
Stanford University — CS103: Math for Computer Science Handout LN9
Luca Trevisan April 25, 2014

Notes for Lecture 9

Mathematical logic is the rigorous study of the way in which we prove the validity
of mathematical statements. One of the applications of mathematical logic is that
it provides a precise language to express mathematical statements and to write com-
pletely rigorous proofs. The simplest type of logical system is propositional logic.
Propositional logic formalizes simple reasoning by cases and the meaning of negation,
of implication, and of other ways to combine simpler statements into more complex
ones. First-order logic is a more expressive formalism that, with some hacks, suffices
to represent statements about integers and about computer programs, induction and
so on. Second-order logic, which we will not talk about, is a generalization of first-
order logic that works well to talk about real and complex numbers, and to formalize
calculus, real and complex analysis, and more or less all of pure mathematics.

1 Propositional Logic

A proposition is a statement that can be true or false. Propositional logic studies how
to reason about the truth of propositions and how the truth of a proposition relates
to the truth of another one.

Every statement in propositional logic is an expression that is built up from proposi-
tional variables, by combining them with logical connectives.

Propositional variables are usually denoted with letters like p, q,1 etc., and they are
meant to stand for the propositions that we are interested in, that is statements
like “2 < 4,” “life will pass me by,” “I don’t open up my eyes,” and so on. The
connectives express how propositions are related, for example one can connect two
propositions with an implication as in “if I don’t open up my eyes, life will pass me
by.” Propositional logic allows us to reason that the above proposition means the
same as “if life doesn’t pass me by, then I have opened up my eyes” and also the
same as “either I open up my eyes, or life will pass me by”

1We will also use letters like p, q, . . . , to stand for propositions. Hopefully this will not cause
confusion.

1



The logical connectives of propositional logic are:

Logical NOT written ¬. If p is a proposition, then ¬p (pronounced “not p”) is a
proposition, and ¬p is true if p is false, and vice versa;

Logical AND written ∧. If p and q are propositions, then p∧q (pronounced “p and
q”) is a proposition, and it is true if and only if both p and q are true;

Logical OR written ∨. If p and q are propositions, then p ∨ q (pronounced “p or
q”) is a proposition, and it is true if at least one of p and q are true;

Logical Implication written →. If p and q are propositions, then p → q (pro-
nounced “p implies q”) is a proposition, and it is true unless p is true and q is
false;

Biconditional written ↔. If p and q are propositions, then p ↔ q (pronounced “p
if and only if q”) is a proposition, and it is true if and only if the truth values
of p and q are the same. (Meaning they are either both true or both false.)

We also have two special symbols: > is a proposition, and it is always true, and ⊥ is
a proposition and it is always false.

For a given proposition p, it is often helpful to construct its truth table, that is the list
of all the possible truth values of the propositional variables occurring in p, together
with the corresponding truth value of the proposition.

Here are the truth values of the propositions obtained by applying the logical con-
nectives to propositional variables.

p ¬p
F T
T F

p q p ∧ q
F F F
F T F
T F F
T T T

p q p ∨ q
F F F
F T T
T F T
T T T

2



p q p→ q
F F T
F T T
T F F
T T T

p q p↔ q
F F T
F T F
T F F
T T T

The precedence of the operators is that ¬ binds the closest, followed by ∧, ∨, → and
↔. This means that the proposition

¬p ∧ q ∨ r → q ∧ r

is parsed as
(((¬p) ∧ q) ∨ r)→ (q ∧ r)

To construct the truth table of a complex proposition p one can first parse it, and
then construct the truth tables of all the smaller propositions into which we have
parsed p, starting from the smallest ones. For example,

p q r ¬p ¬p ∧ q q ∧ r (¬p ∧ q) ∨ r ((¬p ∧ q) ∨ r)→ (q ∧ r)
F F F T F F F T
F F T T F F T F
F T F T T F T F
F T T T T T T T
T F F F F F F T
T F T F F F T F
T T F F F F F T
T T T F F T T T

Two propositions are logically equivalent if they have the same truth value for every
possible assignment of truth values to the propositional variables that they contain.
If propositions p and q are logically equivalent, then we write p ≡ q.

