Practice Final

Problem 1

Prove using induction that every chess board of size $2^{n} \times 2^{n}$, with a single corner tile removed, can be covered using triominoes, the L- shaped tiles defined in HW 1. Consider $n \in \mathbb{N}, n>0$.

Problem 2

Let $G=(V, E)$ be an undirected graph with no self loops. Prove that if the degree of every node in G is at least ${ }^{|V|} / 2$, then G is connected.

Problem 3

Construct a DFA to the language $L=\{s \mid s$ represents a binary number divisible by 7$\}$. The alphabet is $\sum=\{0,1\}$.

Problem 4

Let $\sum=\{0,1\}$, and define the language $L=\left\{00^{*} w w 00^{*} \mid w \in \sum^{*}\right\}$. Prove that L is not regular.

Problem 5

Let $A_{T M}=\{<M, w>\mid M$ is a TM and M accepts $w\}$.
Using the fact that the language $A_{T M}$ is undecidable, prove that the language

$$
L_{101}=\{<M>\mid L(M) \text { contains the string"101" }\}
$$

is undecidable.

Problem 6

Let $L_{l}=\{\langle M, w\rangle \mid M$ moves its head left at least once when operated on input $w\}$. Can you prove that L_{l} is undecidable using a proof technique similar to the one used in the previous problem? Prove it if you can, and if not, explain why.

