Practice Midterm

Will not be graded.

Problems

- 1. Let $\Sigma = \{0, 1\}$ and for all $n \ge 0$, define $L_n = (\{0, 1\}^*0\{0, 1\}^n0) \cup (\{0, 1\}^*1\{0, 1\}^n1)$. Show how to construct a DFA that accepts L_n .
- 2. Let $\Sigma = \{1, 0\}$ and for all $n \geq 0$, define $L_n = \{1^x 01^y 01^z \mid x + y \equiv z \mod n\}$. Show how to construct a regular expression that accepts L_n .
- 3. Recall the language L_k from the homework, which was defined to be the set of all binary strings with length at least k that have a 1 in the kth-to-last position.
 - (a) Draw a state diagram for a 4-state NFA with L_3 as its language.
 - (b) Use the subset construction to create a DFA with the same language.
 - (c) Is the DFA you provided the minimal DFA for L_3 ? Explain.
- 4. Let L be the language of balanced parentheses with alphabet $\Sigma = \{(,)\}$. For example, (())() $\in L$ but ((())() $\notin L$.

Prove that L is not regular.

- 5. For each of the following languages, say whether L_i is decidable and whether L_i is recognizable, and give a short proof of your claim. (If you prove decidability, the proof of recognizability is not required.)
 - (a) $L_1 = \{M \mid \text{the Turing machine } M \text{ has } 154 \text{ states} \}$
 - (b) $L_2 = \{(M, w) \mid \text{the DFA } M \text{ rejects input } w\}$
 - (c) $L_3 = \{M \mid TM \ M \text{ accepts some string of length greater than } 154\}$
 - (d) $L_4 = \{M \mid M \text{ is a TM and } L(M) \text{ is not regular}\}$

- 6. Suppose for two languages A and B, that $\bar{A} \leq_M \bar{B}$ (i.e. the complement of A is mapping reducible to the complement of B). Which of the following are necessarily true?
 - (a) If B is empty, then A is empty.
 - (b) If B is regular, then A is regular.
 - (c) If A is decidable, then B is decidable.
 - (d) If A is undecidable, then B is undecidable.
 - (e) If B is recognizable, then A is recognizable.