Here are some important logical equivalences. The first two are called De Morgan’s
laws.

¬(p ∧ q) ≡ ¬p ∨ ¬q (1)

3



¬(p ∨ q) ≡ ¬p ∧ ¬q (2)

p→ q ≡ ¬p ∨ q (3)

p↔ q ≡ (p→ q) ∧ (q → p) (4)

Note that these equivalences imply that every proposition can be transformed into
an equivalent one that involves only the use of the connectives ∧ and ¬, or only the
use of the connectives ∨ and ¬.

Another example of equivalence is that the propositions p → q and ¬q → ¬p are
logically equivalent. An easy way to verify equivalence of simple propositions is to
construct their truth tables, and verify that they are identical. Note that for two
propositions to be logically equivalent they do not need to be defined over the same
set of propositional variables: for example, p→ (¬p∧q) is logically equivalent to ¬p.2

The notion of logical equivalence is one of the useful features of propositional logic:
given a complex mathematical statement, we can replace various parts of the state-
ment with propositional variables and obtain a proposition, then change the resulting
proposition to a logically equivalent one, and finally replace back the propositional
variables with the original statements. The new mathematical statement will be
equivalent to the original one, regardless of the meaning and of the truth-value of the
original statement.

For example, applying this approach to the equivalence p→ q ≡ ¬q → ¬p we obtain
proofs by contrapositive.

A proposition that is true for all the possible truth-values of its propositional variables
is called a tautology. For example, p→ (p ∨ q) is a tautology. Note that p ≡ q holds
if and only if the proposition p↔ q is a tautology.

2 First-Order Logic

In first-order logic, besides having propositional variables and boolean connectives,
we have quantifiers, predicates, and functions.

2We can use truth-tables in order to check the logical equivalence of two propositions that involve
different sets of propositional values: we just list, in the construction of the truth-table, all the
possible truth-values of all the variables occurring in either of the two propositions.

4



It is easier to start from a couple of concrete examples of what a first-order sentence
looks like.

The first-order sentence corresponding to the statement ”If n is a natural number,
then n2 is odd if and only if n is odd” becomes

∀n.nat(n)→ (odd(square(n))↔ odd(n))

The statement ”you can fool some of the people all of the time” becomes

∃x.person(x) ∧ (∀t.time(t)→ canfool(x, t))

The statement ”you can fool all of the people some of the time” becomes

∀x.person(x)→ ∃t.(time(t) ∧ canfool(x, t))

In the above examples, odd(·), person(·), time(·) and canfool(·, ·) are predicates, that
is, they are properties that may or may not be true for the objects that we give to
them in input. The arity of a predicate is the number of objects that it takes as
input. Then we have variables, like x, t, n, which are bound by the quantifiers ∀ and
∃. A sentence of the form ∀x.S is true if the sentence S is true for every possible
assignment of x to any object; a sentence of the form ∃x.S is true if there if there is an
object whose value we can assign to x so that S is true. We also have functions, such
as square(·) that take as input a certain number of objects and output an object.
The arity of a function is the number of inputs it takes. A predicate can have arity
zero, in which case we call it a propositional symbol, and a function can have arity
zero, in which case we call it a constant.

Finally, we have the same boolean connectives that we have already studied in the
setting of propositional logic.

In order to understand the meaning of a sentence in first-order logic we need to know
what is the set of all possible objects (called the universe) that the quantifiers refer
to, what are the values of the propositional symbols and constants, and what are the
values that the various predicates and functions return for each possible input. This
information is called a model for the sentence. In a given model, a sentence is either
true or false.

A sentence is valid if it is true in every model. The useful feature of first-order logic is
that if we can prove that a given sentence is valid, then we know that the statement
it formalizes is true, without having to know what any of the functions or predicates
appearing in the sentence even mean.

