Problem 1

REVERSE = \{ M \mid M \text{ is a TM with the property: for all } w, M(w) \text{ accepts iff } M(w^R) \text{ accepts}\}.

REVERSE is undecidable.

Problem 2.1 UNDECIDABLE

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the tape} \}

Problem 2.2 DECIDABLE

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at least once, at some point} \}

Problem 2.1 UNDECIDABLE

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the tape} \}

Proof: Reduce from \(A_{\text{TM}} \) to the above language

On input \((M, w)\), make a TM \(N \) that marks the leftmost tape cell, shifts input \(w \) over one square, then simulates \(M(w) \). If \(M \) moves to the marked cell, \(N \) moves the head back to the right. If \(M \) accepts, \(N \) tries to move its head past the left end of the tape.

\((M, w)\) is in \(A_{\text{TM}} \) if and only if \((N, w)\) has the property
Problem 2.2 DECIDABLE

\((M, w) \mid M\) is a TM that on input \(w\), moves its head left at least once, at some point\)

On input \((M, w)\), run the machine for \(|Q_M| + |w| + 1\) steps:

- **Accept** if \(M\)’s head moved left at all
- **Reject** otherwise

(Why does this work??)

Problem 3

Let \(L\) be a language over Turing machines. Assume that \(L\) satisfies the following properties:

1. (Semantic) For any TMs \(M_1\) and \(M_2\), where \(L(M_1) = L(M_2)\), \(M_1 \in L\) if and only if \(M_2 \in L\)

2. (Nontrivial) There are TMs \(M_{YES}\) and \(M_{NO}\), where \(M_{YES} \in L\) and \(M_{NO} \notin L\)

Prove that \(L\) is undecidable

Examples and Non-Examples

Semantic Properties P

- \(M\) accepts \(\varepsilon\)
- \(L(M) = \{\varepsilon\}\)
- \(L(M)\) is empty
- \(L(M)\) is regular
- \(M\) accepts exactly 154 strings

Not Semantic!

- \(M\) halts and rejects \(\varepsilon\)
- \(M\) tries to move its head off the left end of the tape, on input \(\varepsilon\)
- \(M\) never moves its head left on input \(\varepsilon\)
- \(M\) has exactly 154 states
- \(M\) halts on all inputs

Let \(L = \{M \mid P(M)\) is true\}

is undecidable

Rice’s Theorem

Let \(L\) be a language over Turing machines. Assume that \(L\) satisfies the following properties:

1. (Semantic) For any TMs \(M_1\) and \(M_2\), where \(L(M_1) = L(M_2)\), \(M_1 \in L\) if and only if \(M_2 \in L\)

2. (Nontrivial) There are TMs \(M_{YES}\) and \(M_{NO}\), where \(M_{YES} \in L\) and \(M_{NO} \notin L\)

Then \(L\) is undecidable

“Every nontrivial semantic property of Turing machines is undecidable”

Extremely Powerful Stuff
Theorem: There is a computable function

\begin{align*}
&\rightarrow \\
L(M) &\text{ contains at least 154 strings}
\end{align*}

Examples and Non-Examples

\begin{itemize}
 \item \(L(M)\) contains at most 154 strings
 \item \(L(M)\) contains at least 154 strings
\end{itemize}

Is there a generic condition for unrecognizability?

Rice's Theorem, Part II

Let \(L\) be a language over Turing machines. Assume that \(L\) satisfies the following properties:

1. (Semantic) For any TMs \(M_1\) and \(M_2\), where \(L(M_1) = L(M_2)\), \(M_1 \in L\) if and only if \(M_2 \in L\).

2. (Non-monotone) There are TMs \(M_{\text{YES}}\) and \(M_{\text{NO}}\), where \(M_{\text{YES}} \in L\), \(M_{\text{NO}} \not\in L\), and \(L(M_{\text{YES}}) \subset L(M_{\text{NO}})\).

Then \(L\) is unrecognizable.

“Every non-monotone semantic property of Turing machines is unrecognizable.”

Idea: Give a mapping reduction from \(-A_{TM}\) to \(L\).

Examples and Non-Examples

<table>
<thead>
<tr>
<th>Monotone Properties (P)</th>
<th>Non-Monotone</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L(M)) is infinite</td>
<td>(L(M)) is finite</td>
</tr>
<tr>
<td>(L(M) = \Sigma^*)</td>
<td>(L(M) = {\emptyset})</td>
</tr>
<tr>
<td>(L(M)) contains at least 154 strings</td>
<td>(L(M)) is regular</td>
</tr>
<tr>
<td>(L(M)) contains 11111</td>
<td>(L(M)) is not regular</td>
</tr>
<tr>
<td></td>
<td>(L(M)) contains at most 154 strings</td>
</tr>
</tbody>
</table>

Monotone: \(\forall M_{\text{YES}}, M_{\text{NO}},\)
If \(M_{\text{YES}} \in L\)
and \(L(M_{\text{YES}}) \subset L(M_{\text{NO}})\)
then \(M_{\text{NO}} \in L\).

\(L = \{M \mid P(M) \text{ is true}\}\)
is unrecognizable.

Reduction from \(-A_{TM}\): On input \((M,w)\):

Output \(M_w(x) := \text{Run } M_{\text{YES}}(x), M_{\text{NO}}(x), M(w)\) in \(\|\)
If \((M \text{ accepts } w) \& (M_{\text{NO}} \text{ accepts } x)\), ACCEPT
If \((M_{\text{YES}} \text{ accepts } x)\), ACCEPT’

If \(M\) accepts \(w\), then \(L(M_w) = L(M_{\text{NO}})\), since \(L(M_{\text{YES}}) \subset L(M_{\text{NO}})\). We have \(M_w \not\in L\).

If \(M\) does not accept \(w\), then \(L(M_w) = L(M_{\text{YES}})\) Since \(M_{\text{YES}} \in L\), we have \(M_w \in L\)

\((M, w) \in A_{TM} \text{ if and only if } M_w \not\in L\)

Self-Reference and the Recursion Theorem

\begin{align*}
\text{Theorem: There is a computable function} \\
q : \Sigma^* \rightarrow \Sigma^* \text{, where for any string } w, \\
q(w) \text{ is the description of a TM } P_w \text{ that on any input, prints out } w \text{ and then accepts}
\end{align*}

\begin{align*}
w &\rightarrow Q \rightarrow P_w \\
P_w &\downarrow \\
w &\rightarrow w
\end{align*}
Another Way of Looking At It

Suppose in general we want to design a program that prints its own description. How?

“Print this sentence.”

Print two copies of the following, the second copy in quotes:

“Print two copies of the following, the second copy in quotes:”

The Recursion Theorem

Theorem: Let T be a Turing machine that computes a function $t : \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$. There is a Turing machine R that computes a function $r : \Sigma^* \rightarrow \Sigma^*$, where for every string w,

$$r(w) = t(R, w)$$

- $(a, b) \rightarrow T \rightarrow t(a, b)$
- $w \rightarrow R \rightarrow t(R, w)$