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Notes on Zero Knowledge

1 Interactive Proofs

We define interactive proofs as in Sipser’s book, Section 10.4, except that we consider probabilistic
provers. (That is, in our definition, a prover takes in input an input string, a partial message
history and a random input, and gives in output a next message.)

Definition 1 (IP) For a function k : N → N, we define IP(k(n)) as the class of languages L such
that there is a polynomial time verifier VL and a prover PL such that for every input string x of
length n,

• The interaction between VL and PL involves at most k(n) messages.

• If x ∈ L then Pr[VL ↔ PL accepts x] ≥ 2/3. (Completeness.)

• If x 6∈ L then for every prover P we have Pr[VL ↔ P accepts x] ≤ 1/3. (Soundness.)

If the probability in the completeness case is 1 (instead of 2/3), then we say that the proof system
has perfect completeness, and we denote by IP1(k(n)) the class of languages having proof systems
with perfect completeness and k(n) rounds.

We state the following two results without proof.

Theorem 1 If k(n) ≥ 2, then IP(k(n)) = IP1(k(n)).

Theorem 2 For every function k() such that k(n) ≥ 2 for every n, IP(2k(n)) = IP(k(n)). In
particular, for every constant k, IP(k) = IP(2).

There are reasons to believe that IP(2) is equal to NP, and it is considered very unlikely that
IP(2) could contain coNP-hard problems.

The following results are proved in Sipser’s book. Let GI be the graph isomorphism problem
and GNI be the graph non-isomorphism problem.

Theorem 3 GNI ∈ IP(2).

This gives a very strong evidence that GI is not NP-complete. (Otherwise GNI would be coNP-
complete and we would have a coNP-complete problem in IP(2).) There is no known polynomial
time algorithm for GI and, in fact, GI is conjectured to not be in P. This means that, most likely,
GI neither is in P nor is NP-complete. This interesting because almost all the natural problems
in NP are known either to be solvable in polynomial time or to be NP-complete.

Theorem 4 IP(nO(1)) = PSPACE.

In particular, all coNP-complete problems have interactive proof systems. This is interesting
because it would seem impossible to prove coNP-complete statements (that involve exponentially
many special cases) using only a polynomially long interaction.
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2 Zero Knowledge

Definition 2 (Honest Verifier Zero Knowledge) A honest verifier Perfect Zero Knowledge
proof system for a language L is an interactive proof (VL, PL) for L, as defined in the previous
section, such that there is a probabilistic algorithm S (for Simulator) that runs in average polyno-
mial time and such that for every string x ∈ L the distribution of outputs of S(x) is identical to
the distribution of views of VL of the interaction between PL and VL on input x.

The class of languages that admit a honest verifier perfect zero knowledge proof system is denoted
by HVPZK.

A view of VL is described by the random input of VL and the sequence of messages exchanged
between VL and PL.

The definition captures the intuition that, if a protocol is HVPZK, then the verifier VL gains no
useful information from the interaction with PL. In fact, anything that VL might try to compute
about x after interacting with PL and receiving a proof that x ∈L, might also be computed without
interacting with PL and using outputs of S(x) instead.

The reader can verify that the interactive proof for GNI in Siper’s book demonstrates that GNI
is in HVPZK.

The following definition is more general and more useful in cryptographic applications.

Definition 3 (General Zero Knowledge) A Perfect Zero Knowledge proof system for a lan-
guage L is an interactive proof (VL, PL) for L, as defined in the previous section, such that for
every polynomial time verifier V ′ there is a probabilistic algorithm S ′ (for Simulator) that runs in
average polynomial time and such that for every string x ∈ L the distribution of outputs of S ′(x)
is identical to the distribution of views of V ′ of the interaction between PL and V ′ on input x.

The class of languages that admit a perfect zero knowledge proof system is denoted by PZK.

This stronger condition implies that, if the prover does not even trust the verifier to follow the
protocol of the proof system, the prover can still deliver a convincing proof that x ∈ L without
giving away any information about x.

There are some extra details that we are not considering here but that are important. For
example, it is important for cryptographic applications that the “error” probability in the com-
pleteness and soundness case be very small functions of n (typically 1/2n) rather than the constant
1/3. One can reduce the probability of error by repeating the protocol several times.1 If the pro-
tocol is repeated several times, however, it is not clear that the general zero knowledge property is
preserved. There is, however, a more complicated definition of Zero Knowledge that is preserved
by sequential repetition. We will not get into any of these finer points.

Clearly, every problem in BPP is also in PZK, using a proof system where no message is
exchanged. (Which is easy to simulate!) A few problems not believed to be in BPP are also in
PZK. In particular:

Theorem 5 GI ∈ PZK.

Proof: Consider the following proof system. Given two graphs G1 = (V,E1), G2 = (V,E2),

1This is similar to the problem of reducing error in BPP algorithms, but the analysis for proof systems is
considerably more complicated.
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1. The prover picks at random a permutation π and sends to the prover the graph G = (V,E)
where E = π(E1)).
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2. The verifier picks a bit b ∈ {0, 1} at random and sends it to the prover.

3. The prover replies with a permutation π′ such that E = π′(Eb). If b = 1 then π′ = π, and
otherwise π′ is a composition of π with the permutation that shows the isomorphism between
G1 and G2.

The verifier accepts if the permutation π′ satisfies the required property.

The protocol clearly has perfect completeness. To analyze soundness, suppose that G1 and G2

are not isomorphic, and let P ′ be a cheating prover interacting with the honest verifier. Then P ′

sends some graph G at the first round, and this graph cannot be isomorphic to both G1 and G2.
At the next round, there is a probability at least 1/2 that the verifier will choose a b such that G
and Gb are not isomorphic, and then the verifier will reject because the prover will fail to show the
required permutation. Thus, for every prover, the verifier accepts with probability at most 1/2. If
the verifier repeats the protocol twice, and accepts only if both repetitions are correct, then it is
easy to see that the protocol has still perfect completeness and the error in the soundness condition
is only 1/4.

For the zero knowledge property, let V’ be an arbitrary cheating verifier for the protocol, and
consider the following simulator. On input G1 = (V,E1), G2 = (V,E2),

• Pick the random input r′ for verifier V ′, pick r ∈ {0, 1}, pick a random permutation π : V →
V , define G = (V, π(Er));

• Write “verifier has random input r′”, “prover sends G to verifier”;

• Simulate verifier V ′ given G1, G2 as input strings, r
′ as random input, and G as first message,

let b be the verifier’s second message;

• If b == r then write “verifier sends b to the prover”, “prover sends π to verifier”;

• Else FAIL

One can see that, conditioned on the event that the simulation does not fail, the output of the
simulator is identical to the distribution of interactions between V ′ and the prover. The simulator
runs in polynomial time and fails with probability 1/2. If we keep running the simulator until it does
not fail, then the average running time is still polynomial, because on average we run the simulator
twice. If we want to simulate two sequential runs of the protocol, then we have probability 1/4 of
not failing, and we can still repeat the simulation until it does not fail, resulting in a polynomial
time simulation. ¤

Because of the following result (that we give without proof), NP-complete problems are not
believed to have zero knowledge proofs.

Theorem 6 PZK ⊆ IP(2) ∩ coIP(2).

There is, however, a more relaxed definition of Zero Knowledge (called Computational Zero
Knowledge) proof system that can be realized for NP-complete problems.

2Recall that if G = (V,E) is a graph and π : V → V is a permutation, then we denote by π(E) the set of edges of
the form (π(u), π(v)) such that (u, v) ∈ E.
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