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Notes on Circuits and Probabilistic Algorithms

1 Circuits

Definition 1 A language L is solved by a family of circuits {C1,Ca,...,Chp,...} if for everyn > 1
and for every x such that |x| =n,

rel & Cy(z)=1.

Definition 2 For a function S : N — N and a language L we say L € SIZE(S(n)) if L is solved
by a family {C1,Co,...,Cy, ...} of circuits, where Cy, has at most S(n) gates.

Recall the following two results from Handout 5.

Lemma 1 For every language L, L € SIZE(O(2")).

Lemma 2 If L € TIME(t(n)), then L € SIZE(O(t?(n))).

We can express such results in terms of complexity classes in the following way.
Corollary 3 P C SIZE(n°M) and ¥* C SIZE(O(2")).

Lemma 4 Ifn >3 and S < ﬁ - 2" then there is a function f : {0,1}"™ — {0,1} that cannot be
computed using a circuit of size S.

PrROOF: This is a counting argument. There are 22" functions f : {0,1}" — {0,1}, and we will
show that the number of circuits of size S is smaller than 22".

To bound the number of circuits of size S we create a compact binary encoding of such circuits.
Identify gates with numbers 1,...,S. For each gate, specify where the two inputs are coming from
and the type of gate. The total number of bits required to represent the circuit is

S (242log(n+S5)) <S-(2+2log2S)=25"(4+2logS).

So the number of circuits of size S is at most 2451251085 We assumed S < ﬁ - 2™ and so we
have

1 1

45 +2SlogS < —-2"4 —.2".(n—logn —2)
n 2n
< 1.2”4_1.2"
- n 2
< 2"

and we conclude that the number of circuits of size S is strictly smaller than 22", and so some
function cannot be computed by any circuit of size S. [J

Corollary 5 There is some language L such that L ¢ SIZE (ﬁ . 2").

It is widely believed that NP ¢ SIZE(nO(l)), and proving that this is the case is clearly
only more difficult than proving P # NP. As of now, we don’t even know how to prove NP ¢
SIZE(O(n)).



2 Probabilistic Algorithms

Definition 3 A language L is in BPP if there is a polynomial p() and a polynomial time algorithm
A(-,-) such that for every string x of length L

o If x € L then Pr,cq1ypom [A(@, 1) accepts] > 2/3;

o Ifx ¢ L then Pr,co1ypm [A(z,7) rejects] = 2/3.

In other words, a decision problem is in BPP if there is a probabilistic polynomial time algorithm
that on every input gives a wrong output with probability at most 1/3. The choice of the particular
constant 1/3 is quite arbitrary, and the probability of error can be reduced by using the following
trick: run the algorithm A() several times, using fresh randomness each time. If a majority of
the runs accept then accept, otherwise reject. The idea is that if one run of the algorithm has a
probability at most 1/3 of giving an incorrect answer, then if we run the algorithm k times we
expect to see less than k/3 errors. With high probability, the number of errors will be less than
k/2 and so by taking the most frequent answer we solve the problem correctly. To make the last
sentence formal, we need the following result from probability theory.

Lemma 6 (Chernoff Bound) Let Xi,..., Xy be independent random variables that take only
values zero or one and such that for each i we have Pr[X; = 1] < p and let ¢ < 1/2. Then

Pr(X; + -+ X > (p+ e)k] < e 2F

Lemma 7 (Error Reduction) If L € BPP then there is a probabilistic polynomial time algo-
rithm A’ for L whose error probability is at most 1/2"1 for inputs of length n.

PROOF: Let A(-,-) be a probabilistic algorithm for L with error probability at most 1/3, and let
p(n) be the length of the random string used by algorithm A(-,-) when the first input is of length
n.

The algorithm A’() is given an input z of length n and then random strings ri,...,r; where
k = 13n and each r; is a string of length p(n).

We compute A(z,71), ..., A(x,rg), and if at least k/2 of the computations accept then A’
accepts, otherwise it rejects.

This means that A’(x,rq,...,r,) is wrong only if more than k/2 of the computations A(z,r;)
are wrong. Let us define the random variables Xi,..., X} so that X; = 1 if A(x,r;) is wrong,

and X; = 0 otherwise. The probability that A’(z,r1,...,r;) is wrong can be computed using the
Chernoff bound with p =1/3 and € = 1/6.

Pr

ZXi > g] < 6_2'(%)2']“ — ¢ k/18 ~ 9-n—1

if n is large enough. [

Note that, more generally, if we have an algorithm whose error probability is 1/2 — e(n) and
we do the above error-reduction procedure with k(n) = % . W In ﬁ then we get an algorithm
whose error probability is at most d(n). The new algorithm has polynomial running time as long

as 1/e is at most polynomial and 1/4 is at most exponential.

Theorem 8 (Adleman [Ad178]) BPP C SIZE(n°M).



PROOF: Let L be a problem in BPP and A’ be an algorithm for L that on every input of length
n the probability of error is at most 27"~

From A’ we can get a family of polynomial size circuits C1,...,Cy, ... such that for every input
x of length n and random string r the output of Cy,(x, r) is the same as A’(x,r). Now the idea is to
find a string r that works correctly for all inputs x; we show that such a string exists by showing
that a random string has such a property with probability greater than zero.

Pr,[3z € {0,1}".Cy(z,7) is wrong | < Z Pr,[Cy(x,r) is wrong | <
z€{0,1}n

N =

so that
Pr,[Vz € {0,1}".Cy(z,7) is right | >

| =

Let rgo0q be a string r such that Cy(x,r) is right for every z of length n, and define the circuit
Cé(x) = Cn(x7rgood)-
This process defines a family of polynomial size circuits for L. [J

It is now strongly believed that P = BPP. The main reason for such belief is the following
result [NW94, TW97].

Theorem 9 (Nisan-Impagliazzo-Wigderson) Suppose there is a constant € > 0 and a language
L e TIME(QO(”)) such that for every large enough n there is no circuit of size < 2" that solves L
on inputs of length n. Then P = BPP.

Even though the premise of the theorem is strongly believed to be true, we do not even know how
to prove that TIME(2°() ¢ SIZE(O(n)).
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