5



Two sentences are equivalent if, in every model, they have the same truth-value.

Here are some more details (but not a completely rigorous treatment) of what are
sentences in first-order logic.

• Variables and constants are terms

• If f(·) is a k-ary function, and t1, . . . , tk are k terms, then f(t1, . . . , tk) is also a
term

• A propositional symbol is a sentence

• If P (·) is a k-ary predicate, and t1, . . . , tk are k terms, then P (t1, . . . , tk) is a
sentence

• If t1 and t2 are terms, then t1 = t2 is a sentence

• If S is a sentence and x is a variable, then ∀x.S is a sentence

• If S is a sentence and x is a variable, then ∃x.S is a sentence

• If S and T are sentences, then the following are sentences: ¬S, S ∨ T , S ∧ T ,
S → T , S ↔ T .

A sentence is well-formed if all its variables are bound. The definition of bound versus
free variables is as follows: in a term t, all the variables occurring in t are free. If P (·)
is a k-ary predicate and t1, . . . , tk are terms, then P (t1, . . . , tk) is a sentence whose free
variables are all the variables occurring in the terms. If S is a sentence in which x is a
free variables, then ∃x.S and ∀x.S are sentences in which x is bound by the quantifier.
(Being bound is the same as not being free.) When we construct a sentence by joining
other sentences with boolean connectors, then the set of free variables of the resulting
sentence is the union of the sets of free variables of the sentences that we started
from.

For example, in

∀x.(A(x, y)→ (∃z.B(x, y, z)))

the variables x and z are bound, but y is free, and so the above sentence is not a
well-formed sentence. Also note that in the sentence

∀x.A(x, y)→ (∃y.B(x, y))

6



the first occurrence of y is free, but the second occurrence is bound, which means
that the above sentence is not well formed.

There is a general theory of how to write proofs of validity of first-order sentences,
but it goes beyond the scope of this course to discuss it.

In “practice,” mathematical statements as they appear in textbooks and research
papers are formulated using a mix of first-order logic notation and plain English, just
like pseudo-code in programming textbooks and computer science research papers is
a mix of plain English and of valid commands in programming languages like C or
Python.

In order to understand those statements, it is enough to understand the meaning of
the symbols described above, and in order to follow proofs involving this notation, it
is enough to be familiar with certain basic equivalences between first-order sentences.

First of all, all the equivalences of propositional logic are still true, and they can be
applied within a sentence of first-order logic. For example, the sentence

∀x∃y.(A(x)→ B(y))

is equivalent to
∀x∃y.(¬B(y)→ ¬A(x))

Another observation is that if you have two quantifications of the same type binding
variables in the same sentence, then the order of quantification is not important. For
example, the sentence

∀x.∀y.S
where S is a sentence in which x and y are free is equivalent to

∀y.∀x.S

and
∃x∃y.S

is equivalent to
∃y∃x.S

If you have different quantifiers, however, you cannot exchange them: the sentence

∀x∃y.(integer(x)→ (integer(y) ∧ smaller(x, y)))

which says that for every integer x there is a bigger integer y is true (in the model
in which integer(x) is true if x is an integer and smaller(x, y) is true if x is smaller
than y), but the sentence

∃y∀x.(integer(x)→ (integer(y) ∧ smaller(x, y)))

7



means, in the same model, that there is an integer y which is bigger than all other
integers, which is false. So the two sentences are not equivalent because there is a
model in which the first is true but the second is false.

When doing proofs by contradiction, it is important to be able to correctly negate a
sentence. From the previous section, we know how to negate any expression involving
only boolean connectives. Regarding quantifiers, the sentence

¬∃x.S

is equivalent to
∀x.¬S

which is intuitive: saying that it is not true that there is an x for which S is true is
the same as saying for every x we have that S is false. Similarly,

¬∀x.S

is equivalent to
∃x.¬S

8


	Propositional Logic
	First-Order Logic

