Practice Final

Problem 1

Prove using induction that every chess board of size $2^n \times 2^n$, with a single corner tile removed, can be covered using triominoes, the L- shaped tiles defined in HW 1. Consider $n \in \mathbb{N}$, n>0.

Problem 2

Let G = (V, E) be an undirected graph with no self loops. Prove that if the degree of every node in G is at least $|V|/_2$, then G is connected.

Problem 3

Construct a DFA to the language $L = \{s | s \text{ represents a binary number divisible by } 7 \}$. The alphabet is $\sum = \{0, 1\}$.

Problem 4

Let $\sum = \{0, 1\}$, and define the language $L = \{00^* ww 00^* | w \in \sum^*\}$. Prove that L is not regular.

Problem 5

Let $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$. Using the fact that the language A_{TM} is undecidable, prove that the language

 $L_{101} = \{ \langle M \rangle | L(M) \text{ contains the string "101"} \}$

is undecidable.

Problem 6

Let $L_l = \{\langle M, w \rangle | M \text{ moves its head left at least once when operated on input } w\}$. Can you prove that L_l is undecidable using a proof technique similar to the one used in the previous problem? Prove it if you can, and if not, explain why.