Notes on Distinguishability

This notes present a technique to prove a lower bound on the number of states of any DFA that recognizes a given language. The technique can also be used to prove that a language is not regular. (By showing that for every k one needs at least k states to recognize the language.)

It will be helpful to keep in mind the following two languages over the alphabet $\Sigma=\{0,1\}$ as examples: the language $E Q=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$ of strings containing a sequence of zeroes followed by an equally long sequence of ones, and the language $A=(0 \cup 1)^{*} \cdot 1 \cdot(0 \cup 1)$ of strings containing a 1 in the second-to-last position.

We start with the following basic notion.
Definition 1 (Distinguishable Strings) Let L be a language over an alphabet Σ. We say that two strings x and y are distinguishable with respect to L if there is a string z such that $x z \in L$ and $y z \notin L$, or vice versa.

For example the strings $x=0$ and $y=00$ are distinguishable with respect to $E Q$, because if we take $z=1$ we have $x z=01 \in E Q$ and $y z=001 \notin L$. Also, the strings $x=00$ and $\mathrm{y}=01$ are distinguishable with respect to A as can be seen by taking $z=0$.

On the other hand, the strings $x=0110$ and $y=10$ are not distinguishable with respect to $E Q$ because for every z we have $x z \notin L$ and $y z \not \approx n L$.

Exercise 1 Find two strings that are not distinguishable with respect to A.
The intuition behind Definition 1 is captured by the following simple fact.
Lemma 1 Let L be a language, M be a DFA that decides L, and x and y be distinguishable strings with respect to L. Then the state reached by M on input x is different from the state reached by M on input y.

Proof: Suppose by contradiction that M reaches the same state q on input x and on input y. Let z be the string such that $x z \in L$ and $y z \notin L$ (or vice versa). Let us call q^{\prime} the state reached by M on input $x z$. Note that q^{\prime} is the state reached by M starting from q and given the string z. But also, on input $y z, M$ must reach the same state q^{\prime}, because M reaches state q given y, and then goes from q to q^{\prime} given z. This means that M either accepts both $x z$ and $y z$, or it rejects both. In either case, M is incorrect and we reach a contradiction.

Consider now the following generalization of the notion of distinguishability.
Definition 2 (Distinguishable Set of Strings) Let L be a language. A set of strings $\left\{x_{1}, \ldots, x_{k}\right\}$ is distinguishable if for every two distinct strings x_{1}, x_{j} we have that x_{i} is distinguishable from x_{j}.

For example one can verify that $\{0,00,000\}$ are distinguishable with respect to $E Q$ and that $\{00,01,10,11\}$ are distinguishable with respect to A.

We now prove the main result of this handout.
Lemma 2 (Main) Let L be a language, and suppose there is a set of k distinguishable strings with respect to L. Then every DFA for L has at least k states.

Proof: If L is not regular, then there is no DFA for L, much less a DFA with less than k states. If L is regular, let M be a DFA for L, let x_{1}, \ldots, x_{k} be the distinguishable strings, and let q_{i} be the state reached by M after reading x_{i}. For every $i \neq j$, we have that x_{i} and x_{j} are distinguishable, and so $q_{i} \neq q_{j}$ because of Lemma 1 . So we have k different states q_{1}, \ldots, q_{k} in M, and so M has at least k states.

Using Lemma 2 and the fact that the strings $\{00,01,10,11\}$ are distinguishable with respect to A we conclude that every DFA for A has at least 4 states.

For every $k \geq 1$, consider the set $\left\{0,00, \ldots, 0^{k}\right\}$ of strings made of k or fewer zeroes. It is easy to see that this is a set of distinguishable strings with respect to $E Q$. This means that there cannot be a DFA for $E Q$, because, if there were one, it would have to have at least k states for every k, which is clearly impossible.

