Problem Set 6

This problem set is due on Friday March 12, by 4:00pm.

Use the CS172 drop box.

Write your name and your student ID number on your solution. Write legibly. The description of your proofs should be as *clear* as possible (which does not mean *long* – in fact, typically, good clear explanations are also short.) Be sure to be familiar with the collaboration policy, and read the overview in the class homepage www.cs.berkeley.edu/~luca/cs172.

- 1. Sipser problem 5.9.
- 2. Sipser problem 5.12. Prove the result using Rice's theorem: show that $S = L_{\mathcal{C}}$, for a properly defined \mathcal{C} , and show that S is non-empty and does not contain all Turing machines.
- 3. (a) Suppose B is an undecidable language such that $B \leq_m \overline{B}$. Prove that neither B nor \overline{B} is Turing-recognizable.
 - (b) (Sipser problem 5.11) Give an example of an undecidable language B where $B \leq_m \overline{B}$. (A correct example of such a language without proof will get zero credit; a complete solution should include an explicit mapping reduction from B to \overline{B} and a proof that B is undecidable.)
- 4. Sipser problem 6.11.