Notes on Circuits and Probabilistic Algorithms

1 Circuits

Definition 1 A language L is solved by a family of circuits $\left\{C_{1}, C_{2}, \ldots, C_{n}, \ldots\right\}$ if for every $n \geq 1$ and for every x such that $|x|=n$,

$$
x \in L \Leftrightarrow C_{n}(x)=1 .
$$

Definition 2 For a function $S: \mathbb{N} \rightarrow \mathbb{N}$ and a language L we say $L \in \operatorname{SIZE}(S(n))$ if L is solved by a family $\left\{C_{1}, C_{2}, \ldots, C_{n}, \ldots\right\}$ of circuits, where C_{n} has at most $S(n)$ gates.

Recall the following two results from Handout 5.
Lemma 1 For every language $L, L \in \operatorname{SIZE}\left(O\left(2^{n}\right)\right)$.
Lemma 2 If $L \in \operatorname{TIME}(t(n))$, then $L \in \operatorname{SIZE}\left(O\left(t^{2}(n)\right)\right)$.
We can express such results in terms of complexity classes in the following way.
Corollary $3 \mathbf{P} \subseteq \operatorname{SIZE}\left(n^{O(1)}\right)$ and $\Sigma^{*} \subseteq \operatorname{SIZE}\left(O\left(2^{n}\right)\right)$.
Lemma 4 If $n \geq 3$ and $S \leq \frac{1}{4 n} \cdot 2^{n}$, then there is a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed using a circuit of size S.
Proof: This is a counting argument. There are $2^{2^{n}}$ functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$, and we will show that the number of circuits of size S is smaller than $2^{2^{n}}$.

To bound the number of circuits of size S we create a compact binary encoding of such circuits. Identify gates with numbers $1, \ldots, S$. For each gate, specify where the two inputs are coming from and the type of gate. The total number of bits required to represent the circuit is

$$
S \cdot(2+2 \log (n+S)) \leq S \cdot(2+2 \log 2 S)=S \cdot(4+2 \log S)
$$

So the number of circuits of size S is at most $2^{4 S+2 S \log S}$. We assumed $S \leq \frac{1}{4 n} \cdot 2^{n}$ and so we have

$$
\begin{aligned}
4 S+2 S \log S & \leq \frac{1}{n} 2^{n}+\frac{1}{2 n} \cdot 2^{n} \cdot(n-\log n-2) \\
& \leq \frac{1}{n} \cdot 2^{n}+\frac{1}{2} \cdot 2^{n} \\
& <2^{n}
\end{aligned}
$$

and we conclude that the number of circuits of size S is strictly smaller than $2^{2^{n}}$, and so some function cannot be computed by any circuit of size S.

Corollary 5 There is some language L such that $L \notin \operatorname{SIZE}\left(\frac{1}{4 n} \cdot 2^{n}\right)$.
It is widely believed that NP $\nsubseteq \operatorname{SIZE}\left(n^{O(1)}\right)$, and proving that this is the case is clearly only more difficult than proving $\mathbf{P} \neq \mathbf{N P}$. As of now, we don't even know how to prove NP \nsubseteq $\operatorname{SIZE}(O(n))$.

2 Probabilistic Algorithms

Definition 3 A language L is in $\mathbf{B P P}$ if there is a polynomial $p()$ and a polynomial time algorithm $A(\cdot, \cdot)$ such that for every string x of length L

- If $x \in L$ then $\operatorname{Pr}_{r \in\{0,1\}^{p(n)}}[A(x, r)$ accepts $] \geq 2 / 3$;
- If $x \notin L$ then $\mathbf{P r}_{r \in\{0,1\}^{p(n)}}[A(x, r)$ rejects $] \geq 2 / 3$.

In other words, a decision problem is in BPP if there is a probabilistic polynomial time algorithm that on every input gives a wrong output with probability at most $1 / 3$. The choice of the particular constant $1 / 3$ is quite arbitrary, and the probability of error can be reduced by using the following trick: run the algorithm $A()$ several times, using fresh randomness each time. If a majority of the runs accept then accept, otherwise reject. The idea is that if one run of the algorithm has a probability at most $1 / 3$ of giving an incorrect answer, then if we run the algorithm k times we expect to see less than $k / 3$ errors. With high probability, the number of errors will be less than $k / 2$ and so by taking the most frequent answer we solve the problem correctly. To make the last sentence formal, we need the following result from probability theory.

Lemma 6 (Chernoff Bound) Let X_{1}, \ldots, X_{k} be independent random variables that take only values zero or one and such that for each i we have $\operatorname{Pr}\left[X_{i}=1\right] \leq p$ and let $\epsilon<1 / 2$. Then

$$
\operatorname{Pr}\left[X_{1}+\cdots+X_{k} \geq(p+\epsilon) k\right] \leq e^{-2 \epsilon^{2} k}
$$

Lemma 7 (Error Reduction) If $L \in \mathbf{B P P}$ then there is a probabilistic polynomial time algorithm A^{\prime} for L whose error probability is at most $1 / 2^{n+1}$ for inputs of length n.

