CS 172 Spring 2007 - Discussion Handout 1

1. Simpleton machines: DFAs

Design DFAs to recognize the following languages:
(a) $\left\{w \mid w\right.$ is any string not in $\left.a^{*} b^{*}\right\}$ with $\Sigma=\{a, b\}$.
(b) $\{w \mid w$ has length at least 3 and its third symbol is 0$\}$ with $\Sigma=\{0,1\}$.
(c) $\{w \mid w$ contains an even number of a's and an odd number of b's and does not contain the substring ab\}, $\Sigma=\{a, b\}$.
(d) $B_{n}=\left\{a^{k} \mid n\right.$ divides $\left.k\right\}$ for $\Sigma=\{a\}$.
2. Getting Moody: NFAs

Design NFAs to recognize the following languages:
(a) The set of all binary strings (of length at least 10) such that at least one of the last 10 characters is a 1 .
(b) The set of all decimal numbers such that the final digit has not appeared before.
3. Once a regular language, always a regular language

In the lecture you saw certain operations like union, intersection, star etc., which when applied to a regular language (or two languages), still give a regular language. Here we define some more operations on a single language. Prove that if A is a regular language, then $O p(A)$ is also a regular language, for each of the operations defined below.
(a) Complement: $A^{c}=\left\{w \in \Sigma^{*} \mid w \notin A\right\}$.
(b) NOPREFIX: $\operatorname{NOPREFIX}(A)=\{w \in A \mid$ No proper prefix of w is in $A\}$.
(c) DROP-OUT: $D R O P-O U T(A)=\left\{x z \mid x, z \in \Sigma^{*}\right.$ and $\exists y \in \Sigma$ such that $\left.x y z \in A\right\}$.

4. Laconic NFAs

Show that every NFA can be converted to another NFA which accepts exactly the same language, but has just one accepting state.

