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Notes on the Myhill-Nerode Theorem

These notes present a technique to prove a lower bound on the number of states of
any DFA that recognizes a given language. The technique can also be used to prove
that a language is not regular. (By showing that for every k one needs at least k
states to recognize the language.)

1 Distinguishable and Indistinguishable States

It will be helpful to keep in mind the following two languages over the alphabet
Σ = {0, 1} as examples: the language EQ = {0n1n|n ≥ 1} of strings containing a
sequence of zeroes followed by an equally long sequence of ones, and the language
A = (0 ∪ 1)∗ · 1 · (0 ∪ 1) of strings containing a 1 in the second-to-last position.

We start with the following basic notion.

Definition 1 (Distinguishable Strings) Let L be a language over an alphabet Σ.
We say that two strings x and y are distinguishable with respect to L if there is a
string z such that xz ∈ L and yz 6∈ L, or vice versa.

For example the strings x = 0 and y = 00 are distinguishable with respect to EQ,
because if we take z = 1 we have xz = 01 ∈ EQ and yz = 001 6∈ EQ. Also, the
strings x = 00 and y=01 are distinguishable with respect to A as can be seen by
taking z = 0.

On the other hand, the strings x = 0110 and y = 10 are not distinguishable with
respect to EQ because for every z we have xz 6∈ EQ and yz 6∈ EQ.

Exercise 1 Find two strings that are not distinguishable with respect to A.

The intuition behind Definition 1 is captured by the following simple fact.

Lemma 2 Let L be a language, M be a DFA that decides L, and x and y be dis-
tinguishable strings with respect to L. Then the state reached by M on input x is
different from the state reached by M on input y.
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Proof: Suppose by contradiction that M reaches the same state q on input x and
on input y. Let z be the string such that xz ∈ L and yz 6∈ L (or vice versa). Let
us call q′ the state reached by M on input xz. Note that q′ is the state reached by
M starting from q and given the string z. But also, on input yz, M must reach the
same state q′, because M reaches state q given y, and then goes from q to q′ given z.
This means that M either accepts both xz and yz, or it rejects both. In either case,
M is incorrect and we reach a contradiction. �

Consider now the following generalization of the notion of distinguishability.

Definition 3 (Distinguishable Set of Strings) Let L be a language. A set of
strings {x1, . . . , xk} is distinguishable if for every two distinct strings xi, xj we have
that xi is distinguishable from xj.

For example one can verify that {0, 00, 000} are distinguishable with respect to EQ
and that {00, 01, 10, 11} are distinguishable with respect to A.

We now prove the main result of this section.

Lemma 4 Let L be a language, and suppose there is a set of k distinguishable strings
with respect to L. Then every DFA for L has at least k states.

Proof: If L is not regular, then there is no DFA for L, much less a DFA with less than
k states. If L is regular, let M be a DFA for L, let x1, . . . , xk be the distinguishable
strings, and let qi be the state reached by M after reading xi. For every i 6= j, we
have that xi and xj are distinguishable, and so qi 6= qj because of Lemma 2. So we
have k different states q1, . . . , qk in M , and so M has at least k states. �

Using Lemma 4 and the fact that the strings {00, 01, 10, 11} are distinguishable with
respect to A we conclude that every DFA for A has at least 4 states.

For every k ≥ 1, consider the set {0, 00, . . . , 0k} of strings made of k or fewer zeroes.
It is easy to see that this is a set of distinguishable strings with respect to EQ. This
means that there cannot be a DFA for EQ, because, if there were one, it would have
to have at least k states for every k, which is clearly impossible.

2 The Myhill-Nerode Theorem

Let L be a language over an alphabet Σ. We have seen in the previous section the
definition of distinguishable strings with respect to L. We say that two strings x and
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y are indistinguishable, and we write it x ≈L y if they are not distinguishable.
That is, x ≈L y means that, for every string z, the string xz belongs to L if and only
if the string yz does. By definition, x ≈L y if and only if y ≈L x, and we always have
x ≈L x. It is also easy to see that if x ≈L y and y ≈L w then we must have x ≈L w.
In other words:

Fact 5 The relation ≈L is an equivalence relation over the strings in Σ∗.

As you may remember from earlier lectures, when you define an equivalence relation
over a set you also define a way to partition the set into a collection of subsets, called
equivalence class. An equivalence class in Σ∗ with respect to ≈L is a set of strings
that are all indistinguishable from one another, and that are all distinguishable from
all the others not in the set. We denote by [x] the equivalence class that contains the
string x.

A fancy way of stating Lemma 4 is to say that every DFA for L must have at least
as many states as the number of equivalence class in Σ∗ with respect to ≈L. Perhaps
surprisingly, the converse is also true: there is always a DFA that has precisely as
many states as the number of equivalence classes.

Theorem 6 (Myhill-Nerode) Let L be a language over Σ. If Σ∗ has infinitely
many equivalence classes with respect to ≈L, then L is not regular. Otherwise, L can
be decided by a DFA whose number of states is equal to the number of equivalence
classes in Σ∗ with respect to ≈L.

Proof: If there are infinitely many equivalence classes, then it follows from Lemma 4
that no DFA can decide L, and so L is not regular.

Suppose then that there is a finite number of equivalence class. We define an au-
tomaton that has a state for each equivalence class. The start state is the class [ε]
and every state of the form [x] for x ∈ L is a final state.

It remains to describe the transition function. From a state [x], reading the character
a, the automaton moves to state [xa]. We need to make sure that this definition
makes sense. If x ≈L x

′, then the state [x] and the state [x′] are the same, so we need
to verify that the state [xa] and the state [x′a] are also the same. That is, we need
to verify that, for every string z, xaz ∈ L if and only if x′az ∈ L; this is clearly true
because x and x′ are indistinguishable and so appending the string az makes xaz an
element of the language L if and only if it also makes x′az an element of the language.

So the automaton is well defined. Let now x = x1x2 · · · xn be an input string for the
automaton. The automaton starts in [ε], then moves to state [x1], and so on, and at
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the end is in state [x1 · · ·xn]; this is an accepting state if and only if x ∈ L, and so
the automaton works correctly on x. �
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