Proof: Let $A(\cdot, \cdot)$ be a probabilistic algorithm for L with error probability at most $1 / 3$, and let $p(n)$ be the length of the random string used by algorithm $A(\cdot, \cdot)$ when the first input is of length n.

The algorithm $A^{\prime}()$ is given an input x of length n and then random strings r_{1}, \ldots, r_{k} where $k=13 n$ and each r_{i} is a string of length $p(n)$.

We compute $A\left(x, r_{1}\right), \ldots, A\left(x, r_{k}\right)$, and if at least $k / 2$ of the computations accept then A^{\prime} accepts, otherwise it rejects.

This means that $A^{\prime}\left(x, r_{1}, \ldots, r_{k}\right)$ is wrong only if more than $k / 2$ of the computations $A\left(x, r_{i}\right)$ are wrong. Let us define the random variables X_{1}, \ldots, X_{k} so that $X_{i}=1$ if $A\left(x, r_{i}\right)$ is wrong, and $X_{i}=0$ otherwise. The probability that $A^{\prime}\left(x, r_{1}, \ldots, r_{k}\right)$ is wrong can be computed using the Chernoff bound with $p=1 / 3$ and $\epsilon=1 / 6$.

$$
\operatorname{Pr}\left[\sum_{i} X_{i}>\frac{k}{2}\right] \leq e^{-2 \cdot\left(\frac{1}{6}\right)^{2} \cdot k}=e^{-k / 18}<2^{-n-1}
$$

if n is large enough.
Note that, more generally, if we have an algorithm whose error probability is $1 / 2-\epsilon(n)$ and we do the above error-reduction procedure with $k(n)=\frac{1}{2} \cdot \frac{1}{(\epsilon(n))^{2}} \cdot \ln \frac{1}{\delta(n)}$ then we get an algorithm whose error probability is at most $\delta(n)$. The new algorithm has polynomial running time as long as $1 / \epsilon$ is at most polynomial and $1 / \delta$ is at most exponential.

Theorem 8 (Adleman [Ad178]) BPP $\subseteq \operatorname{SIZE}\left(n^{O(1)}\right)$.

Proof: Let L be a problem in BPP and A^{\prime} be an algorithm for L that on every input of length n the probability of error is at most 2^{-n-1}.

From A^{\prime} we can get a family of polynomial size circuits $C_{1}, \ldots, C_{n}, \ldots$ such that for every input x of length n and random string r the output of $C_{n}(x, r)$ is the same as $A^{\prime}(x, r)$. Now the idea is to find a string r that works correctly for all inputs x; we show that such a string exists by showing that a random string has such a property with probability greater than zero.

$$
\operatorname{Pr}_{r}\left[\exists x \in\{0,1\}^{n} . C_{n}(x, r) \text { is wrong }\right] \leq \sum_{x \in\{0,1\}^{n}} \operatorname{Pr}_{r}\left[C_{n}(x, r) \text { is wrong }\right] \leq \frac{1}{2}
$$

so that

$$
\operatorname{Pr}_{r}\left[\forall x \in\{0,1\}^{n} \cdot C_{n}(x, r) \text { is right }\right] \geq \frac{1}{2}
$$

Let $r_{\text {good }}$ be a string r such that $C_{n}(x, r)$ is right for every x of length n, and define the circuit $C_{n}^{\prime}(x)=C_{n}\left(x, r_{\text {good }}\right)$.

This process defines a family of polynomial size circuits for L.
It is now strongly believed that $\mathbf{P}=\mathbf{B P P}$. The main reason for such belief is the following result [NW94, IW97].

Theorem 9 (Nisan-Impagliazzo-Wigderson) Suppose there is a constant $\epsilon>0$ and a language $L \in \operatorname{TIME}\left(2^{O(n)}\right)$ such that for every large enough n there is no circuit of size $\leq 2^{\epsilon n}$ that solves L on inputs of length n. Then $\mathbf{P}=\mathbf{B P P}$.

Even though the premise of the theorem is strongly believed to be true, we do not even know how to prove that $\operatorname{TIME}\left(2^{O(n)}\right) \nsubseteq \mathbf{S I Z E}(O(n))$.

References

[Ad178] Leonard Adleman. Two theorems on random polynomial time. In Proceedings of the 19th IEEE Symposium on Foundations of Computer Science, pages 75-83, 1978.
[IW97] R. Impagliazzo and A. Wigderson. $P=B P P$ unless E has sub-exponential circuits. In Proceedings of the 29th ACM Symposium on Theory of Computing, pages 220-229, 1997.
[NW94] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System Sciences, 49:149-167, 1994. Preliminary version in Proc. of FOCS'88.

