
CS103 Practice Midterm

Problem 1

For each of the following statements about finite sets, either prove that they are true or give
a counterexample to show that they are false.

(i) For any two sets A and B, B \ (B \ A) = A. Here B \ A refers to set difference,
B \A = {x : x ∈ B and x /∈ A}

(ii) If A,B are sets, then P(A) ∪ P(B) ⊆ P(A ∪B)

(iii) For sets A, B, C, if A ⊆ B and B 6⊆ C, then A 6⊆ C.

(iv) For sets A,B, we have (A \B) ∪ (A ∩B) = A.

Solution

(i) is false: let A = {0} and B = {1}. Then B \A = {1}, and B \ (B \A) = ∅ 6= A.

(ii) is true: X ∈ P(A) means X ⊆ A, so X ⊆ A∪B, so X ∈ P(A∪B). Thus P(A) ⊆ P(A∪B).
Similarly P(B) ⊆ P(A∪B). Combining the last two statements gives P(A)∪P(B) ⊆ P(A∪B).

(iii) is false: consider A = {1}, B = {1, 2}, C = {1}.

(iv) is true. We will show (A \ B) ∪ (A ∩ B) ⊆ A and A ⊆ (A \ B) ∪ (A ∩ B), which
together imply the result.

• Let x ∈ (A \ B) ∪ (A ∩ B). Then either x ∈ A \ B or x ∈ A ∩ B. Either case implies
x ∈ A. So (A \B) ∪ (A ∩B) ⊆ A.

• Now let x ∈ A. Now either x ∈ B or x /∈ B. In the former case, we have x ∈ A ∩ B.
In the latter case, we have x ∈ A \ B. Thus in either case x ∈ (A \ B) ∪ (A ∩ B). So
A ⊆ (A \B) ∪ (A ∩B).

Problem 2

Prove by induction that if a set S contains n elements, where n ≥ 0, then its power set P(S)
contains 2n elements.
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Solution

In the base case, for n = 0, we have S = ∅. Then the power set is {∅}, which indeed contains
20 = 1 elements, so the base case holds.

Assume that the statement is true for n− 1 elements. Let x be an arbitrary element of S.
Now if S contains n elements, then the elements of P(S) are the subsets of S; separate them
into two groups: those that contain x and those that do not.

Those that do not contain x are subsets of the remaining n − 1 elements of S. By the
induction hypothesis, we know that there are 2n−1 such subsets.

Those that do contain x are of the form {x} ∪ A, where A is a subset of the remaining
n− 1 elements of S. Again by the induction hypothesis, there are 2n−1 such subsets A, and
thus 2n−1 subsets in this group.

In total, therefore, we have 2n−1 + 2n−1 = 2n subsets of S, completing the induction.

Problem 3

Show that if an undirected graph G has n vertices, each of degree at least (n− 1)/2, then the
graph is connected.

Solution

By contradiction; assume that G is disconnected. Then G contains at least two connected
components, let A and B be different connected components. Since A and B are disjoint, the
sum of their sizes is at most n, so one of these components has size at most n/2. Let v be
any vertex in that component. Then v can only be connected to the remaining nodes in the
same component, so its degree is at most n/2 − 1, contradicting the fact that the degree of
each node is at least (n− 1)/2.

Problem 4

State which of the following are equivalence relations, and which are partial orders.

(i) Let xRy = {(x, y) ∈ N× N : x|y}, where x|y means that x is a factor of y.

(ii) Let S be the set of strings (or sequences of characters, like “cat”). Let aRb = {(a, b) ∈
S × S : a and b have the same length }.

(iii) Let xRy = {(x, y) ∈ Z× Z : |x− y| ≤ 1}.
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Solution

(i) is a partial order.
(ii) is an equivalence relation.
(iii) is not transitive, so it is neither a partial order nor an equivalence relation.

Problem 5

Suppose ∼ is a relation on a set A, and that ∼ is reflexive and for all a, b, c ∈ A, if a ∼ b and
a ∼ c, then b ∼ c. Show that ∼ is an equivalence relation.

Solution

Assume that a ∼ b. Since also a ∼ a, the given relationship implies that b ∼ a. Thus symme-
try holds.

Now if a ∼ b and b ∼ c, then also b ∼ a and b ∼ c, so by the given relationship a ∼ c,
so transitivity holds.
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