CS103 Practice Midterm

Problem 1

For each of the following statements about finite sets, either prove that they are true or give a counterexample to show that they are false.
(i) For any two sets A and $B, B \backslash(B \backslash A)=A$. Here $B \backslash A$ refers to set difference, $B \backslash A=\{x: x \in B$ and $x \notin A\}$
(ii) If A, B are sets, then $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$
(iii) For sets A, B, C, if $A \subseteq B$ and $B \nsubseteq C$, then $A \nsubseteq C$.
(iv) For sets A, B, we have $(A \backslash B) \cup(A \cap B)=A$.

Problem 2

Prove by induction that if a set S contains n elements, where $n \geq 0$, then its power set $\mathcal{P}(S)$ contains 2^{n} elements.

Problem 3

Show that if an undirected graph G has n vertices, each of degree at least $(n-1) / 2$, then the graph is connected.

Problem 4

State which of the following are equivalence relations, and which are partial orders.
(i) Let $x R y=\{(x, y) \in \mathbb{N} \times \mathbb{N}: x \mid y\}$, where $x \mid y$ means that x is a factor of y.
(ii) Let S be the set of strings (or sequences of characters, like "cat"). Let $a R b=\{(a, b) \in$ $S \times S: a$ and b have the same length \}.
(iii) Let $x R y=\{(x, y) \in \mathbb{Z} \times \mathbb{Z}:|x-y| \leq 1\}$.

Problem 5

Suppose \sim is a relation on a set A, and that \sim is reflexive and for all $a, b, c \in A$, if $a \sim b$ and $a \sim c$, then $b \sim c$. Show that \sim is an equivalence relation.

