
U.C. Berkeley — CS172: Automata, Computability and Complexity Handout 8
Professor Luca Trevisan 4/29/2004

Notes on Circuits and Probabilistic Algorithms

1 Circuits

Definition 1 A language L is solved by a family of circuits {C1, C2, . . . , Cn, . . .} if for every n ≥ 1
and for every x such that |x| = n,

x ∈ L ⇔ Cn(x) = 1.

Definition 2 For a function S : N → N and a language L we say L ∈ SIZE(S(n)) if L is solved

by a family {C1, C2, . . . , Cn, . . .} of circuits, where Cn has at most S(n) gates.

Recall the following two results from Handout 5.

Lemma 1 For every language L, L ∈ SIZE(O(2n)).

Lemma 2 If L ∈ TIME(t(n)), then L ∈ SIZE(O(t2(n))).

We can express such results in terms of complexity classes in the following way.

Corollary 3 P ⊆ SIZE(nO(1)) and Σ∗ ⊆ SIZE(O(2n)).

Lemma 4 If n ≥ 3 and S ≤ 1
4n · 2

n, then there is a function f : {0, 1}n → {0, 1} that cannot be

computed using a circuit of size S.

Proof: This is a counting argument. There are 22
n
functions f : {0, 1}n → {0, 1}, and we will

show that the number of circuits of size S is smaller than 22
n
.

To bound the number of circuits of size S we create a compact binary encoding of such circuits.
Identify gates with numbers 1, . . . , S. For each gate, specify where the two inputs are coming from
and the type of gate. The total number of bits required to represent the circuit is

S · (2 + 2 log(n+ S)) ≤ S · (2 + 2 log 2S) = S · (4 + 2 logS).

So the number of circuits of size S is at most 24S+2S logS . We assumed S ≤ 1
4n · 2

n and so we
have

4S + 2S logS ≤
1

n
2n +

1

2n
· 2n · (n− logn− 2)

≤
1

n
· 2n +

1

2
· 2n

< 2n

and we conclude that the number of circuits of size S is strictly smaller than 22
n
, and so some

function cannot be computed by any circuit of size S. ¤

Corollary 5 There is some language L such that L 6∈ SIZE
(

1
4n · 2

n
)

.

It is widely believed that NP 6⊆ SIZE(nO(1)), and proving that this is the case is clearly
only more difficult than proving P 6= NP. As of now, we don’t even know how to prove NP 6⊆
SIZE(O(n)).

1

2 Probabilistic Algorithms

Definition 3 A language L is in BPP if there is a polynomial p() and a polynomial time algorithm

A(·, ·) such that for every string x of length L

• If x ∈ L then Prr∈{0,1}p(n) [A(x, r) accepts] ≥ 2/3;

• If x 6∈ L then Prr∈{0,1}p(n) [A(x, r) rejects] ≥ 2/3.

In other words, a decision problem is in BPP if there is a probabilistic polynomial time algorithm
that on every input gives a wrong output with probability at most 1/3. The choice of the particular
constant 1/3 is quite arbitrary, and the probability of error can be reduced by using the following
trick: run the algorithm A() several times, using fresh randomness each time. If a majority of
the runs accept then accept, otherwise reject. The idea is that if one run of the algorithm has a
probability at most 1/3 of giving an incorrect answer, then if we run the algorithm k times we
expect to see less than k/3 errors. With high probability, the number of errors will be less than
k/2 and so by taking the most frequent answer we solve the problem correctly. To make the last
sentence formal, we need the following result from probability theory.

Lemma 6 (Chernoff Bound) Let X1, . . . , Xk be independent random variables that take only

values zero or one and such that for each i we have Pr[Xi = 1] ≤ p and let ε < 1/2. Then

Pr[X1 + · · ·+Xk ≥ (p+ ε)k] ≤ e−2ε2k

Lemma 7 (Error Reduction) If L ∈ BPP then there is a probabilistic polynomial time algo-

rithm A′ for L whose error probability is at most 1/2n+1 for inputs of length n.

Proof: Let A(·, ·) be a probabilistic algorithm for L with error probability at most 1/3, and let
p(n) be the length of the random string used by algorithm A(·, ·) when the first input is of length
n.
The algorithm A′() is given an input x of length n and then random strings r1, . . . , rk where

k = 13n and each ri is a string of length p(n).
We compute A(x, r1), . . . , A(x, rk), and if at least k/2 of the computations accept then A′

accepts, otherwise it rejects.
This means that A′(x, r1, . . . , rk) is wrong only if more than k/2 of the computations A(x, ri)

are wrong. Let us define the random variables X1, . . . , Xk so that Xi = 1 if A(x, ri) is wrong,
and Xi = 0 otherwise. The probability that A′(x, r1, . . . , rk) is wrong can be computed using the
Chernoff bound with p = 1/3 and ε = 1/6.

Pr

[

∑

i

Xi >
k

2

]

≤ e−2·(1
6)

2
·k = e−k/18 < 2−n−1

if n is large enough. ¤

Note that, more generally, if we have an algorithm whose error probability is 1/2 − ε(n) and
we do the above error-reduction procedure with k(n) = 1

2 ·
1

(ε(n))2
· ln 1

δ(n) then we get an algorithm

whose error probability is at most δ(n). The new algorithm has polynomial running time as long
as 1/ε is at most polynomial and 1/δ is at most exponential.

Theorem 8 (Adleman [Adl78]) BPP ⊆ SIZE(nO(1)).

2

Proof: Let L be a problem in BPP and A′ be an algorithm for L that on every input of length
n the probability of error is at most 2−n−1.
From A′ we can get a family of polynomial size circuits C1, . . . , Cn, . . . such that for every input

x of length n and random string r the output of Cn(x, r) is the same as A
′(x, r). Now the idea is to

find a string r that works correctly for all inputs x; we show that such a string exists by showing
that a random string has such a property with probability greater than zero.

Prr[∃x ∈ {0, 1}
n.Cn(x, r) is wrong] ≤

∑

x∈{0,1}n

Prr[Cn(x, r) is wrong] ≤
1

2

so that

Prr[∀x ∈ {0, 1}
n.Cn(x, r) is right] ≥

1

2

Let rgood be a string r such that Cn(x, r) is right for every x of length n, and define the circuit
C ′

n(x) = Cn(x, rgood).
This process defines a family of polynomial size circuits for L. ¤

It is now strongly believed that P = BPP. The main reason for such belief is the following
result [NW94, IW97].

Theorem 9 (Nisan-Impagliazzo-Wigderson) Suppose there is a constant ε > 0 and a language

L ∈ TIME(2O(n)) such that for every large enough n there is no circuit of size ≤ 2εn that solves L
on inputs of length n. Then P = BPP.

Even though the premise of the theorem is strongly believed to be true, we do not even know how
to prove that TIME(2O(n)) 6⊆ SIZE(O(n)).

References

[Adl78] Leonard Adleman. Two theorems on random polynomial time. In Proceedings of the 19th

IEEE Symposium on Foundations of Computer Science, pages 75–83, 1978.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP unless E has sub-exponential circuits. In
Proceedings of the 29th ACM Symposium on Theory of Computing, pages 220–229, 1997.

[NW94] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System

Sciences, 49:149–167, 1994. Preliminary version in Proc. of FOCS’88.

3

