Problem Set 5

This problem set is due on Friday March 5, by 4:00pm.

Use the CS172 drop box.

Write your name and your student ID number on your solution. Write legibly. The description of your proofs should be as *clear* as possible (which does not mean *long* – in fact, typically, good clear explanations are also short.) Be sure to be familiar with the collaboration policy, and read the overview in the class homepage www.cs.berkeley.edu/~luca/cs172.

- 1. Sipser problem 4.19.
- 2. Sipser problem 5.14.
- 3. (a) Prove that $\overline{E_{\mathsf{TM}}}$ is Turing-recognizable.
 - (b) Prove that A_{TM} is not mapping reducible to E_{TM} .
- 4. For each of the following languages, give a proof that it is undecidable or describe an algorithm to decide it. (You may assume that all the languages are over the alphabet $\{0,1\}$ and all the Turing machines have $\{0,1\}$ as their input alphabet.)
 - (a) $L_1 = \{\langle M \rangle \mid M \text{ is a Turing machine that rejects all inputs of even length}\}.$
 - (b) $L_2 = \{ \langle M \rangle \mid M \text{ is a Turing machine that halts on an empty input} \}.$
 - (c) $L_3 = \{\langle M \rangle \mid \text{ there is some input } x \in \{0,1\}^* \text{ such that } M \text{ accepts } x \text{ in less than } 100 \text{ steps } \}.$