CS 154

Rice's Theorem, the Recursion Theorem, and the Fixed-Point Theorem

Next Tuesday (2/14)

Midterm in class

On Thursday: instead of a new homework, you'll get some sample midterm questions

Problem 1

REVERSE = { M | M is a TM with the property: for all w, M(w) accepts iff M(w^R) accepts}.

REVERSE is undecidable.

Problem 2.1 UNDECIDABLE

 $\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the tape } \}$

Problem 2.2 DECIDABLE

{ (M, w) | M is a TM that on input w, moves its head left at least once, at some point}

Problem 2.1 UNDECIDABLE

{ (M, w) | M is a TM that on input w, tries to move its head past the left end of the tape }

Proof: Reduce from A_{TM} to the above language

On input (M,w), make a TM N that marks the leftmost tape cell, shifts input w over one square, then simulates M(w). If M moves to the marked cell, N moves the head back to the right. If M accepts, N tries to moves its head past the left end of the tape.

(M,w) is in A_{TM} if and only if (N,w) has the property

Problem 2.2 DECIDABLE

 $\{ (M, w) \mid M \text{ is a TM that on input w, moves its head left at least once, at some point} \}$

On input (M,w), run the machine for $|Q_M| + |w| + 1$ steps:

Accept If M's head moved left at all Reject Otherwise

(Why does this work??)

Problem 3

Let L be a language over Turing machines.
Assume that L satisfies the following properties:

- 1. (Semantic) For any TMs M_1 and M_2 , where $L(M_1) = L(M_2)$, $M_1 \in L$ if and only if $M_2 \in L$
- 2. (Nontrivial) There are TMs M_{YES} and M_{NO} , where $M_{YES} \in L$ and $M_{NO} \not\in L$

Prove that L is undecidable

Examples and Non-Examples

Semantic Properties P

- · M accepts ε
- $L(M) = \{0\}$
- · L(M) is empty
- L(M) is regular
- M accepts exactly 154 strings

L = {M | P(M) is true} is undecidable

Not Semantic!

- M halts and rejects ε
- M tries to move its head off the left end of the tape, on input ε
- M never moves its head left on input ε
- M has exactly 154 states
- M halts on all inputs

Theorem: Any semantic nontrivial L over Turing machines is undecidable

Proof

We'll reduce from A_{TM} to the language L

Define M_{\emptyset} to be a TM that never halts

Assume, WLOG, that $M_{\emptyset} \notin L$

Let $M_{YES} \in L$ (such M_{YES} exists, by assumption)

Reduction from A_{TM} : On input (M,w):

Output " $M_w(x) := If (M \ accepts \ w) \& (M_{YES} \ accepts \ x), ACCEPT"$

If M accepts w, then $L(M_w)$ = $L(M_{YES})$ Since $M_{YES} \in L$, we have $M_w \in L$

If M does not accept w, then $L(M_w) = L(M_\varnothing) = \varnothing$ Since $M_\varnothing \notin L$, we have $M_w \notin L$

If $\mathbf{M}_{\varnothing} \in \mathbf{L}$, then we reduce $\neg \mathbf{A}_{\mathsf{TM}}$ to \mathbf{L} . Define: $\mathbf{M}_{\mathsf{w}}(\mathbf{x}) := \mathsf{if} \; \mathbf{M} \; \mathsf{accepts} \; \mathsf{w} \; \mathsf{and} \; \\ \mathbf{M}_{\mathsf{NO}} \; \mathsf{accepts} \; \mathsf{x}, \; \mathsf{ACCEPT}$

Rice's Theorem

Let L be a language over Turing machines.
Assume that L satisfies the following properties:

- 1. (Semantic) For any TMs M_1 and M_2 , where $L(M_1)$ = $L(M_2)$, $M_1 \in L$ if and only if $M_2 \in L$
- 2. (Nontrivial) There are TMs M_{YES} and $M_{NO},$ where $M_{YES} \in L$ and $M_{NO} \not\in L$

Then L is undecidable
"Every nontrivial semantic property of Turing
machines is undecidable"

Extremely Powerful Stuff

One of these is recognizable, the other one is not. Which one is which?

{M | L(M) contains at most 154 strings}

{M | L(M) contains at least 154 strings}

Is there a generic condition for unrecognizability?

Rice's Theorem, Part II

Let L be a language over Turing machines.
Assume that L satisfies the following properties:

- 1. (Semantic) For any TMs M_1 and M_2 , where $L(M_1) = L(M_2)$, $M_1 \in L$ if and only if $M_2 \in L$
- 2. (Non-monotone) There are TMs M_{YES} and M_{NO} , where $M_{YES} \in L$, $M_{NO} \notin L$, and $L(M_{YES}) \subset L(M_{NO})$

Then L is unrecognizable "Every non-monotone semantic property of Turing machines is unrecognizable"

Idea: Give a mapping reduction from $\neg A_{TM}$ to L

Examples and Non-Examples

Monotone Properties P

- L(M) is infinite
- $L(M) = \Sigma^*$
- L(M) contains at least
- L(M) contains 11111

 $\begin{aligned} & \text{Monotone: } \forall \ M_{\text{YES}} \ , \ M_{\text{NO}}, \\ & \text{If } M_{\text{YES}} \in L \\ & \text{and } L(M_{\text{YES}}) \subset L(M_{\text{NO}}) \\ & \text{then } M_{\text{NO}} \in L. \end{aligned}$

Non-Monotone

- L(M) is finite
- $L(M) = \{0\}$
- L(M) is regular
- L(M) is not regular
- L(M) contains at most 154 strings

L = {M | P(M) is true} is unrecognizable

Reduction from $\neg A_{TM}$: On input (M,w):

Output " $M_w(x) := Run M_{YES}(x), M_{NO}(x), M(w) in ||$ If (M accepts w) & (M_{NO} accepts x), ACCEPT If (M_{YES} accepts x), ACCEPT"

If M accepts w, then L(M_w) = L(M_{NO}), since L(M_{YES}) \subset L(M_{NO}). We have M_w \not\in L

If M does not accept w, then $L(M_w) = L(M_{YES})$ Since $M_{YES} \in L$, we have $M_w \in L$

(M, w) in A_{TM} if and only if $M_w \notin L$

Theorem: There is a computable function $q: \Sigma^* \to \Sigma^*$, where for any string w, q(w) is the *description* of a TM P_w that on any input, prints out w and then accepts

Another Way of Looking At It

Suppose in general we want to design a program that prints its own description. **How?**

"Print this sentence."

Print two copies of the following, the second copy in quotes:

"Print two copies of the following, the = P_B second copy in quotes:"

The Recursion Theorem

Theorem: Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$. There is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(R, w)$$

$$(a,b) \longrightarrow \boxed{\mathsf{T}} \longrightarrow \mathsf{t}(a,b)$$

$$w \rightarrow R \rightarrow t(R, w)$$