w is $\left.a\right\}$.
- Write a regular expression for L. (Submit this online : HW6_1b)
- Give a short (1-2 sentences) justification for the logic behind the regular expression.

Solution (16 points)

a. Let Let $L=\left\{w \mid w \in \Sigma^{*}, w\right.$ does not end in $\left.a b a\right\}$.
$-\left((\mathrm{a} \mid \mathrm{b})^{*}(\mathrm{aaa}|\mathrm{aab}| \mathrm{abb}|\mathrm{baa}| \mathrm{bab}|\mathrm{bba}| \mathrm{bbb})\right) \mid(\mathrm{a}|\mathrm{b}| \varepsilon)(\mathrm{a}|\mathrm{b}| \varepsilon)$

- The first part of this regular expression generates all strings w with $|w| \geq 3$ that don't end in $a b a$. The second part of the regular expression generates all strings w with $|w|<3$, which by definition don't end in $a b a$.

Test strings : Positives : abbabababba, ababbababb, $\varepsilon, a, a a, a b$; Negatives : abbabbaba, aba
b. Let $L=\left\{w \mid w \in \Sigma^{*}\right.$, the third symbol of w is $\left.a\right\}$.

- (a|b) (a|b)a(a|b)*
- This regular expression generates strings with either a or b in the first and second positions, a in the third position, and any number of characters after this a.

Test strings : Positives : abababab, $a a a, a b a$; Negatives : $\varepsilon, a, a b, a a b a, a a, b b$

Problem 2

For this question, $\Sigma=\{a, b\}$.
a. Let $L=\left\{w \mid w \in \Sigma^{*}, w\right.$ does not contain $b b$ as a substring $\}$.

- What is the minimum number of states that a DFA to recognise L must have? Give a representative string from each equivalence class.
- Write a regular expression for L. (Submit this online : HW6_2a)
- Give a short (1-2 sentences) justification for the logic behind the regular expression.
b. Let $L=\left\{w \mid w \in \Sigma^{*}, w\right.$ has an odd number of a s and starts and ends with a $\left.b\right\}$.
- What is the minimum number of states that a DFA to recognise L must have? Give a representative string from each equivalence class.
- Write a regular expression for L. (Submit this online : HW6_2b)
- Give a short (1-2 sentences) justification for the logic behind the regular expression.

Solution (30 points)

For this question, $\Sigma=\{a, b\}$.
a. Let $L=\left\{w \mid w \in \Sigma^{*}, w\right.$ does not contain $b b$ as a substring $\}$.

- A DFA to recognise L must have at least 3 states. The equivalence classes are [ε] (accepting), $[b]$ (accepting), [bb] (rejecting).
- $(\mathrm{a} \mid \mathrm{ba})^{*}(\epsilon \mid \mathrm{b})$
- The first part of this regular expression generates all strings in the equivalence class of $[\varepsilon]$ with respect to L. The second part can append a b to any such string, generating a string in the equivalence class of $[b]$ with respect to L.

Test strings : Positives : aaaa, ε, baaaaaaaba ; Negatives : babba, bb
b. Let $L=\left\{w \mid w \in \Sigma^{*}, w\right.$ has an odd number of a s and starts and ends with a $\left.b\right\}$.

- A DFA to recognise L must have at least 5 states. The equivalence classes are $[\varepsilon]$ (rejecting), $[a]$ (rejecting), $[b]$ (rejecting), $[b a]$ (rejecting), $[b a b]$ (accepting).
- b(blab*a)*abb*
- The $b s$ on either end of the regular expression ensure that the string starts and ends with a b. There is one compulsory a in every string, and additional as are introducted in pairs with unlimited intervening $b \mathrm{~s}$.

Test strings : Positives : babaab, babbbb, bbbaabbbaaabbb; Negatives : $\varepsilon, b b$

Problem 3

For this question, $\Sigma=\{a, b\}$.
a. Let $L=\left\{a^{n} b^{n^{2}} \mid n \in \mathbb{N}\right\}$. Use the Myhill Nerode theorem to prove that L is not regular.
b. Let $L=\left\{w \mid w \in \Sigma^{*}, w=w^{R}\right\}^{1}$. Use the Myhill Nerode theorem to prove that L is not regular.

