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Notes for Lecture 3

These are notes about the proof that there are infinitely many primes, which is not
covered in the reading material.

1 There are infinitely many primes

An integer n ≥ 2 is composite if we can write n as a product of two positive integers
smaller than n, that is, if there are a, b such that n = a · b, where 0 < a < n and
0 < b < n. An integer n ≥ 2 is prime otherwise.

For example, 2 is prime, 3 is prime, 4 = 2 · 2 is composite, 5 is prime, 6 = 2 · 3 is
composite, 7 is prime, 8 = 2 · 4 is composite, 9 = 3 · 3 is composite, and so on.1

We will prove that there are infinitely many prime numbers.

We will use the following two lemmas, whose proofs are discussed in the next section.
Completely rigorous proofs of Lemma 1 and Lemma 2 require induction, which is the
topic of the next lecture.

Lemma 1 (Prime Factorization) Every integer n ≥ 2 can be written as a product
of primes, meaning that either n is prime itself, or it can be written as a product of
two or more prime numbers, not all necessarily distinct.

For example we can write 60 = 2 · 2 · 3 · 5, where 2, 3 and 5 are prime.

Lemma 2 (How Division Works) For every nonnegative integer n ≥ 0 and pos-
itive integer d there exists an integer q ≥ 0 (the quotient) and an integer r (the
remainder) such that 0 ≤ r ≤ d− 1 and

n = qd + r

1Note that, if a number is composite, there may be more than one way of writing it as a product
of two smaller positive integers. For example 60 = 2 · 30 = 3 · 20 = 4 · 15 = 5 · 12 = 6 · 10.
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From this point on we proceed completely rigorously. First, we can prove that the
value of r in Lemma 2 is unique.

Lemma 3 For every nonnegative integers n ≥ 0 and d ≥ 1, there is a unique value
of r such that 0 ≤ r ≤ d− 1 and that we can write n = qd + r for some q ≥ 0.

Proof: We proceed by contradiction, so we assume that there are at least two ways
of writing n as a multiple of d plus a non-negative remainder smaller than d, that is
for some integers q, q′ ≥ 0 and 0 ≤ r < r′ ≤ d− 1 we have

n = qd + r

n = q′d + r′

Let us subtract the two equations; we get

(q − q′) · d = r′ − r

Note that r ≥ 0, so r′ − r ≤ r′ ≤ d− 1 and that r′ > r, so r′ − r > 0, which means

0 < (q − q′) · d ≤ d− 1

which is not possible, because a strictly positive multiple of d cannot be smaller than
d. �

We are ready to prove our main result

Theorem 4 There are infinitely many primes.

Proof: We proceed by contradiction, and so we assume that there are finitely many
primes. Whenever we have assumptions stating the existence of objects with certain
properties it is always good to give them names, so let us call k the number of primes,
and let us call the set of all primes {p1, . . . , pk}.
Now we want to argue that there is an integer that cannot be written as a product
of the primes p1, . . . , pk. Here comes the idea of the proof: define

N = 1 + p1 · p2 · · · · · pk

Then N cannot be prime itself, because it is bigger than all the other primes, which
means that it has to be divisible by one of the other primes. But consider the division
of N by p1: we have

N = p1 · (p2 · · · pk) + 1
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which means that we get a remainder of 1 when dividing N by p1 and by Lemma
3 this is the only possible remainder, while if N were divisible by p1 the remainder
would be zero. So N is not divisible by p1.

By the same reasoning, N is not divisible by p2, nor by p3, . . . , nor by pk, and we
have reached a contradiction. �

After succeeding in devising a proof by contradiction, it is always good to stop and
think if the same reasoning can give a more direct argument. We proved that if
p1, . . . , pk are the first k primes, then the number 1 + p1 · · · pk is not divisible by
any of them. Does it mean that if p1, . . . , pk are the first k primes then the number
1+p1 · · · pk is also prime? Our argument does not show it: it could be that 1+p1 · · · pk
is composite and its prime factors are all bigger than pk.

But is it true that if p1, . . . , pk are the first k primes then 1 + p1 · · · pk is also prime?
A few test cases check out: 3 = 1 + 2 is prime, and so is 7 = 1 + 2 · 3, 31 = 1 + 2 · 3 · 5,
211 = 1 + 2 · 3 · 5 · 7, and 2311 = 1 + 2 · 3 · 5 · 7 · 11.

Unfortunately, 30031 = 1 + 2 · 3 · 5 · 7 · 11 · 13 is composite, because 30031 = 59 · 509.

This is too bad, because otherwise we would have a solution to the problem of finding
a simple non-randomized way to generate large primes (just get the first few primes,
say with the sieve of Eratosthenes, multiply them together, and add 1). Specifically,
the following is an open problem whose solution would be a big breakthrough: devise
a deterministic (that is, not randomized) algorithm that, on input n, runs in time
polynomial in n and outputs a prime larger than 2n.

2 Proving facts about division

Here is a proof of Lemma 1:

Proof: Suppose by contradiction that there are integers n that are not products of
primes (meaning that they are not primes and that cannot be written as a product of
two or more primes.) Let nmin be the smallest such integer. Since nmin is not prime it
must be composite, so let us write nmin = a · b where a, b are positive integers smaller
than nmin. Since a and b are both smaller than nmin, they can be written as products
of primes. Multiplying the expression of a as a product of primes and the expression
of b as a product of primes we get an expression of nmin as a product of primes, which
is a contradiction.�

Isn’t this a completely rigorous proof? Why did we say that the proof needs to be
done by induction? The proof assumes that if we have a set C of positive integers
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(the set of counterexamples to Lemma 1) and the set is nonempty, then it has a
minimum element. Isn’t this fact obvious? Well, a nonempty set of integers does
not have to have a minimum (take all the integers), and a nonempty set of positive
reals also does not have to have to minimum (take all the real numbers which are
strictly greater than 3), so how can we be sure that there isn’t some strange set of
positive integers that does not have a minimum? In fact, what can we safely assume
about positive integers and, for that matter, was it the precise definition of the set of
positive integers? Mathematical induction answers all these questions.

Here is a proof of Lemma 2:

Proof: Consider the sequence n− i · d for all integer values of i ≥ 0, that is

n, n− d, n− 2d, n− 3d, . . .

The first element of the sequence is n ≥ 0, but for every i > n we have n − id <
n − nd ≤ 0. So the sequence starts nonnegative, and from some point on is always
negative. Let q be the index of the last nonnegative value, then we have

n− qd ≥ 0

n− (q + 1) · d < 0

Now call r = n− qd. By the definition of r we have

n = qd + r

From the fact that n− qd ≥ 0 we have

r ≥ 0

And from the fact that n− (q+ 1)d < 0 we have r < d and, since r and d are integers

r ≤ d− 1

�

Again, what is not rigorous about the above proof? We looked at the set of all i such
that n− id ≥ 0 and we realized this is a nonempty set of integers all whose elements
are at most n, from which we deduced that the set has a maximum element. This
seems obvious but raises the same kind of “are we really sure it’s true” questions that
arise when you assume that every set of positive integers has a minimum.
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