Solution (20 points)

For this question, $\Sigma=\{a, b\}$.
a. Using the Myhill-Nerode theorem, we prove that the language $L=\left\{a^{n} b^{n^{2}} \mid n \in \mathbb{N}\right\}$ is not regular.

Consider the set of strings $S=\left\{a^{i} \mid i \in \mathbb{N}, i \geq 0\right\}$. This is an infinite set of strings. Let $w_{i}=a^{i}$ and $w_{j}=a^{j}$ be two arbitrary strings in S such that $i \neq j$. Append the string $x=b^{i^{2}}$ to each of w_{i} and w_{j}. Since $i \neq j, w_{i} x=a^{i} b^{i^{2}} \in L$, but $w_{j} x=a^{j} b^{i^{2}} \notin L$.
Since the strings were chosen arbitrarily, any two strings in the infinite set S are distinguishable with respect to L. By the Myhill-Nerode theorem, L is not regular.
b. Using the Myhill-Nerode theorem, we prove that the language $L=\left\{w \mid w \in \Sigma^{*}, w=w^{R}\right\}$ is not regular. Consider the set of strings $S=\left\{a^{i} b \mid i \in \mathbb{N}, i \geq 0\right\}$. This is an infinite set of strings. Let $w_{i}=a^{i} b$ and $w_{j}=a^{j} b$ be two arbitrary strings in S such that $i \neq j$. Append the string $x=a^{i}$ to each of w_{i} and $w_{j} . w_{i} x=a^{i} b a^{i}=\left(w_{i} x\right)^{R}$, so $w_{i} x \in L$, but $w_{j} x=a^{j} b a^{i} \neq a^{i} b a^{j}=\left(w_{i} x\right)^{R}$, so $w_{j} x \notin L$.
Since the strings were chosen arbitrarily, any two strings in the infinite set S are distinguishable with respect to L. By the Myhill-Nerode theorem, L is not regular.

[^0]
Problem 4

Let $L=\left\{w \in\{0,1,2\}^{*} \mid w\right.$ contains the same number of copies of the substrings 01 and 10$\}$. Is L regular? If so, give a regular expression for L (Submit this online : HW6_4opt - optional, of course). If not, use the Myhill Nerode theorem to prove that L is not regular.

Solution (14 points)

Using the Myhill-Nerode theorem, we prove that the language
$L=\left\{w \in\{0,1,2\}^{*} \mid w\right.$ contains the same number of copies of the substrings 01 and 10$\}$ is not regular.
Consider the set of strings $S=\left\{(012)^{i} \mid i \in \mathbb{N}, i \geq 0\right\}$. This is an infinite set of strings. Let $w_{i}=(012)^{i}$ and $w_{j}=(012)^{j}$ be two arbitrary strings in S such that $i \neq j$. The string 01 appears i and j times respectively in w_{i} and w_{j}.

Append the string $x=(102)^{i}$, which contains i copies of the string 10 , to each of w_{i} and $w_{j} . w_{i} x=$ $(012)^{i}(102)^{i} \in L$, but $w_{j} x=(012)^{j}(102)^{i} \notin L$.

Since the strings were chosen arbitrarily, any two strings in the infinite set S are distinguishable with respect to L. By the Myhill-Nerode theorem, L is not regular.

Problem 5

a. - Convert the following NFA to a DFA using the subset construction. (Submit the resulting DFA online : HW6_5a)

- List the subsets of $\{A, B, C, D\}$ that correspond to states in the constructed DFA.

b. Minimise the resulting DFA. (Submit the minimised DFA online : HW6_5b)

Solution (20 points)

a. The subsets are $\{A\},\{B\},\{C\},\{B, D\}$, and $\}$.

Test strings : Accept $a, b, a b a, b b a$; Reject $a b, a b b, \varepsilon$
b.

Test strings : Accept $a, b, a b a, b b a$; Reject $a b, a b b, \varepsilon$

[^0]: ${ }^{1} w^{R}$ is w in reverse.

